❶ 一个优化报告和计划该怎么写
我给你一个提纲
西安交通大学工程硕士学位论文选题报告书
论文选题名称:姓名:研究方向:指导教师:
入学时间:2003年9月选题报告时间:2006年5月
一、本研究课题的科学依据和意义(包括科学意义,国内外研究概况,水平和发展趋势,学术思想,理论根据。)。
一、立项理由、目的、意义
我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优敏薯化控制是行之有效的方法。
合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。
合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。
二、国内外概况及发展趋势
自动化技术包括生产过程控制自动化和事务经营管理自动化两个方面,属于当今世界迅速发展和日趋成熟的高新技术。自动化技术的不断发展也丰富了各种控制软件的发展,特别是优化控制从理论走向了实际。
随着微电子计算机、自动化理论和信息技术的日新月异,国外企业采用最新的PC技术发展的DCS系统已普遍应用到各行业生产装置上去,特别在应用DCS的同时,发展了许多实用的优化软件。
在国外,合成氨生产的发展大致可分为五个阶段:Ⅰ发明阶段;Ⅱ技术推广阶段;Ⅲ原料结构变迁阶段;Ⅳ单系列大型化阶段;Ⅴ节能降耗阶段。与工艺相适应的自动化技术也不断发展,特别是第Ⅲ阶段,不同的工艺出现对控制任务提出不同的要求,鉴于当时的仪表条件、控制理论发展情况,主要针对一些重要的工艺参数设置一些简单的控制回路,并逐步发展为一些串级、比值控制回路。如
作为先进的控制方案推广离不开计算机的发展,采用计算机控制系统后,随着计算机的发展,一方面一些控制系统得以有效实现,另一方面也为优化操作提供了硬件基础。针对合成氨厂的特点,一些非线性滤波采用了计算机辅助优化控制取得了成功,带来了合成氨生产的明显提高。目前,世界上许多氨厂都采用了计算机控制或DCS系统。合成氨厂的控制水平达到了一定高度,而且优化和计算机管理的研究和应用达到了一定程度,增加了产量,降低了成本,提高了效率。
二、拟采取的研究方法和技术路线(包括研究工作的总体安
排和进度,计算、实验方法和步骤及其可行性论证,可能遇到的问题和解决办法。)采用的研究方法为:先进行理论研究,从合成氨的工艺要求和生产设备具体提点入手,分析应该优化的装置和重点回路。从重点回路出发更具体的分析每一个优化参数所要关联的参数,了解和分析这个参数优化前的控制方法,在此基础上制定新的控制方法,并能用先进控制方法使其得到优化。写出控制方案,画出控制方框图。在此基础上编制控制程序。将控制程序输入到DCS系统,并进行离线调试和在线调试,并将优化程序投入运行。记录投入运行优化控制系统前的参数运行曲线和投入优化控制系统后的运行曲线。分析优化系统的运行情况,提出进一步的修改意见。重复上述过程,进行第二次实验。直到达到满意的效果。
工作计划:制定详细技术实施方案(1项目论证及前期调研、2方案设计和论证、3编制详细实施方案、4绘制有关设计图纸等);编制软件;软件调试和投运;软件运行考核;操作培训和技术交流;项目鉴定及归档资料。完成以上工作大约需要1年时间。
可能遇到的困难和解决方法:可能遇到的实际困难是:不同的厂家的工艺差异性,使得优化系兆拿察统不能通用,须针对具体情况和现场状况作进一步的修正和补充。由于工艺状况的复杂性,同一个被控参数,由于原料的变化、时间的推进、成分的变化等一些不可控因素的出现,使其不能达到优化的效果。尽可能将所有的影响参数引入优化系统。让不可控因素越少越好。
三、本项目的特色与创新之处。从八十年代开始,计算族茄机控制系统和DCS系统逐步引进到我国生产过程控制中来,特别是化肥行业,90%以上的大化肥企业都引进了国外的DCS系统,80%以上的中化肥企业也都应用了国外的DCS系统,30-40%的小化肥企业也在部分装置上引进了国内及国外的控制系统。从DCS系统的引进情况看,大部分企业只是用DCS系统代替了原有的仪表系统,有小部分企业在个别回路做了一定的开发工作,总体看来,DCS的应用远远没有发挥其强大的功能优势。对于合成氨装置,该装置的最大特点是工艺流程长,反应在高温、高压下进行,自动化设计比较简单,手动操作率高。为了更好控制整个合成氨装置的运行,使整个生产能够达到节能、降耗、稳定、高产的目的,必须在原有初步设计的基础上,根据工艺操作的需要,进一步开发和利用DCS系统强大的软件功能,把现代控制理论中一些比较先进的控制算法,应用到合成氨装置中去。
四、预期研究成果。由于化肥生产装置是综合化、大型化、连续化的生产方式,流程结构复杂。我国合成氨厂的规模在不断扩大,对于这样装置能否实现最优设计、最优控制,对基本建设投资、安全生产、产品的成本等都将有很大的影响。合成氨装置中合成工段和变换工段以及造气工段的优化控制软件和硬件,其目的是利用计算机的手段对装置进行节能降耗,提高化肥厂的生存和竞争能力。
由于国内中小化肥装置均为非优化设计,各设备未经过正规的流程模拟,在加上装置改造一直在进行当中,操作条件(工艺参数)基本上都是根据经验确定,所以优化的难度比较大,同时优化的潜力也很大。
优化控制就是要在线优化操作参数,在现有工艺流程和设备的条件下,利用计算机对生产装置进行操作参数的优化,进行卡边操作,节能降耗,降低每吨氨的生产成本,实现装置的利润最大化。优化控制是企业挖潜增效的新的有效手段。采用数学模型的手段和多变量优化算法,通过建立造气、变换系统和合成系统的数学模型,实现了造气、变换岗位和合成岗位的在线优化控制。
五、已有的研究基础。天华化工机械自动化研究设计院是长期从事化工自动化和仪表的专业性研究单位。从事化肥过程控制已有30多年的经验。有一支技术力量雄厚的专业研究队伍。从八十年代开始就着力于优化控制系统研制和应用,先后在刘家峡化肥厂、河北易县化肥厂、安阳化肥厂、柳州化肥厂、山东红日集团等几家合成氨装置中都设计并运用了比较DCS系统,取得了比较满意的效果。在DCS开发方面也积累了相当丰富的经验,先后开发和应用了横河公司的YEWPARKMARKⅡ、μXL、CENTUM-XL、CS-1000,美国Honeywell公司的TDC-2000、TDC-3000、Micro-3000、GUS等系统;美国Rosement公司的RS3,PROVAX;德国西门子的PLC、PCS等。
本人自毕业以来,一直从事化肥检测与控制的研究和应用工作。先后承担了安阳化肥厂、柳州化肥厂、山东红日集团、金昌化工集团等单位DCS系统的设计、组态、编程和应用工作。并且在部分控制回路中已成功地应用了比较先进的控制方法。取得了比较满意的效果。在系统集成、控制优化方面积累了一定的经验和方法。另外,有导师、同行们的支持和帮助,我相信,经过努力一定能把这个项目做好。六、主要参考文献目录。1《小型合成氨厂生产操作问答》;杨春升,化学工业出版社
2《小型合成氨厂生产工艺与操作》;王师祥、杨保和,化学工业出版社。
3《TDC-3000系统操作手册》Honeywell公司。
4《集散型控制系统的设计与应用》;王常力、廖道文,清华大学出版社。
5《新型控制系统》;俞金寿,化学工业出版社。
6《现代控制理论基础》;王照林,国防工业出版社。
7《化工仪表及自动化》论文集
8《全国第五次化肥仪表自动化技术交流会以论文集》;化学工业部化肥司
9《DCS、PLC及现场总线论文集》綦希林。七、副导师意见
副导师(签名):年月日八、导师意见
导师(签名):年月日
❷ 低温甲醇洗开车时间
在标准的气温下,甲醇洗开车的时间约为5-10分钟。但是,如果温度低于标准温度,则需要增加清洗时间。建议在低温条件下,甲醇洗开车的时间应在10~15分钟内。
❸ 化工类实习报告
金源化工公司认识实习报告
湖北金源化工稿消股份有限公司
实习岗位 变换
一:公司简介
湖北金源化工股份有限公司是国家大型二档化工企业,始建于1969年,公司前身是湖北省鄂西化工厂,2003年11月18日改制后更名为湖北金源化工股份有限公司,现是一家民营的股份制企业。
公司紧靠焦枝铁路、207国道和新建开通的荆襄高速公路,公司有专用铁路与焦枝铁路相连,具有交通便利、地理位置优越的特点,公司占地41.2万平方米,总资产1.77亿元,现有员工1700多人,其中各类专业技术人员619人。主要产品及年生产能力分别为:总氨(合成氨+粗甲醇)12万吨、复混肥5万吨、稀硝酸12万吨、硝酸铵13万吨、浓硝酸5万吨、精甲醇4万吨、甲醛4万吨、硝酸钠0.4万吨、亚硝酸钠0.4万吨、甲醇钠0.15万吨。其中,主导产品硝酸铵、浓硝酸被湖北省人民政府授予“精品名牌”称号;甲醇产品为国家优等品;公司有六大分厂,设有仪表车间,质检中心,铁路科和硝钾办。公司采用型煤即煤棒做主要燃料。
二:“变换”岗位见习内容
“变换”岗位是合成NH3工段的一个中间环节,目的是利用CO与水蒸气反应得到H2,采用DCS自动化操作系统。
1.生产原理和工艺流程
① 生产原理:
半水煤气中的一氧化碳与水蒸汽在催化剂的作用下发生反应转化成氢气和二氧化碳。
CO+H2O↑ CO2+H2+Q
②散滚 反应机理
[K]+ H2O↑ = [K]O+ H2
[K]O+CO =[K]+ CO2
[K]----催化剂
O----吸附态氧
③ 生产流程
定义
一低变:大变换炉的上段。
二低变:大变换炉的下段。
三低变:小变换炉。
主蒸汽:是指从饱和塔出口分离器后加入的蒸汽,是变换正常生产时蒸汽加入点。
辅助蒸汽:是指从增湿器加入的蒸汽,是变换开车初期或氧高等不正常情况下蒸汽的补充点。
大副线:是指出饱和塔的煤气不经过初热交和主热交换热而直接进入预变炉的旁通。主要用于调节预变炉的进口温度。
小副线:是指出二低变的变换气不经过主热交和初热交换热而直接进入三低变的旁通。主要用于调节三低变的温度。
硫化副线:是指从半水煤气总管上引出,进入鼓风机出口阀后、小电炉之前的一条φ219副线。主要用于触媒硫化过程中的系统补气,也可用于不开鼓风机情况下对触媒进行升温。
工艺流程
半水煤气经分离器初步分离掉水分、油类等杂质后,进入丝网滤油器进一步除去油类杂质,然后从饱和塔下部进入饱和塔,自下而上与塔顶喷淋下来的循环热水逆流接触传质、传热,半水煤气被加热后从饱和塔顶出来进入分离器,在分离器后补入一定量的蒸汽后进入初交管内与管外的由主交出来的变换气进行热交换,再进入主交管内与管外来自二低变的变换气换热,使半水煤气温度进一步提高,出主交的高温煤气与大副线来的调温冷煤气混合后从预变炉顶部进入预变炉。在预变炉内,煤气在净化剂的作用下得到进一步净化,气体出预变炉进入第一增湿器,经喷水增湿降温进入一低变,反应后的气体出一低变进入第二增湿器,经喷水增湿降温进入二低变,反应后的气体出二低变进入主交、初交管外,与管内的半水煤气换热进入三低变,反应后的气体出三低变进入水加热器管间,与管内的热水降温后从热水塔下部进入热水塔,自下而上与饱和塔下来的循环热水逆流接触,进一步回收热量后再进入变换气冷却器使变换气温度冷却至≤50℃,经分离器分离掉水份后,送脱硫工段。
循环热水在热水塔内回收变换气的热量后,从塔底出来进入热水循环泵,加压后送入水加热器与管外的变换气进行热交换,使热水温度进一步提高进入饱和塔顶从上而下喷淋,与半水煤气逆流接触进行热交换,而后由饱和塔底部流出进入热水塔循环。
饱和热水塔系统循环水的补充由合成车间铜液再生系统的冷凝液和出变换气冷却器的脱盐水补充到补充水贮槽,经补水泵加压后补充到热水塔内。
221工号送来的纯水送入纯水贮槽,经增湿器喷水泵加压后供增湿器使用。合成车间来的脱盐水进入变换气冷却器管间冷却热水塔出来的变换气,自身被加热后回到221除氧器,少量作为键掘知冷凝液槽补充水。
2 工艺指标
2.1 工艺参数
2.1.1 流量 2.1.2 温度 序号 内容 指标 单位 1 进饱和塔煤气温度 ≤40 ℃ 2 出饱和塔煤气温度 110~130 ℃ 3 预变炉进口温度 200~250 ℃ 4 一低变进口温度 200~250 ℃ 5 一低变热点温度 热点温度±10 ℃ 6 二低变进口温度 200~250 ℃ 7 二低变热点温度 热点温度±10 ℃ 8 三低变进口温度 180~220 ℃ 9 三低变热点温度 热点温度±10 ℃ 10 变换气冷却器出口气温 ≤50 ℃ 2.1.3 压力(表压) 序号 内容 指标 单位 1 冷却器出口变换气压力 ≤1.6 MPa 2 高压蒸汽压力 2.0~2.5 MPa 3 增湿器上水水压 ≥2.0 MPa 4 电炉使用压力 <0.2 MPa 5 硫化罐使用压力 <0.3 MPa 6 鼓风机风压 <0.049 MPa 2.1.4 液位 序号 内容 指标 单位 1 饱和塔液位 40~70 % 2 热水塔液位 40~70 % 3 补充水贮槽液位 60~80 % 4 纯水贮槽液位 70~90 % 2.1.5 其他 2.2 工艺质量指标 序号 内容 指标 单位 1 三低变出口CO含量 ≤6.0 % 2 三低变出口H2S含量 170~240 mg/Nm3 3 半水煤气O2含量 ≤0.5 % 4 饱和热水塔循环水总固体 <0.05 % 5 饱和热水塔循环水PH值 6.5~7.5 6 纯水电导率 ≤0.5 μS/cm 3 岗位职责
本岗位采用DCS系统操作,主要检测的是CO含量和触媒温度。通过调节温度和水蒸气加入量来调节三低变出口CO的含量,使其不超过6.0%,该数值是根据后续生产甲醇的量来确定的。控温主要是控制温度使其在触媒的活性范围里,温度过高或过低都不利于触媒的催化活性。
①根据调度指令,控制变换气中一氧化碳含量,满足生产要求。精心操作,尽量延长触媒寿命,降低蒸汽消耗。
②控制好变换炉炉温和系统压力,及时排放分离器及各导淋集液,确保生产安全和稳定。
③控制好饱和塔和热水塔液位,防止发生带液和串气事故。
④ 按时巡检,发现跑、冒、滴、漏等不正常情况及时报告班长。
⑤ 根据饱和热水塔的水质情况,及时调节氨水用量和饱和塔排污量,减少环境污染。
⑥按时如实填写岗位记录,不得伪造和假记录。
⑦负责本岗位传动设备及阀门丝杆的加油润滑,负责本岗位备用传动设备的盘车工作。
4.催化剂:钴钼系列
钴钼系耐硫触媒的主要活性成分为氧化钼,以氧化钴为促进剂,氧化铝为载体。钴钼氧化物活性远远小于其硫化物,因此使用前需将MoO3和CoO转化为MoS2和CoS,其反应如下:
CS2 + 4H2 2H2S + CH4 – 246kJ/mol
CoO + H2S CoS + H2O – 13.4kJ/mol
MoO3 + 2H2S + H2 MoS2 + 3H2O–48.1kJ/mol
5.设备及其填料方式
1、半水煤气分离器 1台
φ1200×3740
2、丝网滤油器 1台
内装不锈钢丝网填料高450mm
3、饱和热水塔 1台
饱和塔:φ2600×19140 内装不锈钢规整填料高9000mm
热水塔:φ2800×18000 内装不锈钢规整填料高8000mm
4、塔后分离器 1台
φ1200×6800内装不锈钢丝网填料高300mm
5、初热交换器 1台
φ1000×4200换热面积F=110m2 φ25×2.5列管505根
6、主热交换器 1台
φ1000×7433换热面积F=440m2
7、预变炉 1台
φ2800×11282 内衬耐火混凝土200mm
第一段留空;第二段装填氧化铝球(净化剂)7 m3;第三段装填抗毒剂9 m3,低变触媒3 m3
8、第一增湿器 1台
φ1600×5735 内装不锈钢矩鞍环填料3.8m3,上部安装撞击式雾化喷头GWBT-350-600 11个
9、大变换炉 1台
φ3000×19260 第一段装填低变触媒10 m3;第二段装填低变触媒4 m3,第三段装填低变触媒11 m3,二、三段在炉内联通
10、第二增湿器 1台
φ1600×5735 内装不锈钢矩鞍环填料3.8m3,上部安装撞击式雾化喷头GWBT-650-600 11个
11、小变换炉 1台
φ3000×11282 第一段上部装填抗毒剂2 m3,下部装填低变触媒12.5 m3;第二段装填低变触媒15.5 m3
12、水加热器 1台
φ1000×7433换热面积F=440m2
13、变换气冷却器 1台
φ1200×6442换热面积F=460m2 φ19×2列管1839根
14、变换气分离器 1台
φ1200×3740
15、罗茨鼓风机 1台
R60×63 风量158.4m3/min 风压0.049MPa 电机功率185kw
16、小电炉 1台
φ800×7500 工作压力0.2MPa 总功率10×54=540KW
17、大电炉 1台
φ1200×7780 工作压力0.4MPa 总功率10×99=990KW
18、硫化罐 1台
φ2500×3400
19、补充水贮槽 1台
φ2040×4220
20、补水泵 2台
DG25-50×6 扬程30m 流量25m3/h 配套电机JO2-91-2 功率55KW
21、纯水贮槽 1台
φ2000×3000
22、增湿器喷水泵 2台
2GC-5×8 扬程250m 流量10m3/h 配套电机功率30KW 23、热水循环泵 3台
150RG-56两台 扬程56m 流量190m3/h 配套电机Y250M-4 功率55KW
100R-57一台 扬程53.5m 流量110m3/h 配套电机Y200L1-2 功率30KW
25、 塔后分离器:
规格:Φ2000×30 H=37000
26、 溶液循环泵(二台)
型号:250–DF–60×5 Q=420m3/h H=300m
n=1487转/分 N=630千瓦 G=2250kg V=6000伏
27、 泡沫泵(二台)
型号:IH50–32–20 Q=12.5 m3/h H=50m
n=2900转/分 N=5.5千瓦 G=58kg
28、 地下槽溶液泵
型号:4FB–12 Q=100.8 m3/h
n=2900转/分 N=55千瓦 G=350kg
29、 浮选槽
规格:Φ3300–4200×10 H=9443 V=91.0m3
30、 喷射器(12个)
31、 循环槽(两个)
规格:Φ6000×8 H=6440 V=170m3 G=11430kg
32、 中间泡沫槽
规格:Φ3000×8 H=4945 G=4305kg
33、 高位槽
规格:Φ3000×6 V=13m3 H=2825 G=3241kg
常见事故的预防措施
事故 发生原因 预防措施 催化剂层温度超标 ①半水煤气中一氧化碳或氧气含量增高 ;②蒸汽比例小;③循环热水泵跳闸或抽空;④仪表指示不准确,出现假温 ①勤观察仪表显示;②勤与分析室联系,了解气体成分;③勤检查循环热水泵及各副线闸。 煤气压力超标 ①压缩机倒车;②调度联系不及时;③系统出现憋压;④仪表显示错误。 ①压缩机倒车,注意以出口压力表为依据;②多余调度联系;③勤观察及检查煤气压力一次表,二次表。 气顶现象 ①饱和热水塔入口水量少;②水压低于煤气压力;③热水泵跳闸或抽空。 ①加强巡检,维持饱和塔液位;②随时注意热水流量表,饱和他出口温度表; ③防止煤气压力超标或水压过低;④机场检查热水泵。 变换气中一氧化碳超标 ①催化剂层热点温度低;②气汽比例过小;③催化剂硫化氢中毒;④催化剂衰老⑤煤气换热器列管,花板漏气;⑥中间换热器列管,花板漏气。 ①调整副线或冷激的开度;②加大蒸汽量,提高气汽比例;③提高脱硫效率,加大蒸汽量使催化剂活性恢复;④提高操作温度,代停车时,更换催化剂;⑤测定个换热器中变换气的成分来判定是哪一台,漏气严重时立即检修或更换。 催化剂层热点温度突然下降 ①半水煤气中CO含量下降;②系统负荷减轻,蒸汽加的过多;③蒸汽或煤气中带水;④副线或冷激开得过多;⑤催化剂中毒;⑥温度表指示不准 ①勤观察半水煤气中CO含量远红外线指示二次表;②减少蒸汽量;③减少蒸汽或煤气用量,并排放积水;④调节副线或冷激的开度;⑤提高操作温度,必要是要更换催化剂;⑥检查校正温度表 催化剂层热点温度急剧上升 ①半水煤气中CO合氧气含量增高;②系统负荷增大或蒸汽压力低,造成蒸汽比例减少;③副线,冷激关的幅度大;④温度表失灵,指示不准确。 ①勤观察半水煤气智能光CO含量远红外线指示二次表,联系分析人员加做半水煤气成分分析;②加大蒸汽量,提高蒸汽比;③调整副线,冷激的开度;④及时联系仪表工修表 6 .实习感想
在为期八天的在厂实习时间里,我有很多的感受,离开了学校,见到了真正的工厂,接触了真正的工人,见识到了真正的社会,初次感受到了学校,社会之间的差异,离开了学校,所有的一切都不是那么的优越,生活的环境,拥有的资源,接触的人群等等所有的事物都发生了变化。在厂区,我们彻底的了解了工厂,见到了工人工作和生活的情况。我深刻的感受到知识的重要性,我们只有掌握扎实的专业知识,才能为以后能在社会上很好的立足打好基础。
在以后的学习和生活中,我会用实习给我带来的经历和阅历来指导我的学习和生活,为美好的明天而努力!
❹ 合成氨转化工段燃料气系统原理
固定床煤气炉是合成氨装置的“龙头”设备,传统的生产工艺为空气、蒸汽间歇制气;近年来,富氧空气、蒸汽连续制气工艺为合成氨装置提供了技术改造的新途径。技术改造后的煤气炉可根据炉况或工艺条件实现两种制气模式的切换。其中,富氧制气具有产气量高,煤耗、汽耗低的优势。因此,结合煤气炉多制气模式的工艺与自动化改造是目前合成氨企业节能降耗的主要措施之一。
煤气炉间歇制气虽然已采用了DCS控制,但其生产操作与控制仍主要依赖于人工经验,存在着运行平稳性差、炉况波动大、劳动强度高等问题。另一方面,富氧制气生产是一项新工艺,尚无成熟的过程控制解决方案。基于此,根据煤气炉两种制气工艺特点,开发基于预测控制和智能控制的先进控制系统,实现了生产过程的精细化控制,减少了设备故障率,以达到稳定炉况、提高产气量、降低煤耗与汽耗、减少劳动强度、提高经济效益的目的。
先进控制策略
合成氨装置煤气炉先进控制系统采用浙江中控软件技术有限公司的先进控制软件APC-Sutie。
该先进控制系统适用于多台间歇制气与富氧制气并联生产的煤气炉。其总体结构如图1所示。
图1 合成氨装置煤气炉先进控制系统总体结构
煤气炉间歇制气先进控制:通过对加煤量、炉条机转速、吹风时间、上吹时间、下吹时间等的合理调节,稳定煤气炉的火层位置、炭层高度、上行温度、下行温度、灰仓温度等关键工艺指标,从而有效地防止炉况恶化,稳定并提高产气量。同时通过合理调整煤气炉加氮时间,克服滞后和干扰因素的影响,实现对合成塔循环氢氢氮比的平稳控制,有效降低合成氨装置的综合能耗。
煤气炉富氧制气先进控制:通过对加煤量、炉条机转速、蒸汽量、富氧空气量的合理调节,实现对煤气炉炭层高度、上行温度、灰仓温度等关键工艺参数的平稳控制。并根据煤气炉关键工艺指标的变化优化调整蒸汽和富氧空气量的配比,稳定炉况,提高产气量,同时也大幅度降低操作劳动强度。
炉况智能诊断专家控制:利用煤气炉生产实时数据和历史信息,建立炉况实时监控和智能诊断系统,通过跟踪关键工艺指标的变化,及时发现并处理异常炉况,维持稳定的煤气炉火层位置,防止出现炉况恶化、设备故障等极端情况,为煤气炉的平稳生产提供保障。
应用效果
合成氨装置煤气炉应用先进控制技术之后,取得了如下效果:
显著提高煤气炉在间歇制气、富氧连续制气两种工况下操作平稳性,各关键工艺指标(上行温度、下行温度、煤气质量等)的标准方差平均减少30~40%以上;
基于平稳操作,实现了工艺指标的“卡边”优化,使煤气中CO2含量降低2%,残碳含量降低3%;同时提高了吨煤的产气量;
充分挖掘装置潜力,实现节能降耗,吨氨煤耗降低5%,吨氨汽耗降低10%;
提高装置的综合自动化水平,统一操作方法,大幅度降低操作人员劳动强度;
先进控制系统投运率达到95%以上。
❺ 关于合成氨
20世纪初发展出来来,由源大气中氮制氨的化学方法。是化学方法方面最重要的发明之一,因为它使大气中氮的固定成为可能,从而还能由将转化为硝酸来生产肥料(和炸药)所需的硝酸盐。哈伯(F.Haber)在理论的实验上证明,如何维持来自空气的氮和来自水中的氢在适当的温度和压力,并在有催化剂的情况下反应。博施(C.Bosch)还证明如何在工业规模上实现这种方法。总反应是3H2+n2=2NH3
❻ 实验室合成氨
答案: 解析: (1)①干燥N2、H2②通过观察气泡速率,调控N2、H2的体积比 (2)N2、H2、NH3 (3)将湿润的红色版石蕊试纸置权于乙导管出口,红色石蕊试纸变蓝,证明有氨气生成(或将蘸有浓盐酸的玻璃棒置于乙导管出口,有大量白烟产生,则证明有氨气生成) 提示: 本题考查NH3的制法、检验.N2和H2反应合成氨的反应是一个可逆反应,因此反应不能完全生成氨,会有N2和H2剩余.检验氨气的方法有两种,一是用湿润的红色石蕊试纸变蓝检验,二是用蘸有浓盐酸的玻璃棒产生大量的白烟检验.