㈠ HXD3型机车运用时,一般采用23吨轴重还是25吨轴重
通常使用23T轴重吧,25T的很少(功率小的机车),DF8B就是可以25T轴的,5500T单机启动还是费力,而HXD3有7200的功率不用多少力就能启动。
㈡ HXD3C电力机车的介绍
HXD3C 型是在HXD3 型和HXD3B 型电力机车基础上研制的交流传动六轴7200kW 干线客货电力机车专,该机车通过更换增加供电绕组属的主变压器,增加列车供电柜、供电插座、客货转换开关、双管供风装置等,使机车具有牵引旅客列车的功能,并可以向旅客列车提供风源及稳定的DC600V 电源,与25G型客车良好匹配。机车采用PWM矢量控制技术等最新技术的同时,尽量考虑对环境的保护,减少维修工作量。另外,以能够在中国全境范围内运行为前提,在满足环境温度在-40℃~+40℃,海拔高度在2500m 以下的条件的同时,最大考虑到3组机车重联控制运行。这款机车是“和谐型”交流传动电力机车系列中,首款适用于客货运的两用车型,由中国北车集团大连机车进行研发及生产,其产品技术借鉴了先前制造的HXD3型(日本东芝)和HXD3B型(加拿大庞巴迪)机车。
㈢ HXD3型电力机车的介绍
HXD3型电力机车(“和谐”电3型),最初曾定SSJ3、DJ3型,SSJ3是中国铁路的干线货运用电力机车车型之一,是“和谐3型”电力机车原型。
㈣ hxd3型电力机车牵引缓冲装置的结构检修工艺
HXD3型电力机车牵引缓冲装置季检检修工艺。
4.1检查钩尾框无变形、裂纹专。框身上的横裂纹、框角属处裂纹、后部圆弧处裂纹及销孔向前发展的裂纹禁止焊修,尾框厚度小于22mm时更换。
4.2检查车钩尾销安装状态良好,防脱螺栓无过量磨耗,螺母紧固,弹簧垫齐全,开口销安装良好,加装磨耗管。
4.3检查车钩前从板底座、缓冲器与后座磨耗板不得脱落;缓冲器与缓冲座,前从板底座不得有贯通间隙。车钩尾与前从板间隙0.5~6,大于时可焊铁板调整,小辅修时给油。
4.4检查缓冲器箱体无裂纹、变形,缓冲器复原作用良好,簧箱无上浮,上浮大于5mm时需处理。
4.5检查箱体托板无变形、裂纹,安装螺栓紧固,双备帽齐全。
5、探伤(保洁:毛刷清扫,清洁度三级)
将钩舌、钩舌销、均衡梁、2个吊杆、牵引扁销、防脱螺栓进行探伤。
6、检查
6.1各部尺寸需符合要求并记录,钩舌开闭灵活,钩体摆动自如,无卡滞现象。
6.2确认车钩装置各部件无异常,螺栓紧固,弹簧垫齐全,开口销良好。
6.3钩舌水平中心线沿钩头作用两侧各喷涂宽5mm白色漆线的车钩中心线。
6.4对检修后的各尺寸、检修方法、更换配件做好记录,填写台帐。
㈤ 求电力机车总体题答案
HXD3型电力机车是六轴大功率干线货运用电力机车,车体采用框架式整体承载结构及模块化设计,两端各设有一个司机室,司机可在任何一端司机室对机车进行控制;车内设备布置以两侧屏柜化、平面斜对称布置,并设宽700毫米的中央通道,通道左右两侧设有主变流装置、通风机、空气压缩机等设备,车上并为司机提供了冰箱、微波炉、卫生间等生活设施。每台机车车顶设有两台DSA-200型单臂式受电弓,其他车顶外置设备包括高压隔离开关、高压电压互感器、真空断路器、避雷器、接地开关等高压电器;在中央顶盖上设有检修升降口,由此上车顶进行检修和维修作业。牵引变压器采用卧式悬挂结构,吊装于车底中部。机车冷却系统主要包括主变压器系统冷却、主变流装置系统冷却、牵引电动机冷却、辅助电源装置冷却、空气压缩机的冷却及包括卫生间通风及车内换气等,机车采用车体独立通风方式,从侧墙上部进风百叶窗吸入冷风,通过独立冷却风道向发热部件冷却后从车底排出,并维持机械间呈微正压,改善机车防尘效果及防寒性能。机车轴式为Co-Co,持续功率为7200千瓦;机车标准轴重为23吨,并可以通过增加压铁提高到25吨。空气制动系统采用克诺尔公司的"CCB II"微机控制电空制动系统;机车单机以120公里/小时的速度在平直道上施行紧急空气制动时,最大制动距离 小于800米(23吨轴重)或900米(25吨轴重)。
HXD3型电力机车是交-直-交流电传动的单相工频交流电力机车,机车主电路由主变压器、牵引变流器、牵引电动机三大部分构成。每台机车设有6套完全独立而又相同的牵引变流单元,分别安装在2个牵引变流柜内,分别为2台转向架上的6台牵引电动机供电。接触网导线上的25千伏工频单相交流电电流,经受电弓、主断路器进入机车后再输入主变压器,交流电经过主变压器的6个牵引绕组降压后向牵引变流单元供电;单相交流电经过6组四象限脉冲整流器整流为直流电,然后向电压为2800伏特的中间直流回路供电,再由6组牵引逆变器转换成三相交流电输出,每组逆变器向一台异步牵引电动机供电,实现机车的轴控驱动,使牵引电动机产生转矩,将电能转变为机械能,经过齿轮的传递驱动轮对。如果其中一组牵引变流单元发生故障,机车可自动切除故障单元,其余单元仍正常工作,机车仍可保持六分之五的牵引动力。主变压器型号为JQFP2-9006/25(DL),为一体化多绕组(全去耦)变压器,具有高阻抗、重量轻等特点,采用下悬式安装、强迫导向油循环风冷却,绝缘介质为普通矿物油;高压引线采用法国耐克森公司(Nexans)的高压端子产品,在低压套管出线装置中采用了新型合成树脂的出线装置,具有安装拆卸方便,可靠及使用寿命长的特点。HXD3型机车机械间走廊每台机车装有两台牵引变流柜,每台牵引变流柜内含有三组牵引变流器单元和一组辅助变流器;每组变流器单元由一个四象限脉冲整流器、一个中间直流环节、一个两点式电压型PWM逆变器组成,通过高次谐波整流和错开各组控制载波的相位,从而降低高次谐波和提高功率因数;功率控制模块采用水冷IEGT(高耐压IGBT系列电力电子器件)变流模块(4500V/900A),中间直流电压为2800伏特。主变流器采用亚乙基二醇纯水溶液作为冷却液,确保在零下40℃时不冻结。主变流器水冷和主变压器油冷采用FL220型复合冷却器,水、油冷却器采用复合型全铝合金板翅式高效循环冷却结构,依靠复合冷却器风机进行强制风冷。HXD3型机车采用YJ85A型牵引电动机,由永济电机公司引进日本东芝公司的技术生产(东芝公司原型号为Sea-107),该型电动机为四极鼠笼式三相异步牵引电动机,电动机采用全叠片结构,额定功率为1250千瓦,额定电压为2150伏特,冷却方式为强迫通风,采用矢量控制方式,来实现电动机转矩的控制。辅助电路HXD3型机车下方的重联插座HXD3型机车设有两个IGBT辅助变流器(APU),辅助供电电路由主变压器二次侧辅助绕组供电。辅助变流器通过使用PWM整流器单元把从主变压器供电的单相交流电转换为恒定电压的直流电,再供通过逆变器单元转换为三相交流电。 正常情况下两个变流器基本上以50%的额定容量工作,其中一个为恒频恒压变流器(CVCF),为机车辅助电动机供电;另一个为变频变压变流器(VVVF),向两台复合冷却器风机和六台牵引通风机电动机等设备供电。当某一套辅助变流器发生故障时,另一套辅助变流器可以承担机车全部的辅助电动机负载,此时该辅助变流器按照CVCF方式工作,确保机车辅助供电系统的可靠性。折叠控制系统HXD3型机车司机室HXD3型电力机车采用机车控制监视系统(TCMS),该网络控制系统以日本成熟的列车通信网络技术为基础,结合国际标准的列车通信网络(TCN)开发研制而成。网络控制系统为分布式计算机体系,按功能可划分为列车控制级、车辆控制级和传动控制级。机车控制系统以TCMS为核心,采用32位微处理器,分别与显示单元、主变流器、辅变流器通过RS-485串行总线进行通信,机车与机车之间的重联通信采用半双工总线式10Mbps以太网进行传输。TCMS具有机车顺序逻辑综合控制、机车牵引力和制动力控制、机车空电联合制动控制、机车主辅电路保护控制、机车防空转防滑行保护控制、机车重联控制、机车轴重转移补偿控制、机车定速控制、系统实时监测诊断、故障信息记录和显示等众多功能。系统采用冗余设计,设有两套控制环节,一套为主控制环节(Master),一套为热备控制环节(Slave)。折叠转向架机车走行部为两台完全相同的TT-78型三轴转向架,转向架构架采用钢板焊成箱形结构的"目"字型构架,轮对轴箱采用单拉杆定位,车轮为德国进口整体辗钢车轮。一系悬挂采用螺旋弹簧及橡胶垫,配合轴箱拉杆及垂向油压减震器;二系悬挂为高圆螺旋弹簧,配合垂向油压减震器和抗蛇行油压减振器。牵引力或制动力通过低位推挽式水平牵引拉杆传递。HXD3型电力机车所采用的SET-553型驱动装置由德国福伊特公司设计、大连机车车辆公司实现国产化生产,中国铁道部于2006年向福伊特公司批出总值1,450万欧元的合同,订购1,440组驱动装置,供首240台HXD3型机车使用,其中驱动装置的从动及主动齿轮已先后于2007年及2008年实现国产化。驱动装置主要包括铸造齿轮箱、抱轴箱体、主从动齿轮等部件,牵引电动机采用滚动轴承抱轴式半悬挂、单边单级刚性斜齿轮传动。基础制动装置为轮盘制动,车轮安装有克诺尔公司的铸铁摩擦盘,每个车轮安装一套独立的单元制动器,其中每个转向架有两套单元制动器具有弹簧停车储能停放制动功能。转向架并设有轮缘润滑装置和踏面清扫装置。机车具有良好的曲线通过性能,机车能以时速5公里的速度安全通过半径为125米的曲线,并应能在半径250米的曲线上进行正常摘挂作业。
㈥ HXD3型电力机车的车辆技术
HXD3型机车使用六台YJ85A型交流电牵引电动机,该型电机由东芝负责设计,永济电机引进相关版技术进行生产,权每台输出功率1,200 kW。首批永济厂批量生产的YJ85A电动机为数312台,于2006年12月完成交付。 至2007年12月20日,永济厂在2007年全年共生产了1158台YJ85A型牵引电动机供193辆HXD3机车使用。
由于日本的新型电力机车主要使用功率较小的牵引电动机,负载轴重相对较轻,对轨道的压力比较小,所以路况不好的线路上也可以营运。 HXD3型电力机车均装配了六组由德国福伊特提供的SET-553型驱动装置。2006年,铁道部向福伊特批出总值1,450万欧元的合同,订购1,440组驱动装置,供首240辆机车使用。其中驱动装置的从动及主动齿轮已先后于2007年及2008年实现国产化。
㈦ HXD3型电力机车的牵引电机电路是怎么控制接通与关断的
电力机车本身不带原动机,靠接受接触网送来的电流作为能源,由牵引电动机驱动机车的车轮。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多,坡度大的山区铁路。电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。由于电流制不同,所用的电力机车也不一样,基本上可以分为直-直流电力机车、交-直流电力机车、交-直-交流电力机车三类。直-直流电力机车采用直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为l500V或3000 V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。交—直流电力机车 在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务因机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设投资。因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交—直流电力机车。交—直—交电力机车 采用直流串励电动机的最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,体积也较大。而交流无0整流子牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机优越得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用三相交流电机的先进电力机车。交—直—交电力机车从接触网上引入的仍然是单相交流电,它首先把单相交流电整流成直流电,然后再把直流电逆变成可以使频率变化的三相交流电供三相异步电动机使用。这种机车具有优良的牵引能力,很有发展前途。德国制造的“E120”型电力机车就是这种机车。1866年,德国工程师西门子与技师哈卢施卡联营创立电机公司,发明强力发电机,制成世界上第一列电力机车。第二年在巴黎博览会上展出,震惊了许多人。1879年,在柏林的工商业博览会上,这辆世界最早的电力火车公开试运行。列车用电动机牵引,由带电铁轨输送电流,功率为3马力,一次可运旅客18人,时速7公里。两年之后1881年,柏林郊外铺设了规模虽小,但为世界最初营业用的电车路线。同时德国又试验成功驾空接触导线供电系统,使电力机车的供电线路由地面转向空中,机车的电压和功率都大大提高。1895年,在美国的巴尔的摩一俄亥铁路线上首次出现了长途电力机车。机车重96吨,1080马力,采用550V直流供电。1901年,西门子、哈卢施卡电机公司制造的电力机车在柏林附近创造了时速160公里的记录。与此同时,在1880年,美国爱迪生也进行了电车的实验。中国第一台电力机车于1958年诞生于湖南株洲,命名为“韶山”,为中国铁路步入电气化立下了汗马功劳。电力机车由于速度快、爬坡能力强、牵引力大、不污染空气,因此发展很快。地下铁路也随着电车的出现而得以发展
㈧ 电力机车按照供电电流制传动形式分为四类HXD3属于( )SS4G属于(
电力机车按照供电电流制传动形式分为四类HXD3属于( 交-直-交 )SS4G属于( 交-直)
㈨ HXD3型电力机车的运用情况
配属上海铁路局复的HXD3型机车多次制被发现牵引旅客列车,其中包括知名的1461/2次(上海-北京)。因此,有消息推测,部分上海铁路局所属HXD3将把机车厕所改造为向客运列车供电的供电柜,以改善韶山7E型、韶山8型、韶山9G型等准高速机车供电机车不足的问题。已有部分新造HXD3机车配属沈阳铁路局沈阳机务段,牵引接触网下部分限速120km/h车辆(绿皮车、红皮车)。