导航:首页 > 装置知识 > 武汉物理研究大科学装置建设计划

武汉物理研究大科学装置建设计划

发布时间:2023-03-30 10:55:37

① 国家同步辐射实验室的工程进展

20世纪70年代末,中国科学技术大学在国内率先提出建设电子同步辐射加速器。1977年同步辐射装置的建造列入全国科学技术发展规划。1978年春中科院决定成立以中国科学技术大学为主的同步辐射加速器筹备组,并于当年三月在合肥召开了第一次筹备工作会议,讨论了我国建造电子同步辐射加速器的初步方案,象征着我国同步辐射事业的正式启动。
在随后几年的预研制过程中,工程人员制成了一段30MeV的电子直线加速器、一块弯转磁铁、一块四极磁铁及一个储存环的超高真空系统,以及物理设计,取得了良好的结果和第一手的经验,为后面的工程打下了坚实的基础。
1981年10月,中科院在合肥召开了“合肥同步辐射装置预研制及物理设计审定会”,会议认为合肥同步辐射装置已基本进入工程的条件。
1983年,国家计委以计科1983年470号文《关于建设国家同步辐射实验室的复函》批准了在中国科学技术大学筹备国家同步辐射实验室,国家同步辐射实验室正式立项。这是国家计委批准建设的中国第一个国家级实验室。
1984年,国家计委以计科(外)1984年2033号文《关于合肥同步辐射实验室扩初设计的批复》批准了该工程的主体工程建设规模为建造一台能量为8亿电子伏的同步辐射光源及相应的实验设施,总投资5990万元(含350万美元),并列入按合理工期组织施工的国家重点项目。
国家计委批准的国家同步辐射实验室扩初设计中确定了电子储存环的能量为800MeV、平均流强为100~300mA,用一台能量为200MeV、脉冲流强为50mA的电子直线加速器作为注入器。并明确与加速器建设的同时,建造5条光束线及5个实验站,它们分别是:光电子能谱光束线实验站、分时光谱光束线实验站、软X射线显微术光束线实验站、X射线光刻光束线实验站。
1988年,国家同步辐射实验室的土建工程基本完工。
1989年3月加速器的所有部件都已安装就位并经过局部和分系统的调试,同年4月开始联调,25日开始注入储存环,仅经过23小时便得到第一个储存束流。
1989年光束线实验站开始安装,1991年8月完成所有光束线实验站的安装调试工作,同年9月开始用同步光进行调试,并开展实验研究工作。
1991年12月22日至23日,由国家科委组织,王淦昌任主任的鉴定委员会对合肥同步辐射加速器及光束线实验站进行技术鉴定。鉴定委员会认为由我国自行设计、研制建成的合肥同步辐射加速器的主要性能指标已达到国际上同类加速器的先进水平,已建成的五条同步辐射光束线和五个实验站的主要性能指标已基本达到国际水平。
1991年12月26日,国家同步辐射实验室工程顺利通过了国家计委组织的国家验收。国家验收委员会高度评价国家同步辐射实验室工程的建设者们圆满地完成了工程建设任务。
1993年4月,NSRL正式对国内外开放,建有6条光束线和6个实验站,可广泛用于开展物理、化学、材料科学、生命科学、信息科学、力学、地学、医学、药学、农学、环境保护、计量科学、X射线光刻和超微细加工等基础研究和应用研究。
1994年2月,由钱临照、唐孝威两位院士发起,王淦昌、谢希德、谢家麟、冯端、卢嘉锡等34位院士联合向有关部门提出《关于集中力量全面建设、充分利用合肥国家同步辐射光源的建议》,中国科技大学也正式向国家有关部门提出建造国家同步辐射实验室二期工程(简称二期工程)的申请。
1996年,国家科技领导小组批准二期工程作为“九五”的首批国家重大科学工程项目之一启动。国家计委分别以计科技1997年557号文和1503号文对二期工程项目建议书和可行性研究报告批复中国科学院,同意以中国科技大学为依托建设“国家同步辐射实验室二期工程”国家重大科学工程项目,总投资11,800万元人民币。
1997年4月8日,国家计委批复了NSRLII项目建议书(计科技(1997)557号文)。
1997年8月29日,国家计委批复了可行性研究报告(计科技(1997)1503号文)。
1998年7月8日,国家计委批复了初步设计报告(计投资(1998)1301号文)。
1999年4月15日,国家发展计划委员会以计投资1999年416号文《国家计委关于国家同步辐射实验室二期工程开工建设的批复》同意二期工程开工建设。 二期工程的技术目标是:在充分保证机器主体长期、可靠、稳定运行,大幅度提高光源积分流强、亮度和稳定性的基础上,新建1台波荡器插入元件,增建8条新光束线和相应8个实验站。竣工后,合肥光源的潜力得到更充分的发挥,将作为性能优秀、稳定可靠、部分指标相当先进的中低能区同步辐射光源,长期处于国际上同类装置的一流水平。
1999年,NSRLII完成了水冷系统冷却塔的更新改造,空调系统热交换器等附属设备投入运行,辐射场监测系统通过调试开始试运行。加速器各子系统改造的主要元件及样机研制与测试多已顺利完成并通过了验收。注入系统完成了冲击磁铁磁块分组测试、脉冲电源组装、陶瓷真空盒部分测试。储存环真空系统、电源系统的环主电源、控制系统的相关控制软件、高频系统的新高频机、束测系统的部分组件、波荡器单磁块测量系统等改造或研制均已完成。
1999年12月12日,来自中科院高能所、物理所、电工所、上海同步辐射装置、清华大学、复旦大学的9位教授、研究员组成的专家组,对6万高斯超导扭摆磁铁及XAFS光束线、站进行了技术鉴定。会议听取了研制报告、测试结果报告,审阅了全部资料,并进行了现场考察。专家组认为:6万高斯超导扭摆磁铁是一项技术复杂的项目,在我国是首次研制,其综合性能在国际同能区的装置中已居领先地位。该扭摆磁铁安装调试成功,使工作能区扩展到硬X射线领域,具有重要的科学意义。XAFS线、站的主要性能均达到设计指标,光束线的分辨率和光斑的稳定性达到国际上同类装置的水平,提供用户使用后获得了良好的实验结果。
1999年12月19日,NSRL第二届用户委员会第一次会议在合肥召开。会上宣读了经中科院批准的新一届用户委员会名单,简要介绍了二期工程的进展情况、实验室现状和下年度用光计划。委员们肯定了NSRL为用户做的工作,针对用户管理方面存在的一些问题,提出了可行的建议。
2000年,3月20日打开储存环真空,开始安装与之相连的大部分设备和所有光束线的前端,4月中旬封闭。光束线前端于5月安装到位。储存环真空恢复顺利,各前端的真空性能均达到指标要求,通过了工程内部验收。新建的LIGA光束线安装就位,通过了离线调试验收。
2001年,运行质量比改造前大幅度的提高。环的主磁铁电源、注入系统电源等新设备的故障率很低,真空系统改造、新光束线前端等通过了运行的考验。5月超导Wiggler投入运行,为NSRLII的两条用X射线的光束线对光,LIGA站进行了首次调试和试运行,获得了深达1毫米的深度光刻制品(右图)。下半年,高频腔完成机械加工;注入系统长直线段的冲击磁铁已制成;波荡器加工已完成,磁场测量与调整的初步结果令人满意。大部分电源已验收,控制系统的改造与之配合进行。光束线站的非标加工基本完成。除已就位的LIGA线外,其他七条光束线的机械测量(粗)、真空调试、安装就位等工作正全面展开。八个实验站中的四个的主体设备已经初步安装到位。其他各站也进展顺利,重要的非标部件的加工基本完成。公用设施改造的大部分已完成并投入使用。
2002年5月,NSRLII储存环束流闭轨校正系统投入运行并取得良好效果。其三个主要组成部分:束流闭轨位置测量系统、校正铁系统和相关的控制系统功能正常。该系统能很好地满足机器运行和研究的需要。
2002年7月15日,长约2.7米的波荡器UD-1通过专家测试。来自中科院高能物理所、中科院上海原子核所和中国科技大学等单位的专家对NSRLII新建波荡器UD-1的磁场性能指标进行了测试。现场测试结果与原测数据一致,重复性很好。UD-1是中国大陆建成的第一台储存环中以产生高亮度同步辐射的波荡器。其磁间隙变化范围大,测量长度长,磁测指标多、数据多,调试测量的工作量和难度都很大。测试组认为,UD-1调试测量数据完整,性能优良,各项指标均已达到设计要求,主要指标优于设计要求。
2002年,环高频系统10月完成安装,真空系统改造基本完成,工程进入联合调试、试运行阶段。X射线衍射与散射线站通过了专家测试开始试运行。表面物理、光谱辐射标准和计量、原子分子物理等线的光学元件完成安装,开始光路的初步调试。
2003年1月16日,NSRLII光声、光热实验站设计方案调整专家审定会在合肥举行。专家组由南京大学声学研究所张淑仪院士(组长)、复旦大学同步辐射研究中心的张新夷教授、复旦大学生命科学学院的季朝能副教授、中科院基础局的陈勋远研究员和中国科技大学物理系的方容川、施朝淑教授、化学系的苏庆德教授以及生命科学学院吴季辉教授组成。专家们听取了该实验站方案调整内容以及调研结果。专家组认为:NSRLII建设方案已充分考虑了满足真空紫外圆二色光谱实验站的要求,在工程进行中尽快调整方案是必要的,也是合理的,应集中力量建立真空紫外圆二色光谱及光声光谱实验研究方法,并建议光热偏转光谱可不作为二期工程验收内容,条件成熟时再开展这方面工作。
2003年3月13日,NSRLII新注入系统通过束流调试。3月4日打开环真空更换陶瓷真空室组件,3月13日开始带束联调并成功储存束流。四块冲击磁铁能实现良好匹配,励磁电流可加足设计值,最高积累束流流强曾达210mA。注入系统改造是NSRLII的关键子项目之一,也是难点之一。在2002年10月的调试中,束流极难储存。经过多方试验、观察测量和分析,并与高能所、上海核所、日本KEK的专家讨论,判断是陶瓷真空室金属镀膜偏厚,造成磁场时间滞后不均,并制定了改进关键工艺、严格控制质量、加强半成品检测、抓紧进度等措施。由于判断准确,措施得当。陶瓷真空室组件的加工仅用两个多月就顺利完成。各项技术指标皆符合物理设计要求。
2004年3月14-16日,NSRLII通过了中科院组织的加速器及光束线专家测试会。测试组由来自上海应用物理所、北京高能物理所、兰州近代物理所的10位专家组成,陈森玉院士担任组长,赵振堂、夏佳文、夏绍建研究员担任副组长。测试期间,测试组专家审定了工程指挥部提交申请报告,确定了总体工艺综合测试指标和参数,分成8个小组对加速器改造项目和光束线部分的12个子项工艺的测试方法、测试手段和自测结果进行了审定,并对他们的主要性能指标进行了复测。测试组专家认为:NSRLII已测的加速器改造项目通用运行模式满足同步辐射用户的基本需求,可投入运行。12条光束线和实验站可提供同步辐射用户使用。
2004年5月27-28日,中科院基础局组织专家组对NSRLII进行了院级工艺鉴定。鉴定组由魏宝文院士担任组长,陈森玉院士、陆坤权研究员担任副组长的11位专家组成。专家们听取了工程建设报告和分管加速器改造、光束线建设、实验站建设报告;听取了陈森玉院士宣读的工艺测试报告;查阅了工程指挥部提供的专家测试组测试结果;并现场观察了装置运行情况。鉴定组确认了专家测试组提交的测试结果,积极评价NSRLII取得的成绩。改造后的装置技术水平提高到新的高度,运行流强300毫安,束流平均寿命大于8小时;超导扭摆磁铁(Wiggler)运行时,全部14条光束线可同时引出同步辐射光。所有新建实验站皆已基本具备向用户开放的条件,满足大多数同步辐射用户的基本需求,建议在国家验收后将尽快投入运行。
2004年12月14日,NSRLII正式通过了由国家发展和改革委员会委托中科院主持的国家验收。验收委员会听取了工程建设报告、专家测试报告、工艺鉴定报告和预验收意见,查验了工程现场,查阅了文件、档案资料。经过认真、仔细的审查,验收委员会认为:国家同步辐射实验室通过二期工程建设,提高了装置技术水平,扩大了实验应用领域,基本完成了国家发展和改革委员会(原国家计委)批准的建设目标,同意NSRLII通过国家验收。
2005年5月12日,NSRLII齐飞研究组与美国、德国的科学家合作,首次在实验中发现了一系列的碳氢化合物氧化过程的重要中间体-烯醇,其研究成果以Science Express形式发表在5月12日出版的国际权威的学术刊物《科学》杂志上。国外的一些媒体在第一时间作了相关报道。《科学》杂志审稿人认为这是一项非常有意义而且很有趣的工作。这一研究工作由美国、中国、德国五个研究小组共同参与,中国科学技术大学国家同步辐射实验室作为第三参与单位。实验工作在美国劳伦斯伯克利国家实验室的先进光源和NSRLII完成。
2005年8月4-7日,NSRLII2005年度用户年会在安徽天柱山召开。来自国内外高等院校、科研机构和企业共计45家单位的136位代表参加了会议。会议听取了工程竣工验收后的整体工作、运行和开放情况的报告。美国斯坦福大学沈志勋教授、日本广岛大学乔山教授、加拿大同步辐射装置T.K.sham教授,以及中科院大连化物所包信和所长、中科院生物物理所所长饶子和院士、中科院物理研究所周兴江研究员、中科院北京高能所胡天斗研究员、中科院上海应物所何建华研究员应邀做了精彩报告,分别介绍了各自的科研成果及相关领域研究的最新进展。各实验站工作人员与用户进行了交流、讨论,听取了各线、站用户对用光机时申请、课题发展方向和实验技术方法等方面的意见和建议。会议期间,选出了新一届用户专家委员会,成员由来自13个科研机构的29人组成。委员会主任杨学明(中科院大连化物所)、副主任吴自玉(中科院高能所)、周兴江(中科院物理研究所)、封东来(复旦大学),秘书长高琛。
2005年11月19-20日,NSRLII在合肥举行了发展方向国际研讨会,探讨NSRLII在真空紫外、软X射线和红外领域所面临的重大科学问题、所具备的优势和发展战略等问题。来自法国SOLEIL同步辐射实验室、日本分子科学研究所、日本广岛大学、美国加利福尼亚大学、中科院物理研究所、中科院大连化学物理研究所、中科院上海技术物理研究所、中科院武汉物理与数学研究所、中科院化学所、清华大学、复旦大学、吉林大学、中国科学技术大学等国内外13个高校、研究所的19位知名专家学者参加了会议。会议听取了相关领域专家对各自学科前沿重大科学问题的分析和利用NSRLII解决其科学问题的设想,重点是真空紫外光化学光物理过程、强关联体系的软X射线共振散射和生命或材料科学中的红外光谱显微。专家认为,NSRLII已初步具备了开展这些前沿研究的基本条件,通过与用户的紧密合作,有针对性地重组、改进和完善现有的实验条件、实验技术和方法即可开展这些重要的工作,为我国的基础研究提供一个高水平的研究平台。专家建议优先考虑建立一个软X射线波段的波荡器(unlator),补充真空紫外光束线实验站的条件。
2005年12月14日,利用X射线散斑法研究弛豫铁电体PMN-PT的极化团簇结构取得进展。中科院上海应用物理所邰仁忠课题组与NSRLII科研人员合作,利用NSRLII高亮度X射线光源在X射线衍射与散射实验站上用散斑技术观察到PMN-PT铁电单晶中纳米极化团簇随温度和外电场的变化情况。驰豫铁电体是应用很广泛的一类功能材料,这类材料优异的机电性能一直被认为源于PbTiO3母体中掺杂阳离子所形成的电极化团簇。然而,人们对极化团簇的理解基本上来自理论计算或一些间接的实验结果,尚无电极化团簇的直接实验证据。
2005年12月21-23日,NSRLII通过了中科院组织的现场评估。由中科院高能物理所、兰州近代物理所、上海应用物理所和中科院物理所相关专家组成的专家组对NSRLII改造完成后一年来的运行情况进行了现场评估,专家组组长由陈森玉院士担任。专家组听取了工作汇报,分为加速器、光束线站及用户开放两个小组进行现场考察,并调阅运行记录、进行现场测试,对运行及管理工作进行了深入的了解,对NSRLII的整体运行、开放、用户管理、人才培养及取得的科研成果予以充分肯定。专家组认为:“经二期工程改造后,合肥光源的运行水平得到了较大和明显的提高。除发射度和轨道稳定性外,性能(流强和寿命)接近世界同类光源SRC,CAMD水平”。但由于不具备相应的测试手段,个别敏感出光口是否达到垂直位置漂移30微米稳定性难以定量测量。建议今后应注重改善轨道的稳定性;提高年供光时间(年积分流强)和降低自然发射度,以满足用户需求,并真正达到世界先进水平。专家组给出了《加速器部分现场检查意见》和《光束线站现场检查意见》两个分组报告及《现场检查的了解和建议》总体报告。
2006年3月29日,中科院微电子所在NSRLII光刻站上利用X射线光刻技术成功研制出最外环宽度为150nm的高线密度钛特征线微聚焦波带片,并实现了波带片图形特征尺寸的精确控制,其高宽比达到6.7:1。在X射线波段,各种材料的折射率都近似等于1,无法构造出类似于可见光波段的“透镜”,只能采用波带片来实现对X射线的聚焦。为了满足X射线光学的需求,微聚焦波带片的最外环必须是大高宽比的深亚微米、纳米圆环,因此这种波带片的制作难度非常大。该研究结果充分证明了在国家同步辐射实验室光刻站上进行大高宽比深亚微米、纳米X射线光刻的可行性。
2006年5月29日,NSRLII的软X射线磁性圆二色(XMCD)实验站通过加偏置电压消除外磁场的影响,成功实现了外磁场下MCD的测量。磁性的起源一直是自旋电子学器件应用的关键。传统磁滞测量无法给出各个元素对磁性的贡献,只能得到总效应。利用同步辐射XMCD技术可以将X射线能量精确定位在某个元素的共振吸收处,选择性地研究该元素对磁性的贡献,这对理解复杂材料体系磁性的起源意义重大。由于外磁场对样品出射电子干扰较大,大部分基于同步辐射软X射线磁性圆二色(XMCD)的实验站均无法在加磁场下进行MCD测量。
2006年8月10-15日,NSRLII第一届运行年会在安徽屯溪召开。来自海峡两岸科研院所共计6家单位的56位代表参加了会议。会议听取了NSRLII改造运行、NSRL05-06同步辐射应用研究进展的报告。特邀高能所陈延伟研究员、上海应用物理所阎和平研究员、兰州近物所夏佳文研究员和台湾新竹光源许国栋博士分别介绍了各自大科学装置的运行情况和最新进展。
2006年8月16-20日,NSRLII2006年度用户年会在安徽黄山召开。来自国内外高等院校、科研院所共计38家单位的105位代表,以及中科院基础和国家自然基金委等有关领导参加了会议。会议向与会代表汇报了NSRLII近期发展规划、机器运行汇报和用户开放的情况。会议邀请日本Hiroyuki Oyanagi教授、加拿大Peiqiang Yu教授、台湾杨耀文和李裕新教授、物理所麦振洪和李晨曦教授、复旦大学封东来教授、高能所吴自玉教授、浙江大学李宏年教授做了精彩报告,介绍了各自的科研成果及相关领域研究的最新进展。其中近半报告是近一年来利用NSRLII取得的较有影响的研究成果。会议期间,用户专家委员会讨论和审批了一批NSRL用户课题,评议了实验室开放运行工作、对实验室的发展提出了建议和意见。会议期间还召开了真空紫外研讨会,对国家同步辐射实验室的发展方向、近期目标和重点解决的问题等进行了研究和探讨。
2007年4月5日,NSRLII新建Unlator真空紫外光束线及实验站建设成功。该束线利用波荡器产生的真空紫外辐射,光子能量范围7.5-18.0 eV,平均光子强度1x1013光子/秒,能量分辨E/DE约1000。该波段高次谐波严重,抑制非常困难,是世界上真空紫外光束线研究的重点。新束线采用三级差分的气体滤波器,成功抑制了高次谐波,抑制效率99.99%,达到了世界先进水平。研究人员已在新建实验站上,利用红外激光解析结合同步辐射单光子电离技术研究了生物小分子、有机分子、药物分子等,取得了一些实验结果。
2007年7月22日-25日,NSRLII2007年度用户年会在大连化学物理研究所召开。来自国内外高等院校、科研院所共计26家单位的105位代表参加了此次会议。会议对了解国际同步辐射应用研究领域最新进展、促进国内外同行交流合作、了解用户需求起到了积极的促进作用。
2007年7月24日,NSRLII发展规划研讨会在大连召开。中国科学技术大学党委书记郭传杰,中科院计划局、基础局有关领导,中国科学技术大学有关领导,实验室用户专家委员会委员和部分用户代表,以及实验室主任伍灼耀、执行主任盛六四、副主任高琛和实验部主要学术骨干、线站负责人参加了研讨会。会议听取了实验室发展规划报告,从实验室的定位和发展目标、历史和现况、国内外发展趋势、重点研究领域、光源建设和需要的保障措施等七个方面阐述了实验室在前期调研、筹划和研讨的基础上初步形成的发展规划设想。与会代表展开了热烈的讨论,从NSRL的特色出发,面向国家战略发展和国际前沿科学的需求,强调有所为和有所不为的原则,提出了认真总结现存问题、调整重点研究领域布局、尽可能提高现有装置的水平等很多有益意见和建议。
2007年8月12日-17日,NSRLII运行年会在山东日照召开,会议总结了一年来了机器运行和开放情况,与北京高能所、兰州近物所、上海应物所等兄弟单位的特邀代表进行了学术交流和研讨,与会代表对进一步提高合肥光源的运行质量提出了很多有益的建议。
2007年11月,NSRLII在教育部“985”二期工程支持下新建的X射线成像实验站完成了安装调试,空间分辨率达到50纳米,其分辨能力达到国际先进水平。实验站具有吸收衬度、相位衬度成像和三维成像等功能,可用于表征纳米/亚微米材料,观察细胞和组织的内部结构和形貌变化,在细胞、植物和污染物的内部进行元素定位等,为纳米材料、环境科学和生物医学等提供了一种先进的实验手段。
2008年1月,担任合肥同步辐射国家实验室用户专家委员会主任的中科院大连化物所杨学明研究组的成果“发现玻恩―奥本海默近似在氟加氘反应中完全失效”入选2007年中国十大科技进展。该项研究成果中的部分重要数据在合肥同步辐射国家实验室原子与分子物理实验站上获得。
2008年3月,NSRLII齐飞教授领导的研究组利用低温等离子体放电技术完成了对星际等离子体环境的模拟,并在醇类物质的等离子体放电过程中探测到一系列的烯醇类物质,揭示了烯醇类物质作为一类重要星际物质的可能性。实验结果发表在天文学科顶级期刊《天体物理学杂志》(The Astrophysical Journal 676,416(2008))上。4月,该课题组又有三篇论文正式被《国际燃烧会议论文集》(Proceedings of the Combustion Institute)接收,并将于2008年8月初在加拿大蒙特利尔召开的第三十二届国际燃烧会议(目前燃烧学界档次最高的国际性会议)上进行宣读。入选的三篇论文分别对乙炔、乙基苯和硝基甲烷的低压预混层流火焰进行了深入的研究。《国际燃烧会议论文集》汇集本学科两年来的前沿成果,是燃烧研究领域最著名的杂志之一。这三篇论文的入选是继2005年关于火焰中烯醇探测的文章在Science上发表后,该课题组在燃烧研究领域取得的又一重要进展。
2008年6月,合肥微尺度物质科学国家实验室纳米材料与化学研究部俞书宏教授、NSRLII田扬超研究员及其合作者利用NSRLII的X射线纳米三维成像技术,成功地在室温、空气环境下对运用化学法制造的‘几何明星’凹陷Escher型硫化铜十四面体微晶进行了三维成像,直观地揭示了该凹陷Escher型微晶由四个相同的六角形的板通过相互交叉构筑成具有14个腔洞(其中包括6个正方形和8个三角形)的结构。与传统的形态和结构分析技术如透视电子显微镜和扫描电子显微镜相比,X射线纳米三维成像技术具有更直观解析复杂形态纳米结构的优点。相关论文发表在《应用物理快报》(Appl. Phys. Lett. 92, 233104(2008))上,并被《自然·中国》(Nature China )选为来自中国大陆和香港的突出科学研究成果,在2008年6月的‘Research Highlights’(研究亮点)栏目中以“Nanotomography: Crystal clear”为题并附图介绍了该工作。
2008年9月,合肥国家同步辐射实验室的用户—中科大化学系环境工程实验室俞汉青教授研究小组,利用同步辐射微细加工技术首次制备了一种新型微电极。该课题组利用这个微电极成功测定了好氧硝化颗粒中溶解氧的微区分布,并进行了定量分析,对于其中生化反应机理进行了探讨。实验结果对于微生物颗粒的培养与废水处理具有一定的指导意义。该研究结果已有2篇论文发表在环境学科顶级期刊《环境科学与技术》Environmental Science & Technology 上(41,5447(2007)和42,4467(2008)),还有1篇论文已被该刊物接受。

② 中国科学院是干什么的东东

中国科学院烟台海岸带可持续发展研究所(筹)考研资料链接 网络网盘免费下载

链接: https://pan..com/s/18C3N2KAOkEe-GX5kMjeAQg

提取码: eeuf

中国科学院烟台海岸带可持续发展研究所(筹)考研资料链接

③ P4实验室为什么在武汉

01 因为中国科学院武汉国家生物安全四级实验室具有开展高级别高致病性病原微生物实验活动的能力和条件,因此通过了国家卫计委高致病性病原微生物实验活动现场评估,成为中国首个正式投入运行的P4实验室。

2015年01月31日,中国科学院武汉国家生物安全实验室(武汉P4实验室)在武汉建成,标志着中国正式拥有了研究和利用烈性病原体的硬件条件。

在SARS爆发后,我国政府战略性启动P4实验室的建设。武汉P4实验室由中国科学院和武汉市人民政府共同建设,中科院武汉病毒所承建,参照国际上高等级生物安全实验室的建设要求和中国相关的建设标准,在引进法国里昂P4实验室技术和装备基础上,中法双方设计单位合作完成了实验室的设计,中国建设单位完成州肆了实验室的建设和主要设施设备的安装,历经逾十年终于建成世界上最先进的P4实验室。

武汉P4实验室是“中法新发传染病防治合作项目”重要内容之一,是国家投资建设的大科学工程装置之一。该实验室是国家高等级生物安全实验室体系的重要组成部分,也将成为我国公共卫生防御体系的重要组成部分和国内外传染病防控研究的技术平台。

新落成的武汉P4实验室将经过认证认可和实验活动资质许可,才可投入使用。专家表示,他们希望尽快在这间实验室内开展针对埃博拉病毒等烈性传染病的基础研究。

新落成的P4实验室位于武汉市江夏区的中科院武汉病毒所郑店园区内。整个实验室呈悬挂式结构,共分为4层。从下自上,底层是污水处理和生命维持系统;第二层是核心实验室;第三层是过滤器系统;二层和三层之间的夹层是管道系统;最上一层是空调系统。所有一层、三层、四层、夹层均是为了保证二层核册胡轿心实验室的正常运行,保证实验室里面是单向气流,是一个负压状态。300多平米的二楼核心实验室区域大致分为3个细胞实验室、2个动物实验室、1个动物解剖室、消毒室等。 P4实做亮验室拥有更为严格的人员进出制度。进入P3实验室可能需要花费10分钟,而进入P4实验室就要花费至少半小时进行层层消毒,包括沐浴、二更、缓冲等步骤,才能入内。进入实验室的研究人员都必须换上隔离正压防护服。这种防护服头部是透明的充气罩,下端连接着一条蓝色的呼吸带,呼吸带另一端悬挂连接在屋顶的管道上,这样保证研究人员在防护服内进行呼吸循环,和外界空气不发生任何接触。工作人员离开实验室时也必须经过化学淋浴消毒正压防护服表面。P4实验室能同时容纳12名实验人员,允许进入实验室的科研人员需要经过严格的培训。截至2015年1月中科院武汉病毒所已有6名科研人员经过培训,获得法国BSL-4(相当于P4)使用许可证书,还有2名科研人员正在国外接受培训。除了对研究人员的保护,为了保证周围环境的安全,P4实验室从各方面进行了安全防控,所有排出的气、水、物等都必须经过严格处理、达到标准才能排放。什么样的病原要在P4实验室中进行研究?专家说,所有病毒都会依据风险进行危害评级,比如埃博拉病毒属于4级危害,其培养和动物感染实验必须在P4实验室进行。有些病毒的传播风险尚不明确,也需要运输到P4实验室,进行高一级别的研究。

功能定位

实验室将承担三大功能,即一是成为我国传染病预防与控制的研究和开发中心;二是烈性病原的保藏中心和联合国烈性传染病参考实验室;三是作为我国生物安全实验室平台体系中的重要区域节点,在国家公共卫生应急反应体系和生物防范体系中发挥核心作用和生物安全平台支撑作用。

实验室建立的设施设备维护、生物安全和生物安保管理、科研支撑服务队伍,将为实验室正常运行和应急处置的运行管理模式和应急反应体系提供有力支撑,同时,将建立高等级生物安全实验室透明、开放的实验室文化。

意义与目标

当前,除中国外,全球公开的仅有法国、加拿大、德国、澳大利亚、美国、英国、加蓬(法国巴斯德所)、瑞典和南非9个国家拥有P4实验室。中科院称,该项目的建成,标志着我国正式拥有了研究和利用烈性病原体的硬件条件,为我国公共卫生科技支撑体系再添重器。

武汉P4实验室主任袁志明说,该实验室建设的总目标是成为新发传染病疾病的研究和开发中心、烈性病毒的生物资源中心和联合国世界卫生组织的传染性疾病参考实验室,并纳入中法新生疾病合作研究框架中,最终成为我国新生疾病研究网络的核心部分。

④ 中国科学研究院第三研究所

很高兴告诉你!
当然有,这个是那个站: ://cas/中国科学院 于1949年11月在北京成立,是国家科学技术方面最高学李饥术机构和全国自然科学与高新技术综合研究发展中心。
中国科学院包括5个学部(数理学部、化学部、生物学部、地学部、技术科学部),以及11个分院(沈阳、长春、上海、南京、武汉、广州、成都、昆明、西安、兰州、新疆)、84个研究院所、1所大学、2所学院、4个文献情报中心、3个技术支撑机构和2个新闻出版单位,分布在全国20多个省(市)。此外,还投资兴办了430余家科技型企业(含转制单位),涉及11个行业,其中包括8家上市。
学部
中国科学院学部(以下简称“学部”)成立于1955年,是国家在科学技术方面的最高咨询机构,负责对国家科学技术发展规划、计划和重大科学技术决策提供咨询,对国家经济建设和社会发展中的重大科学技术问题提出研究报告,对学科发展战略和中长期目标提出建议,对重要研究领域和研究机构的学术问题进行评议和指导。
学部由中国科学院院士组成。中国科学院院士从国内外最优秀的科学家中选出,每两年增选一次,目前有院士687人,其中外籍院士41人。学部的最高权力机构是全体院士大会,其常设领导机构是学部主席团,由中国科学院院长担任执行主席。学部现设有数学物理学部、化学部、生物学部、地学部和技术科学部五个学部。
学部成立初期,即组织院士参与制定了对我国科技事业发展具有深远影响的《十二年科学技术发展远景规划》。1986年,在89位院士建议下,中国科学院建立了面向全国的自然科学基金,在此基础上成立了国家自然科学基金委员会。同年3月,王大珩、王淦昌、陈芳允、杨嘉墀4位院士联名建议加强中国高科技的研究和发展,形成了国家高技术研究发展计划。 1993年,在王大珩、师昌绪、张光斗、张维、罗沛霖、侯祥麟等院士的倡议下,成立了中国工程院。
近年来,学部围绕西部开发、国家安全、人口与社会可持续发展、高技术产业发展、科学教育、学科发展战略等问题,提出了一系列咨询报告报送国务院和有关部门,为国家制定相关政策提供了重要参考依据。
基础科学研究
在基础科学研究领域, 中国科学院已逐步建立和发展了数学、物理学、化学、力学、天文学、生命科学、地学与环境等自然科学的基础学科。在数学、物理学、化学、力学和天文学领域,现有16个研哪基返究机构,其中有10个研究所、2个研究院、3个天文台和1个授时中心,拥有近9000人的科研及管理队伍。中国科技大学、中国科学院研究生院也是基础科学方面的重要研究力量。目前,在这些研究机构中建设有基础科学领域的国家实验室4个、国家重点实验室11个、院重点实验室19个。在知识创新工程试点工作中,先后启动了国际量子结构、核心数学、聚合物科学与材料、交叉科学理论物理和复杂系统研究团队。研究团队主要围绕重大科学前沿问题,开展具有原始创新性的研究工作,通过团队的带动作用,培养出在中国本土成长的一流科学家。为推动国内纳米科技研究工作,在中国科学院纳米科技中心的基础上,联合北京大学、清华大学等高校成立国家纳米科技中心。
中国科学院已经建成了北京正负电子对撞机(BEPC)、兰州重离子加速器(HIRFL)、合肥同步辐射加速器、托卡马克和激光聚变装置、长波授时台等重大科学工程装置,以及216米光学望远镜、多通道太阳磁场望远镜、米波综合孔径射电望远镜等大型天文观测设备。目前正在建设的大科学装置有兰州重离子加速器冷却储存环、大型非圆截面超导托卡马克装置、大天区面积多目标光纤光谱天文望远镜和北京正负电子对撞机(含谱仪)重大改造工程等。
在基础科学研究领域,中国科学院先后取得了许多重大的科研成果,如数学定理的机器证明、哈密尔顿系统的辛几何算法、锋滑τ轻子质量精确测量、新核素合成、超新星观测、高温超导、碳纳米管的制备和应用、非线性光学晶体、过渡金属原子簇结构和性质以及金属有机化学等等。同时,为我国信息、能源、材料、资源、农业、医药、空间和国家安全等方面的研究和发展以及形成科技战略储备做出了重要贡献。数学与系统科学研究院吴文俊院士、半导体研究所黄昆院士分别荣获2000年度和2001年度国家最高科学技术奖,中国科学院地质与地球物理研究所院士刘东生荣获2003年度,2004年度空缺,中国科学院大气物理研究所院士叶笃正荣获2005年度,中国科学院遗传与发育生物学研究所院士李振声荣获2006年度国家最高科学技术奖。
生命科学与生物技术
在生命科学与生物技术研究领域,中国科学院现有23个研究所和研究中心、26个国家和院重点实验室、12个植物园、22个标本馆、9个典型培养物保藏库和11个野外生态学研究台站,拥有6800多人的科研及管理队伍。
在北京的7个研究所以农业高技术和生态环境研究为主要方向;由7个研究所(中心)组

⑤ 中科院高能物理研究所怎么样

能进中科院的都是IQ特别高的,我当年也考中科院高分子材料研究生滑档内下来的,题目大多是容超纲题。
工作生活前期基本在实验室,后期有成果之后召开发表,刊登在世界著名的科学期刊上,去全国各地高校做演讲,一是获取学术地位,二是赚点生活费。搞科研很辛苦的,特别是前期,有成果就不一样了
__________________________________分割线—————————————————
两年过去了,我现在在中科院等离子体物理所,高能所的情况我不大了解,中科院的国家经费都不低就对了,现在每个月(硕士)3000-4000左右,不用学费(返还),专心科研。据我所知国内高校几乎没有几个比中科院给的多。
生活基本上都是差不多的,前期就混个二作共同一作啥的,后面有成果了就写论文,半年左右一片,科研狗枯燥乏味,论文都是相互引用,水文章从讲师评职称到教授,所以说为什么中国高校中流传一句话:一流的本科,二流的硕博,三流的教授,有那么点意思在里面,不过并不能以偏概全,至少我现在的导师是硕果累累(核聚变等离子体约束行为方向)。

⑥ 大科学装置的大科学装置联合基金

但是,研究资金缺乏却成了大科学装置开放共享的拦路虎。“大科学装置的建设和运行费用由国家财政负担,但外单位科研人员使用大科学装置做研究所需的费用却没有稳定的来源渠道,大大限制了大科学装置作为基础科研设施的平台功能。”
首批4000万联合基金助推大科学装置向全国开放
为解决资金制约,使全国高等院校和科研院所的研究人员都有机会利用中国科学院运行和管理的大科学装置,更好地发挥大科学装置在学科前沿研究、多学科交叉研究中的支撑作用,国家基金委与中科院共同出资,设立了大科学装置科学研究联合基金。
据国家基金委主任陈宜瑜介绍,该基金首批投入经费4000万元,由国家基金委与中国科学院各出资二分之一,执行期为2009年-2011年。该联合基金按照突出大科学装置共用性、弱化专用性、促进开放性、提升创新性的思路,主要依托北京正负电子对撞机(北京谱仪和北京同步辐射装置)、兰州重离子加速器与冷却储存环装置、上海光源装置、合肥同步辐射装置来实施。
该联合基金面向全国高等院校和科研机构,主要支持以下三个方面的研究工作:(一)基于平台装置的研究工作,譬如同步辐射线站、重离子源等,重点支持多学科及交叉研究;(二)基于专用装置的研究工作,譬如北京正负电子对撞机上北京谱仪的高能物理研究、兰州重离子加速器与冷却储存环的核物理研究等;(三)提升大科学装置研究能力的实验技术、方法及小型专用仪器发展研究和关键技术研究,譬如探测技术、快电子学技术、加速器技术,同步辐射技术,数据分析平台技术,辐射防护技术等。主要研究内容包括:物质科学前沿领域的科学问题(物理、化学、材料);信息领域的科学问题;生命领域的科学问题(包括生物物理与医学);环境和资源领域科学问题;学科交叉的科学问题;课题研究牵引的诊断技术、小型专用实验设备的研制、改善和发展;拓展新的科学目标的探测技术、加速器技术、同步辐射技术与方法、数据获取、处理和存储技术研究,等等。
“该联合基金按照国家自然科学基金管理模式运行,成立由双方主要领导参加的管委会,负责该项联合基金的统筹实施。管理工作以基金委为主负责,中国科学院参与协调工作,具体管理参照国家自然科学基金有关管理办法执行。”陈宜瑜主任透露,今年3月初国家基金委将单独发布指南,受理申请。
大科学装置联合基金将实现4个“有利于”
“大科学装置联合基金的设立,是我国科技界的一件大事!”白春礼常务副院长认为,它将有助于实现4个“有利于”——
将加强中国科学院与国家创新体系其它单元的联合与合作,有利于与各单元形成互相促进、互相支持、互相配合的良性科技竞争合作关系,更快地形成整体合力,加快推进中国特色国家创新体系的建设;
将促进大型科技基础设施资源的整合共享,有利于切实打破条块分割、有效避免资源分散和重复建设、提高大科学装置的利用效率,推动跨部门、跨领域的资源共享和互利共赢,为科技自主创新提供有力支撑;
将有利于理论研究与实验工作的结合,促进大科学装置的成果产出和创新人才的培养,并为大科学装置的未来发展提供理论指导;
同时,将改变以往对外合作中外方承担主要经费的做法,有利于开展以我为主的国际合作,共同突破重大科学问题、关键技术瓶颈。

阅读全文

与武汉物理研究大科学装置建设计划相关的资料

热点内容
设备原材料怎么分 浏览:977
交河阀门厂招工 浏览:460
360手机工具箱在哪里 浏览:644
机床滚动轴承怎么样装 浏览:552
放暖气是关闭进水阀门还是回水 浏览:461
实验室蒸馏装置够买 浏览:37
淋水实验装置在哪里买 浏览:305
自动跟跟踪定位射流灭火装置 浏览:690
空调制冷电能转成什么能量 浏览:398
塑料罐用什么阀门接好 浏览:625
格力定频凉之夏用的什么制冷剂 浏览:12
浙江生产轮毂单元轴承厂有多少 浏览:102
地狱火装置设计图 浏览:226
汉口五金机电城 浏览:85
县城做井盖路政消防器材怎么样 浏览:760
紫外灯实验装置图 浏览:861
石材开采设备有哪些 浏览:872
沈阳中联瑞达节能设备有限公司怎么样 浏览:531
怎么看铸造厂的污染情况 浏览:727
诚信制冷家电维修怎么样拆装移机 浏览:355