❶ 怎样让齿轮齿条装配中的齿轮动起来
我把我今天做齿轮齿条装配的步骤说一下。第5步我不知道没扰该怎么实现,希望装配高手给予解答,谢谢。齿轮齿条最好用工首颤程参考提供的“齿轮齿条传动装置设计器”来设计,具体参数自己输入。得到模型以后进行装配。1、在装配环境(我用的是SE
ST2传统模式)下,调入齿轮,选中齿轮,右键选择“显示/隐藏部件——曲面”,这一步操作是为了显示齿轮的分度圆,也是为下一步的分度圆相切提供帮助。要是不太直观,右键选择“使用设计零件”。2、面对齐
。调入齿条,装配关系选择“面对齐”,选择齿条的一个侧面和齿轮的一个端面对齐,是具体情况而定。调整好以后,选中齿条,右键选择“显示/隐藏部件——曲面”,显示齿条分度线所在平面。右键选择“使用设计零件”。3、相切
。选择齿条的分度线所在平面和枯芹旦齿轮的分度圆面相切。要是相切的位置相反,可以通过在装配关系中右键相切,选择“翻转”来达到正确相切的要求。4、固定齿条(我做的模型中齿条是固定的)。5、调整齿条和齿轮,使齿轮的轮齿和齿条的齿相接触(这一步我是靠“拖动部件”来实现的,没找到别的方法)。6、齿轮
。装配类型选择“旋转-线性”,选择齿轮的旋转方向,速度。7、添加电机,就可以看运动过程了。
❷ 想设计一个齿条传动,推动一个重量为400公斤的平台,行程为3ooomm,求设计思路
首先你一定要齿条传动的吗 你的平台尺寸是多少 动力来源是电动机 还是液压了 不然怎么设计嘛
1 你可以在平台下装齿伏尘条 让后笑竖用电动机+减速机带动齿轮传动
2也是在平台下面装齿条 在平台下面导轨下装定心齿轮下面在用液缺升禅压缸推动齿条带动齿轮传动平台
❸ 汽车齿轮齿条式动力转向器工作原理是什么
齿轮齿条式转向器中作为传动副主动件的转向齿轮安装在壳体中,与水平布置的转向齿条啮轮慎合。弹簧通过压块将齿条压靠在转向齿轮上,以保证无间隙啮合。
齿轮齿条式转向器由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。与其他形式转向器相比,齿轮齿条式转向器结构简单、紧凑,壳体多采用铝合金或镁合金压铸而成,转向器质量比较小,采用齿轮齿条传动方式,传动效率较高。
(3)齿轮齿条传动装置设计器扩展阅读:
注意事项:
1、标准齿条设计有固定的侧隙,装配时只需根据组装距离(组装距离公差为H7~H8)进行组装。
2、研磨齿条是安装面经过研磨加工的高精度产品。安装齿条的基面精度低会对产品的性能产生影响。将齿条组装在高精度平行度和垂直度的基面 (推荐值衫哪为10μm以内)。
3、如果齿条没有贴紧固定在基面上,运转中可能会产生移动而引起无法预知的问题。另外为使紧固螺钉在剪切方向不承受负荷,请同时使用销钉固定齿条。
4、对于端面经过加工的齿条,端或桐码面部的齿距为负公差(-0.05~-0.4)。 齿条连接使用时,如果将两根齿条的端面紧贴在一起,连结部的齿距会变小而成为故障的原因。
❹ 设计一个齿轮齿条传动机构,齿条固定不动,考虑到安装等因素,它们的宽度是取一样还是哪个稍微宽点
1.一般来讲返吵羡齿条比齿轮稍宽。
2.宽多少取决呼你们传动运动的精度,结构组成。以运动中齿轮别跑出来为原则。
3.关于漏拍啮合宽度碰茄,需要校核。
❺ 求各位大侠,我现在设计了一个移栽,用的是齿轮齿条传动,齿条是固定在横梁上的,齿轮和减速机相联
计算导轨移动所需的动摩擦力=动摩擦系数x负载,驱动力矩=动摩擦力x齿轮分度圆半径,计算自己所需要的移动速度,唯弊换算出芦山扮到小齿轮上,得到小齿轮的转速,这样就有了输出转速和输出陪灶扭矩,功率P=Tn/9550,得到伺服电机的功率,如果电机扭矩太小,可以考虑加一个减速机
❻ 求 齿轮减速器传动设计说明书装配图,零件图 做课程设计,满意答复追加50分。
单级斜齿圆柱减速器设计说明书
院(系) 机械与汽车工程学院
专 业
班 级
学 号
姓 名
专业教研室、研究所负责人
指导教师
年 月 日
XXXXXXX 大 学
课 程 设 计 ( 论 文 ) 任 务 书
兹发给 车辆工程 班学生 课程设计(论文)任务书,内容如下:
1. 设计题目:V带——单级斜齿圆柱减速器
2. 应完成的项目:
(1) 减速器的总装配图一张(A1)
(2) 齿轮零件图 一张(A3)
(3) 轴零件图一张(A3)
(4) 设计说明书一份
3. 本设计(论文)任务书于2008 年 月 日发出,应于2008 年 月 日前完成,然后进行答辩。
专业教研室、研究所负责人 审核 年 月 日
指导教师 签发 年 月 日
程设计(论文)评语:课程设计(论文)总评成绩:
课程设计(论文)答辩负责人签字:
年 月 日
目 录
一. 传动方案的确定―――――――――――――――5
二. 原始数据――――――――――――――――――5
三. 确定电动机的型号――――――――――――――5
四. 确定传动装置的总传动比及分配――――――――6
五. 传动零件的设计计算―――――――――――――7
六. 减速器铸造箱体的主要结构尺寸设计――――――13
七. 轴的设计――――――――――――――――――14
八. 滚动轴承的选择和计算――――――――――――19
九. 键联接的选择和强度校核―――――――――――22
十. 联轴器的选择和计算―――――――――――――22
十一. 减速器的润滑―――――――――――――――22
十二. 参考文献―――――――――――――――――2计算过程及计算说明
一、传动方案拟定二、原始数据:
带拉力:F=5700N, 带速度:v=2.28m/s, 滚筒直径:D=455mm
运输带的效率: 工作时载荷有轻微冲击;室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差 4%,要求齿轮使用寿命为10年,二班工作制;轴承使用寿命不小于15000小时。
三、电动机选择
(1) 选择电动机类型: 选用Y系列三相异步电动机
(2) 选择电动机功率::
运输机主轴上所需要的功率:
传动装置的总效率:
, , , , 分别是:V带传动,齿轮传动(闭式,精度等级为8),圆锥滚子轴承(滚子轴承一对),联轴器(刚性联轴器),运输带的效率。查《课程设计》表2-3,
取:
所以:
电动机所需功率: ,
查《课程设计》表16-1 取电动机Y200L1-6的额定功率
(3)选择电动机的转速
取V带传动比范围(表2-2) ≤2~4;单级齿轮减速器传动比 =3~6
滚筒的转速:
电动机的合理同步转速:
查表16-1得电动机得型号和主要数据如下(同步转速符合)
电动机型号 额定功率(kW) 同步转速(r/min) 满载转速nm
(r/min) 堵载转矩
额定转矩 最大转矩
额定转矩
Y200L1-6 18.5 1000 970 1.8 2.0
查表16-2得电动机得安装及有关尺寸
中心高
H 外形尺寸
底脚安装尺寸
地脚螺栓孔直径
轴伸尺寸
键公称尺寸
200 775×(0.5×400+310) ×310 318×305 19 55×110 16×
五、计算总传动比及分配各级的传动比
传动装置得总传动比 :
取V带传动比: ;单级圆柱齿轮减速器传动比:
(1) 计算各轴得输入功率
电动机轴:
轴Ⅰ(减速器高速轴):
轴Ⅱ(减速器低速轴):
(2) 计算各轴得转速
电动机轴:
轴Ⅰ :
轴Ⅱ :
(3)计算各轴得转矩
电动机轴
轴Ⅰ :
轴Ⅱ :
上述数据制表如下:
参数
轴名 输入功率
( )
转速
( )
输入转矩
( )
传动比
效率
电动机轴 15.136 970 182.14 1.6893 0.95
轴Ⅰ(减速器高速轴) 14.379 574.20 239.15 6 0.97
轴Ⅱ(减速器低速轴) 13.669 95.70 1364.07
五、传动零件的设计计算
1. 普通V带传动得设计计算
① 确定计算功率
则: ,式中,工作情况系数取 =1.3
② 根据计算功率 与小带轮的转速 ,查《机械设计基础》图10-10,选择SPA型窄V带。
③ 确定带轮的基准直径
取小带轮直径: ,
大带轮直径 :
根据国标:GB/T 13575.1-1992 取大带轮的直径
④ 验证带速:
在 之间。故带的速度合适。
⑤确定V带的基准直径和传动中心距
初选传动中心距范围为: ,初定
V带的基准长度:
查《机械设计》表2.3,选取带的基准直径长度
实际中心距:
⑥ 验算主动轮的最小包角
故主动轮上的包角合适。
⑦ 计算V带的根数z
,由 , ,
查《机械设计》表2.5a,得 ,由 ,查表2.5c,得额定功率的增量: ,查表2.8,得 ,查表2.9,得
, 取 根。
⑧ 计算V带的合适初拉力
查《机械设计》表2.2,取
得
⑨ 计算作用在轴上的载荷 :
⑩ 带轮的结构设计 (单位)mm
带轮
尺寸
小带轮
槽型 C
基准宽度
11
基准线上槽深
2.75
基准线下槽深
11.0
槽间距
15.0 0.3
槽边距
9
轮缘厚
10
外径
内径
40
带轮宽度
带轮结构 腹板式
V带轮采用铸铁HT150或HT200制造,其允许的最大圆周速度为25m/s.
2. 齿轮传动设计计算
(1)择齿轮类型,材料,精度,及参数
① 选用斜齿圆柱齿轮传动(外啮合);
② 选择齿轮材料:由课本附表1.1选大、小齿轮的材料均为45钢,并经调质后表面淬火,齿面硬度为HRC1=HRC2=45;
③ 选取齿轮为7级的精度(GB 10095-88);
④ 初选螺旋角
⑤ 选 小齿轮的齿数 ;大齿轮的齿数
(2)按齿面接触疲劳强度设计
由设计计算公式进行试算,即
A. 确定公式内各个计算数值
① 试选载荷系数Kt=1.5
② 小齿轮传递的转矩:
③ 由《机械设计》表12.5得齿宽系数 (对硬齿面齿轮, 取值偏下极限)
④ 由《机械设计》表12.4弹性影响系数
⑤ 节点区域系数
所以,得到 =2.4758
⑥ 端面重合度
=
=
代入上式可得:
⑦ 接触疲劳强度极限σHlim1=σHlim2=1000Mpa (图12.6)
⑧ 应力循环次数
N1=60 nⅠjLh=60x574.20x1x(2x8x300x10)=16.5x108
N2= N1/i2=16.5x108/6=2.75x108
⑨ 接触疲劳寿命系数 根据图12.4
⑩ 接触疲劳许用应力 取
=0.91 1000/1.2Mpa=758.33 MPa
=0.96 1000/1.2Mpa=800 Mpa
因为 =779.165MPa<1.23 =984MPa, 故取 =779.165 Mpa
B. 计算
① 试算小齿轮分度圆
② 计算圆周速度: =
③ 计算齿宽: = 1 57.24 = 57.24 mm
④ 齿宽与齿高之比:
/(2.25 )
⑤ 计算载荷系数K
根据v=2.28m/s,7级精度,由附图12.1查得动载系数 =1.07
由附表12.2查得 ; 由附表12.1查得 .25
参考课本附表12.3中6级精度公式,估计 <1.34,对称
1.313取 =1.313
由附图12.2查得径向载荷分布系数 =1.26
载荷系数
⑥ 按实际的载荷系数修正分度圆直径
=
⑦ 计算模数
3、按齿根弯曲疲劳强度设计
A. 确定公式中的各参数
① 载荷系数K:
则
② 齿形系数 和应力校正系数
当量齿数 = =21.6252,
= =112.2453
③ 螺旋角影响系数
轴面重合度 = =0.9385
取 =1得 =0.9374
④ 许用弯曲应力
查课本附图6.5得 ,取 =1.4,则
=0.86 500/1.4Mpa=307 Mpa
=0.88 500/1.4Mpa=314 Mpa
⑤ 确定
=2.73 1.57/307=0.01396
=2.17 1.80/314=0.01244
以 代入公式计算
B. 计算模数mn
比较两种强度计算结果,确定
4、几何尺寸的计算
① 中心距 =3 (21+126)/ (2cos80)=223mm
取中心距
② 修正螺旋角:
③ 分度圆直径:
④ 齿宽 ,取B2=65 mm,B1=70 mm
⑤ 齿轮传动的几何尺寸,制表如下:(详细见零件图)
名称 代号 计算公式 结果
小齿轮 大齿轮
中心距
223 mm
传动比
6
法面模数
设计和校核得出 3
端面模数
3.034
法面压力角
螺旋角
一般为
齿顶高
3mm
齿根高
3.75mm
全齿高
6.75mm
顶隙 c
0.75mm
齿数 Z
21 126
分度圆直径
64.188mm 382.262 mm
齿顶圆直径
70.188 mm 388.262mm
齿根圆直径
57.188 mm 375.262 mm
齿轮宽 b
70mm 65mm
螺旋角方向
左旋 右旋
六、减速器铸造箱体的主要结构尺寸设计
查《设计基础》表3-1经验公式,及结果列于下表。
名称 代号 尺寸计算 结果(mm)
底座壁厚
8
箱盖壁厚
8
底座上部凸圆厚度
12
箱盖凸圆厚度
12
底座下部凸圆厚度
20
底座加强筋厚度 e
8
底盖加强筋厚度
7
地脚螺栓直径 d 或表3.4
16
地脚螺栓数目 n 表3--4 6
轴承座联接螺栓直径
0.75d 12
箱座与箱盖联接螺栓直径
(0.5—0.6)d 8
轴承盖固定螺钉直径
(0.4—0.5)d 8
视孔盖固定螺钉直径
(0.3—0.4)d 5
轴承盖螺钉分布圆直径
155/140
轴承座凸缘端面直径
185/170
螺栓孔凸缘的配置尺寸
表3--2 22,18,30
地脚螺栓孔凸缘配置尺寸
表3--3 25,23,45
箱体内壁与齿轮距离
12
箱体内壁与齿轮端面距离
10
底座深度 H
244
外箱壁至轴承端面距离
45
七、轴的设计计算
1. 高速轴的设计
① 选择轴的材料:选取45号钢,调质,HBS=230
② 初步估算轴的最小直径
根据教材公式,取 =110,则: =32.182mm
因为与V带联接处有一键槽,所以直径应增大5%
③ 轴的结构设计:
考虑带轮的机构要求和轴的刚度,取装带轮处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为:
两轴承支点间的距离: ,
式中: ―――――小齿轮齿宽,
―――――― 箱体内壁与小齿轮端面的间隙,
――――――― 箱体内壁与轴承端面的距离,
――――― 轴承宽度,选取30310圆锥滚子轴承,查表13-1,得到
得到:
带轮对称线到轴承支点的距离
式中: ------------轴承盖高度,
t ――――轴承盖的凸缘厚度, ,故,
―――――螺栓头端面至带轮端面的距离,
―――――轴承盖M8螺栓头的高度,查表可得 mm
――――带轮宽度,
得到:
2.按弯扭合成应力校核轴的强度。
①计算作用在轴上的力
小齿轮受力分析
圆周力:
径向力:
轴向力:
②计算支反力
水平面:
垂直面:
所以:
③ 作弯矩图
水平面弯矩:
垂直面弯矩:
合成弯矩:
④ 作转矩图 (见P22页) T1=239.15Nm
当扭转剪力为脉动循环应变力时,取系数 ,
则:
⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,A剖面的计算弯矩最大 ,该处的计算应力为:
D 剖面的轴径最小,该处的计算应力为:
(安全)
⑥ 轴的结构图见零件图所示
2.低速轴的设计
(1).选择轴的材料:选择45号钢,调质,HBS=230
(2). 初步估算轴的最小直径:取A=110,
两个键,所以 mm
考虑联轴器的机构要求和轴的刚度,取装联轴器处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为: 选30214 轴承 T=26.25
(3).轴的结构设计,初定轴径及轴向尺寸:考虑
---螺栓头端面至带轮端面的距离,
k ----轴承盖M12螺栓头的高度,查表可得k=7.5mm ,选用6个
L---轴联轴器长度,L=125mm
得到:
(4).按弯曲合成应力校核轴的强度
①计算作用的轴上的力
齿轮受力分析:圆周力: N
径向力:
轴向力:
③ 计算支反力:
水平面:
垂直面: ,
,
③ 作弯矩图
水平面弯矩:
垂直面弯矩:
合成弯矩:
④ 作转矩图 T2=1364.07Nm
当扭转剪力为脉动循环应变力时,取系数 , 则:
⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,C剖面的计算弯矩最大 ,该处的计算应力为:
D 剖面的轴径最小,该处的计算应力为:
(安全)
(5)轴的结构图见零件图所示:
八、滚动轴承的选择和计算
1.高速轴滚动轴承的选择和寿命计算
① 选取的轴承:型号为30310圆锥滚子轴承(每根轴上安装一对)
②轴承A的径向载荷
轴承B的径向载荷:
对于30310型圆锥滚子轴承,其内部派生轴向力
所以轴承A被“放松”,而轴承B被“压紧”,则
计算当量动载荷
对于轴承1
对于轴承2 (根据《机械设计》表9.1)
轴向载荷:
因为 ,按照轴承 A验算寿命
(由表13-1可查C=122kN)
故满足寿命要求
2. 低速轴滚动轴承的选择和寿命计算
①选取的轴承:型号为30214圆锥滚子轴承
❼ 齿轮齿条的基本知识与应用
齿条的分类可以按照齿形、齿轮外形、齿线形状、制造工艺等方法分类。
1、齿轮按其外形分为圆柱齿轮、直齿、斜齿;
2、按齿线形状齿轮分为直齿轮、斜齿轮、人字齿轮;
3、按工艺可分为淬火、调质、研磨、铣齿、磨齿,可根据需求发黑处理
齿条的精度模数
目前精度等级参考德国标准,1-13级精度。我们在应用中一般采用6级齿条。模数标准齿条规格,其中8级是软齿,9级是铣齿。
材质是C45碳钢,在自动化机器人、龙门加工中心、激光切割机、铝型材,木工加工中心,桁架第七轴等领域都有着广泛应用。这样齿条一般要求精度高,定位准确,运行稳定
故障现象:
噪音变大
可能原因有齿轮传动装置损坏、齿轮齿条安装错误或是润滑失效。
其补正措施有检查齿轮传动装置、参照安装步骤检查、检查润滑系统。
工作稳定升高
可能原因有设计不合理、齿轮传动装置过热或是环境温度过高。
其补正措施有检查设计参数、检查传动装置,必要时增加散热设备、增加足够冷却
润滑油泄露
可能原因有润滑剂量过高、泄露。
补正措施有除去多余润滑油,修正润滑频率和剂量,或是检查齿轮传动装置和润滑系统
齿轮出现摩擦裂纹
可能原因有润滑不良、环境不良、润滑油错误、磁性影响。
其补正措施有修正润滑频率和剂量,建议使用自动润滑系统、使用环境应保持清洁与干燥,不可让齿条受到外部环境影响、使用润滑油不当、确认齿轮与齿条不具有磁性
齿轮断裂
可能原因有过载、设备碰撞、齿面发现点蚀、润滑不良、平行度或垂直度不良。
其补正措施有检查设计参数、确保设备运行范围内没有异物,紧急停止装置正常,按照规定运行设备、保证运转范围内有良好的润滑、重新确认齿条安装位置的准确性
❽ 汽车齿轮齿条式动力转向器工作原理是什么
齿轮通过轴承支承在壳体内,转向齿轮的一端与转向轴连樱灶姿接,将驾驶员的转向操纵力输入。另一端与转向齿条直接啮合,形成一对传动副,并通过转向齿条传动,带动横拉杆,使转向节转动。
为保证齿轮齿条无间隙啮合,补偿弹簧产生的压紧力通过压板将转向齿轮和转向齿条压靠在一起。弹簧的预紧力可以通过调整螺柱进行调整。
齿轮齿条式转向器性能特点:
与其他形式转向器相比,齿轮齿条式转向器结构简单、紧凑。壳体多采用铝合金或镁合金压铸而成,转向器质量比较小。采用齿轮齿条传动方式,传动效率较高。
齿轮齿条之间因磨损产生间隙后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,能自动消除齿间间隙,这不仅可以提高转向系统刚度,还可以防止工作时产生冲击和噪声。转向器占用体积较小,没有转向摇臂和直拉杆,所以转向轮转角可以脊绝辩竖加大,制造成本较低。
但其逆效率较高,汽车在不平路面上行驶时,发生在转向轮与路面之间的冲击力的大部分能传至转向盘,造成驾驶员精神紧张,并难以准确控制汽车行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。
❾ 齿轮齿条式转向器优缺点
1、优点
结构简单、紧凑,刚度大,成本低廉,转向灵敏,正、逆袭率都高,体积小,便于布置,而且特别适合于与烛式悬架和麦弗逊悬架配用,还可以直接带动横拉杆,简化转向传动机构。
2、缺点
因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间的冲击力,大部分能传至转向盘,导致反冲,会使驾驶员精神紧张,并难以准确控制汽车行驶方向。
(9)齿轮齿条传动装置设计器扩展阅读
转向器的作用是把来自转向盘的转向力矩和转向角进行适当的变换(主要是减速增矩),再输出给转向拉杆机构,从而使汽车转向,所以转向器本质上就是减速传动装置。转向器有多种类型,如齿轮齿条式、循环球式、蜗杆曲柄指销式,动力转向器等。
齿轮齿条式转向器是一种最常见的转向器,其基本结构是一对相互啮合的小齿轮和齿条。转向轴带动小齿轮旋转时,齿条便做直线运动。
有时,靠齿条来直接带动横拉杆,就可使转向轮转向。为了衰减转向轮摆振,往往在带有齿轮齿条式转向器的转向系统中增设转向减振器。
根据输入齿轮位置和输出特点不同,齿轮齿条式转向器有四种形式:中间输入,两端输出;侧面输入,两端输出;侧面输入,中间输出;侧面输入,一端输出。
根据齿轮齿条式转向器和转向梯形相对前轴位置的不同,齿轮齿条式转向器在汽车上有四种布置形式:转向器位于前轴后方,后置梯形;转向器位于前轴后方,前置梯形;转向器位于前轴前方,后置梯形;转向器位于前轴前方,前置梯形。
齿轮齿条式转向器广泛应用于微型、普通级、中级和中高级轿车上,甚至在高级轿车上也有采用的。装载量不大、前轮采用独立悬架的货车和客车有些也用齿轮齿条式转向器。