㈠ 液压站液压系统的电液调压装置
电液调压装置结构图
1一固定螺钉;2—十字弹賛;3—可动线圈;
4一永久磁铁;5—控制杆;6—喷头;
7—中孔螺母;8—导阀;9一调压螺栓;
10—定压弹簧;11一辅助弹簧;
12—滑阀;13—节流阀;14一滤芯
D腔内压力受电液阀的控制。电液阀是一个电气机械转换器,它将输人的电讯号转变成机械位移。从图中可以看到,控制杆5悬挂在十字弹簧2上,在控制杆上还固定一个可动线圈3,当司机操纵控制手柄向动线圈送人直流讯号后,动线圈便在永久磁铁4作用下产生位移,此位移的大小决定于输人信号的数值。在输人信号达最大值时,控制杆的挡板与喷嘴间的距离最小,此时G腔内压力达最大值;若电流减小,控制杆就相应离开喷嘴一定距离,G腔内油位也相应下降。由于G腔与D腔连通,所以G腔的压力亦随D腔的压力变化。
综上所述,调压过程可归纳为:
制动手柄角位移!自整角机电压变化!动线圈电流变化!挡板位移!G腔及D腔压力变化!溢流滑阀位移!K管压力变化一制动油缸压力变化。
本系统在安全制动时,可以实现二级制动。二级制动的好处是既能快速、平稳地闸住提升机,又不致使提升机减速度过大。盘闸制动器分成两组,分别与液压站的“A”管,·1244·
“B”管相连。安全制动时,二级制动安全阀断电,与“A”管相连的制动器通过安全阀直接回油,很快抱闸,所产生的力矩为最大力矩之半,提升速度下降。同时与“B”管相联的制动器则通过安全阀的节流阀以较缓慢的速度回油,产生第二级制动力矩。二级制动力矩特性可以通过调节安全阀的节流杆来改变。
在双卷筒提升机液压站中,还设置了五通阀、四通阀。五通阀的作用是使活卷筒的制动器与调绳装置闭锁。在进行调绳工作时,五通阀有电,活卷筒制动缸通过五通阀回油,活卷筒处于制动装态。四通阀的作用是控制调绳离合器。当四通阀断电(五通阀通电财,离合器“打开”;四通阀通电时,离合器“合上”。
㈡ 液压传动知识
(一)液压传动概述
液压传动是以液体为工作介质来传递动力和运动的一种传动方式。液压泵将外界所输入的机械能转变为工作液体的压力能,经过管道及各种液压控制元件输送到执行机构→油缸或油马达,再将其转变为机械能输出,使执行机构能完成各种需要的运动。
(二)液压传动的工作原理及特点
1.液压传动基本原理
如图2-62所示为一简化的液压传动系统,其工作原理如下:
液压泵由电动机驱动旋转,从油箱经过过滤器吸油。当控制阀的阀心处于图示位置时,压力油经溢流阀、控制阀和管道(图2-62之9)进入液压缸的左腔,推动活塞向右运动。液压缸右腔的油液经管道(图2-62之6)、控制阀和管道(图2-62之10)流回油箱。改变控制阀的阀心的位置,使之处于左端时,液压缸活塞将反向运动。
改变流量控制阀的开口,可以改变进入液压缸的流量,从而控制液压缸活塞的运动速度。液压泵排出的多余油液经限压阀和管道(图2-62之12)流回油箱。液压缸的工作压力取决于负载。液压泵的最大工作压力由溢流阀调定,其调定值应为液压缸的最大工作压力及系统中油液经阀和管道的压力损失之总和。因此,系统的工作压力不会超过溢流阀的调定值,溢流阀对系统还起着过载保护作用。
在图2-62所示液压系统中,各元件以结构符号表示。所构成的系统原理图直观性强,容易理解;但图形复杂,绘制困难。
工程实际中,均采用元件的标准职能符号绘制液压系统原理图。职能符号仅表示元件的功能,而不表示元件的具体结构及参数。
图2-63所示即为采用标准职能符号绘制的液压系统工作原理图,简称液压系统图。
图2-62 液压传动系统结构原理图
1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀
图2-63 液压传动系统工作原理图
1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀
2.液压传动的特点
(1)液压传动的主要优点
1)能够方便地实现无级调速,调速范围大。
2)与机械传动和电气传动相比,在相同功率情况下,液压传动系统的体积较小,质量较轻。
3)工作平稳,换向冲击小,便于实现频繁换向。
4)便于实现过载保护,而且工作油液能使传动零件实现自润滑,因此使用寿命较长。
5)操纵简单,便于实现自动化,特别是与电气控制联合使用时,易于实现复杂的自动工作循环。
6)液压元件实现了系列化、标准化和通用化,易于设计、制造和推广应用。
(2)液压传动的主要缺点
1)液压传动中不可避免地会出现泄漏,液体也不可能绝对不可压缩,故无法保证严格的传动比。
2)液压传动有较多的能量损失(泄漏损失、摩擦损失等),故传动效率不高,不宜作远距离传动。
3)液压传动对油温的变化比较敏感,不宜在很高和很低的温度下工作。
4)液压传动出现故障时不易找出原因。
(三)液压传动系统的组成及图形符号
1.液压传动系统的组成
由上述例子可以看出,液压传动系统除了工作介质外,主要由四大部分组成:
1)动力元件——液压泵。它将机械能转换成压力能,给系统提供压力油。
2)执行元件——液压缸或液压马达。它将压力能转换成机械能,推动负载做功。
3)控制元件——液压阀(流量、压力、方向控制阀等)。它们对系统中油液的压力、流量和流动方向进行控制和调节。
4)辅助元件——系统中除上述三部分以外的其他元件,如油箱、管路、过滤器、蓄能器、管接头、压力表开关等。由这些元件把系统连接起来,以支持系统的正常工作。
液压系统各组成部分及作用如表2-6所示。
表2-6 液压系统组成部分的作用
2.液压元件的图形符号
图2-64是液压千斤顶的结构原理示意图。它直观性强,易于理解,但难于绘制。特别是当液压系统中元件较多时更是如此。
图2-64 液压千斤顶的结构原理图
1—杠杆;2—泵体;3,11—活塞;4,10—油腔;5,7—单向阀;6—油箱;8—放油阀;9—油管;12—缸体
为了简化原理图的绘制,液压系统中的元件可采用符号来表示,并代表元件的职能。使用这些图形符号可使系统图即简单明了又便于绘制,如果有些液压元件职能无法用这些符号表达时,仍可采用它的结构示意图形式。如表27为液压泵的图形符号;表2-8为常用控制方式的图形符号。欲了解更多液压元件的图形符号,可参阅相关书籍。
表2-7 液压泵的图形符号
表2-8 常用控制方式图形符号
(四)液压传动的主要元件
1.液压泵
是一种能量转换装置。它将机械能转换为液压能,为液压系统提供一定流量的压力油液,是系统的动力元件。
液压泵的结构类型有齿轮式、叶片式和柱塞式等。目前钻探设备的液压系统中主要采用前两种形式。
(1)齿轮泵
齿轮泵分为外啮合和内啮合两种形式。外啮合式齿轮泵由于结构简单,价格低廉,体积小质量轻,自吸性能好,工作可靠且对油液污染不敏感,所以应用比较广泛。
1)齿轮泵的工作原理。齿轮泵由泵壳体,两侧端盖及由各齿间形成密封的工作空间组成。齿轮的啮合线把容腔分隔为两个互不相通的吸油腔和排油腔。当齿轮按图示方向旋转时吸油一侧的轮齿逐渐分离,工作空间的容腔逐步增大,形成局部真空。此时油箱中的油液在外界大气压的作用下进入吸油容腔,随着齿轮的旋转,齿间的油液带到排油一侧。由于此侧的轮齿是逐步啮合,工作空间的容腔缩小,油液受挤压获得能量排出油口并输入液压系统。
2)齿轮泵的结构。YBC-45/80齿轮泵是钻探设备常用的一种液压泵,额定流量45L/min,额定泵压8MPa(图2-65)。该泵主要由泵体、泵盖、主动齿轮、被动齿轮及几个轴套等组成。齿轮与轴呈一体,以4只铝合金轴套支撑于泵体内,泵盖与泵体用螺栓紧固,端面及泵轴处均以密封圈密封,两个轴套(图2-65之7与19)在压力油的作用下有一定的轴向游动量,油泵运转时与齿轮端面贴紧,减少轴向间隙同时在轴套和泵盖之间有封严板等,将吸排油腔严格分开,防止窜通以提高泵的容积效率。在轴套靠近齿轮啮合处开有卸荷槽。泵主轴伸出端以半圆键与传动装置连接,接受动力。
图2-65 YBC—45/80齿轮泵
1—卡圈;2—油封;3—螺栓;4—泵盖;5,13,20—O型密封圈;6—封严板;7,10,17,19—轴套;8—润滑油槽;9—主动齿轮;11—进油口;12—泵体;14—油槽;15—排油口;16—定位钢丝;18—被动齿轮;21—油孔;22—压力油腔
3)齿轮泵的流量。齿轮泵的流量可看作是两个齿轮的齿槽容积之和。若齿轮齿数为z,模数为m,节圆直径为D(D=z·m),有效齿高h=2m,齿宽为b时,泵的流量Q为
Q=πDhb=2πzm2b
考虑齿间槽比轮齿的体积稍大一些,通常取π为3.33加以修正,还应考虑泵的容积效率ηv,则齿轮泵每分钟的流量为
地勘钻探工:基础知识
(2)叶片泵
叶片泵与齿轮泵相比较具有结构紧凑,外形尺寸小,流量均匀,工作平稳噪音小,输出压力较高等优点,但结构较复杂,自吸性能差,对油液污染较敏感。在液压钻机中也有采用。
叶片泵分为单作用和双作用两种。前者可作为变量泵,后者只能作定量泵。
2.液压马达
液压马达是将液压能转换为机械能的装置,是液压系统的执行元件。其结构与液压泵基本相同,但由于功能和工作条件不同,一般液压泵和液压马达不具有可逆性。
液压马达按结构特点分为齿轮式、叶片式和柱塞式三类。钻探设备中常用柱塞式液压马达。
如图2-66所示,当压力油经配油盘进入缸体的柱塞时,柱塞受油的作用向外伸出,并紧紧抵在斜盘上,这时斜盘对柱塞产生一法向反作用力F。由于斜盘中心线与缸体轴线倾斜角为δM,所以F可分解为两个分力,其中水平分力Fx与柱塞推力相平衡,而垂直分力Fg则对缸体产生转矩,驱动缸体及马达轴旋转。若从配油盘的另一侧输入压力油,则液压马达朝反方向旋转。
图2-66 轴向柱塞式液压马达工作原理
1—斜盘;2—缸体;3—柱塞;4—配油盘;5—主盘
若液压马达的排量为Q,输入液压马达的液压力为P,机械效率为ηm,则液压马达的输出转矩M为:M=PQηm/2π。
3.液压缸
液压缸是液压系统的执行元件。它的作用是将液压能转变为机械能,使运动部件实现往复直线运动或摆动。液压缸结构简单,使用方便,运动平稳,工作可靠,在钻探设备中应用十分广泛。液压缸的种类很多,按结构类型可分为活塞式、柱塞式和摆动式三种。其中活塞式液压缸最常用。活塞或液压缸可分为单出杆式和双出杆式两种。其固定方式可以是缸体固定或活塞杆固定。
(1)单出杆活塞式液压缸
如图2-67所示为液压式钻机给进油缸的结构。它由活塞、活塞杆、缸筒、上盖、下盖、密封圈和压紧螺母等组成。活塞杆与活塞以螺纹连接成一体。活塞环槽中配装的活塞环及上盖处的密封圈等用以保证缸内具有良好的密封性。在液缸的上下盖上设有输油口,压力油经输油口进入液缸的上、下腔,即推动活塞移动,并通过活塞杆顶端的连接螺母带动立轴上行或下行。由图示结构可知,单出杆液压缸活塞两侧容腔的有效工作面积是不相等的,因此当向两腔分别输入压力和流量相等的油液时,活塞在两个方向的推力和运行速度是不相等的。
图2-67 钻机给进油缸的结构
(2)双活塞杆式液压缸
双活塞杆式液压缸结构,组成件与单活塞杆液压缸基本相同,所不同的是活塞左右两端都有活塞杆伸出,可以连接工作部件,实现往复运动。由图示结构可知,
两侧活塞杆直径相同,当两腔的供油压力和流量都相等时,两个方向的推力和运行速度也相等。
4.液压控制阀
液压控制阀是液压系统中的控制元件,用于控制系统的油液流动方向及压力和流量的大小,以保证各执行机构工作的可靠、协调和安全性。
液压控制阀按其用途和工作特点不同,通常可分为方向控制阀(如单向阀和换向阀等)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这3种阀可根据需要互相组合成为集成式控制阀,如液压式钻机或其他工程机械就是将一个或多个换向阀、调压溢流阀和流量阀等组装在一起成为集中手柄控制的液压操纵阀。
(五)液压传动系统的基本回路简介
1.压力控制回路
主要是利用压力控制阀来控制系统压力,实现增压、减压、卸荷、顺序动作等,以满足工作机构对力或力矩的要求。如图2-68所示为一减压回路,由于油缸G往返时所需的压力比主系统低,所以在支路上设置减压阀,实现分支油路减压。
图2-68 减压回路
2.速度控制回路
主要有定量泵的节流调速、变量泵和节流阀的调速、容积调速等回路,可以实现执行机构不同运动速度(或转速)的要求。在定量泵的节流调速回路中,采用节流阀,调速阀或溢流调速阀来调节进入液压缸(或液压马达)的流量。根据阀在回路中的安装位置,分为进口节流、出口节流和旁路节流3种。
3.换向控制回路
换向控制回路是利用各种换向阀或单向阀组成的控制执行元件的启动、停止或换向的回路。常见的有换向回路、闭锁回路、时间制动的换向回路和行程制动的换向回路等。
如图2-69所示是简化的工作台作往复直线运动的液压系统图。为了控制工作台的往复运动,在这个系统中设置了一个手动换向阀,用来改变液流进入液压缸的方向。当手动换向阀的阀心在最右端时(图2-69a),压力油由P—A,进入液压缸左腔。此时,右腔中的油液由B—O流回油箱,因而推动了活塞连同工作台一起向右运动。
若把手动换向阀的阀心扳到中间位置(图2-69b),压力油的进油口P与回油口O都被阀心封闭,工作台停止运动。
如果把阀心扳到最左端,压力油从P—B进入液压缸右腔(图2-69c),左腔中的油液由A—O回油箱,从而推动活塞连同工作台向左运动,完成换向动作。
图2-69 换向工作原理图
4.同步回路
当液压设备上有两个或两个以上的液压油缸,在运动时要求能保持相同的位移和速度,或要求以一定的速度比运动时,可采用同步回路。
5.顺序动作回路
当用一个液压泵驱动几个要求按照一定顺序依次动作的工作机构时,可采用顺序动作回路。实现顺序动作可以采用压力控制、行程控制和时间控制等方法。
㈢ 钻机液压传动系统
(一)功用
1)用以完成主轴的上升、下降、停止,钻机移动,松开卡盘,拧卸钻杆等工作。
图4-63 XY-4型钻机机架
1—挡铁;2—右机腿;3—前机架;4—机座;5—左机腿;6—防护罩;7—移动油缸;8,9,13—压板;10—后机架;11,12—调整垫;14—调整垫
2)可实现钻进过程中的加压、减压钻进和强力起拔等工艺要求。
3)可以控制立轴下降速度。系统中的油压由压力表反映,钻进压力、加减压力值及钻具质量由钻压表反映,如图4-64所示。
(二)液压系统的组成
XY-4型钻机的液压系统由以下四部分组成:
1)动力机构。由齿轮式油泵构成,它是液压系统的“心脏”液压能的动力源。
2)控制机构。控制和调整系统内油液的压力,流量和方向,将液压能分配给各执行机构。由液压操纵阀,可调节流阀等组成。
3)执行机构。将液压能转换为机械能(往复和旋转运动),由油缸,液压马达等组成。
4)辅助装置。由油箱、过滤器、油表、油管、接头等组成。
(三)液压传动系统工作原理
1.钻机前后移动
如图4-65所示,由手动控制弹簧复位三位六通换向阀与钻机前后移动油缸等构成了钻机移动回路。其工作原理是:油液由油箱经过滤器通过油泵获得液压能,压力表反映系统压力,用溢流阀控制系统压力并实现过载保护。换向阀各位置工作状况如下:
图4-64 XY-4型钻机液压传动系统组成图
1—油箱;2—阀门;3—接头螺钉;4—接头体;5—单联齿轮泵;6,7,8—接头螺钉;9—接头体;10—ZFS四联多路换向阀;11—螺帽;12,13—接头螺钉;14—回油接头体;15—给进油缸下油管;16—接头体;17—给进油缸上油管;18—给进控制阀;19—钻压表;20—接头螺钉;21—接头体;22—直通接头;23—液控单向阀;24—D型胶管接头;25—C型胶管接头;26—压力表
图4-65 XY-4型钻机液压系统
1—压力表;2—单向阀;3—油泵;4—过滤器;5—油箱;6—溢流阀;7—钻机前后移动操纵阀(三位六通);8—备用操纵阀(三位六通);9—卡盘松紧操纵阀(三位六通);10—立轴升降操纵阀(四位六通);11—给进控制阀(节流阀);12—三通换向阀(梭阀);13—钻压表;14—立轴油缸;15—液压卡盘;16—单向阀;17—钻机前后移动油缸(单出杆油缸)
1)处于第二位置(零位)时,压力油经常态回油道直接流回油箱,此时钻机处于停止状态。
2)处于第一位置时,常态回油道封闭,压力油进入移动油缸左腔,油缸体左移并带动钻机左移(后退);油缸右腔油液经回油道流回油箱。
3)处于第三位置时,常态回油道封闭,压力油进入移动油缸右腔,油缸体右移并带动钻机右移(前进),油缸左腔油液经回油道流回油箱。
2.松开液压卡盘
由卡盘松紧操纵阀与液压卡盘内油缸等构成液压卡盘松紧回路。由于该钻机液压卡盘采用碟形弹簧卡紧,液压力松开的方式,所以只需一条工作油路,而另一条油路接在液压拧管机的供油路上。换向阀各位置工作状况如下:
1)处于第二位置时,压力油经常态回油道直接流回油箱,此时处于停止状态。
2)处于第一位置时,常态回油道封闭,压力油进入卡盘环形油缸,推动活塞下移,压缩碟形弹簧,卡盘松开。
3)处于第三位置时,压力油进入拧管机供油路,此时拧管机即可工作,同时卡盘油缸内油液卸荷,碟形弹簧复位,卡盘卡紧。
3.立轴的下降、停止、上升与称重
由立轴升降操纵阀、立轴升降油缸(给进油缸)及给进控制阀等构成立轴给进回路。换向阀各位置工作状况如下:
1)处于第二位置时,压力油经常态回油道直接流回油箱,立轴处于停止状态。
2)处于第一位置时,常态回油道封闭,压力油进入给进油缸上腔,推动活塞下移,立轴下降;给进油缸下腔油液与回油道接通,流回油箱。下腔油路上串联着给进控制阀,可以调节油缸下腔回油量,从而控制立轴下降速度,实现加、减压钻进。
3)处于第三位置时,常态回油道封闭,压力油通过给进控制阀之单向阀进入给进油缸下腔,推动活塞上行,立轴上升;油缸上腔油液与回油道接通卸荷。
4)处于第四位置时,常态回油道的油道封闭,油缸上腔开始卸荷,由于油缸下腔处于封闭状态,下腔油压力与钻具质量相平衡,从钻压表上可读出钻具在孔内的质量值,油泵输出的压力油克服溢流阀弹簧压力顶开阀心流回油箱。
(四)主要液压元件的构造
1.油箱
油箱的用途主要是储油、散热、分离油中的空气和沉淀杂物等。
XY-4型钻机油箱为开式,容量为40L。装于钻机前机架的右侧。其构造如图4-66所示。
油箱由钢板焊接制成,中间用带孔的隔板分成回油沉淀和吸油两个工作室,可消除泡沫,沉淀杂物,冷却油液。油箱上端有加油口及过滤网,透气孔等,油箱侧面有圆形油标,用于观察油面高度。
2.油泵
该系统采用外啮式齿轮油泵,型号为CB33/80。其主要技术参数如下:
图4-66 XY-4型钻机油箱
1—接头组件;2—接头;3—盖板;4—胶垫;5—加油口盖;6—加油口;7—过滤板;8—后提手;9—回油管接头;10—箱体;11—观察口;12—镜片;13—胶垫;14—垫圈;15—油标板;16—前提手;17—隔板;18—接头;19—过滤器
工作压力8MPa;最高压力12MPa;转速1500r/min;排量33L/min;容积效率70.95;进油管丝扣尺寸G7/8in;排油管丝扣尺寸G3/4in。
油泵传动装置如图4-67所示。主要由三角皮带轮、轴承、油泵座、传动轴及橡胶油封等组成。传动轴一端以平键连接三角皮带轮,另一端则以两副207轴承装于油泵座内孔。齿轮泵轴的外花键插于传动轴的内花键中,从而避免三角带传动过程中的拉力直接作用在油泵轴上。
图4-67 油泵传动装置
1—B型三角皮带;2,10—弹簧垫圈;3,9—六角头螺栓;4—纸垫;5,6—衬套;7—传动轴;8—207轴承;11—油泵座;12—压注油嘴;13—橡胶油封;14—密封螺塞;15—衬套;16—三角皮带轮;17—平键;18—止退垫圈;19—圆螺母
3.液压操纵阀
液压操纵阀是钻机液压传动系统的控制中枢,属集成式一组多路换向阀。如图4-68所示,主要由调压溢流阀、钻机移动控制阀、卡盘及拧管机控制阀、立轴给进控制阀和回油侧盖五部分组合而成。下面分别介绍各阀的构造及工作原理。
图4-68 XY-4型钻机液压操纵阀
1—微调手轮;2—圆锥销;3—拨环;4—手轮套;5—密封圈;6—调压螺杆;7—防转销;8调压螺母;9—限位套;10—调压套筒;11—限位螺母;12—密封圈;13—调压溢流阀壳体;14—调压弹簧;15—调压阀体;16—阀座;17—螺母;18—弹簧座;19—弹簧;20—弹簧罩;21—弹簧压板;22—密封盖;23—内六角螺钉;24—定位器体;25—内六角螺钉;26—定位套筒;27—定位钢球;28—锁紧弹簧;29—回油后盖;30—连接螺杆;31—连接板;32—垫圈;33—销;34—操纵杆座;35—快速增压手柄;36—拨叉;37—操纵杆;38—立轴给进控制阀杆;39—卡盘及拧管机控制阀杆;40—钻机移动控制阀杆
(1)调压溢流阀
该阀由微调手轮、快速增压手柄、调压螺杆、调压螺母调压弹簧、调压阀体及阀座等组成(图4-68)。阀体与阀的圆锥结合面经相互研磨有良好的密封性能,在调压弹簧张力的作用下,将压力油道P和回油道O隔开。一旦系统压力升高至限定值,即可克服弹簧张力顶开阀体,压力油便经阀座孔油道O2流回油箱。
调压溢流阀压力值是由调整弹簧张力的大小而实现的,既可微调,也可速调。微调手轮及套用圆锥销与调压螺杆连接为一体,螺杆前端左旋螺纹与调压螺母相配合,螺母上固定有防转销,调整弹簧装在阀体与调压螺母之间,正时针旋转微调手轮,调压螺母向前移动压缩弹簧,增强对阀体的压力,则调压阀压力增高;反之压力减小。为使系统压力不超过最大值,在调压筒内装有限位套并用限位螺母限位。这就限制了调压螺母的移动距离,同时也限制了弹簧对阀体的最大压力,从而实现控制系统压力的目的。在钻机操作中,有时需要液压系统快速增压,为此特装有快速增压手柄,并以销轴支撑在调压套面上,其前端拨叉卡在拨环上,拨环又套在手轮上,所以扳动手柄时,通过手轮套、圆锥销、使调压螺杆迅速前移而压缩弹簧,达到快速增压目的。松开手柄后,弹簧复位,恢复到原调压值。
(2)钻机移动控制阀
该阀主要由钻机移动控制阀杆、阀壳和复位弹簧等构成(见图4-68)。阀壳通孔中配装有带四段柱塞的阀杆,阀杆头部装有弹簧,弹簧压板等零件,并用密封盖罩住。阀杆底部的螺旋孔旋入阀杆接头,以锁母锁紧,阀杆接头的销轴连接操纵杆座,此座用连接板铰链连接于密封盖支架上,座孔中插入操纵杆,扳动操纵杆时,阀杆即在阀体中滑动,同时压缩弹簧,扳动力消失后靠弹簧张力使阀杆复位。
液压操纵阀总成内共有5条油道,中间是由压力油道P和回油道O直通连接的常态回油道;P1P2为压力油道;O1O2为卸荷油道;在移动控制阀片中有两个接执行油缸的工作油孔A1B1,其中A1接移动油缸后腔;B1接前腔,滑阀杆移动时,当其中一个工作油孔接通压力油道,另一工作油孔即接通卸荷油道,从而形成钻机前后移动回路。
(3)液压卡盘及拧管机控制阀
该阀构造除定位装置与钻机移动控制阀不同外,其他部分完全相同(图4-68)。定位装置由定位套筒,定位钢球和锁紧弹簧等组成。定位套筒用内六角螺钉拧在阀杆头部,其上有三道环形凹槽。在定位器体上也开有环形凹槽,槽内均布8个小孔,孔中装有定位钢球、其外用锁紧弹簧压住,当定位套筒的凹槽与定位钢球相对时,即被钢球卡住而实现定位。阀内油道A0与液压卡盘的环形油缸接通,B0与液压拧管机的供油路接通。
(4)立轴给进控制阀
该阀的定位装置与液压卡盘及拧管机控制阀相似,只是多了一个阀位(图4-68)。阀中油道A0通给进油缸上腔;油道B0通下腔(油路流通状况见本节液压系统工作原理叙述)。钻具称质量时将滑阀杆下移到极限位置,使柱塞将油道B0封闭,柱塞将常态回油道封闭,A0—O0相通,此时处于油缸上腔卸荷,下腔封闭状态。
4.给进控制阀
给进控制阀为一单向可调节流阀。主要由球阀(单向阀)、针阀(节流阀)、阀体及手轮等组成,其构造如图4-69所示。
图4-69 给进控制阀
1—管接头;2—球阀;3—针阀;4—阀体;5—手轮;6—锥销;7—弹簧;8—螺塞
当给进油缸活塞下移时,油缸下腔油液迫使球阀关闭,油液只能从针阀的环形间隙中流出,回油量的大小可通过转动手轮使针阀轴向移动,从而控制立轴的下降速度。加压钻进时,可使针阀全部开启以降低回油阻力。减压钻进时应根据工艺要求控制针阀开启大小,以保持立轴下降速度均匀。
立轴上升时,油液从右侧油孔进入而顶开单向阀从下油口流出,直接进入给进油缸下腔,活塞快速向上移动,完成倒杆作业。
5.限压切断阀
该阀串联在三通换向阀与钻压表之间(图4-70)。主要由接头、阀体、阀芯、弹簧、调节螺丝等组成。接头接高压油道,上螺孔接钻压表,当液压油超过限定值时,阀芯大端承受的压力超过弹簧张力,于是阀芯压缩弹簧而右移,其锥面将油道封闭,油压不能传递到表内从而保护钻压表不受损害。
图4-70 限压切断阀
1—接头;2—垫片;3—阀体;4—阀芯;5—弹簧座;6—弹簧套;7—弹簧;8—调节座;9—调节螺丝
6.三通换向阀
该阀在液压传动系统中的位置见图4-65,其作用是接通给进油缸上腔或下腔与钻压表之间的高压油道,同时封闭低压道与钻压表的通路。其构造如图4-71所示,主要由阀体、管接头、阀等组成。当给进油缸上腔为压力油,下腔卸荷时,阀右移,b和c接通,a孔封闭,钻压表反映加压钻进读数,反之a和c接通,b孔封闭,钻压表反映减压钻进读数。
图4-71 三通换向阀
1—阀体;2—管接头;3—密封圈;4—管接头;5—阀;6—螺钉;7—管接头;a—给进油缸下腔接口;b—给进油缸上腔接口;c—限压切断阀接口
7.压力表和钻压表
(1)压力表
压力表为1.5级的标准簧管式表,最大压力为16MPa。该表装于油泵与液压操纵阀之间(在液压系统中的位置见图4-65之1),用以观察整个液压系统工作压力,亦可判断各元件在工作过程中的故障,以便及时排除隐患。其构造如图4-72所示。
其工作原理是:当压力油从进油孔进入弹簧管后,在压力油作用下簧管由于变形而使自由端产生位移,此位移通过扇形齿轮及齿杆带动指针旋转,当油压产生的作用力和簧管变形而产生的弹性力相平衡时,指针便停留在某一固定位置。利用静盘及动盘上的刻度,就可以反映出钻进时的加压值、平衡钻具质量值或钻具称重值。此种压力指示器因簧管容易产生永久变形,且抗冲击、震动性能差,故使用寿命较短。
(2)钻压表
钻压表又称孔底压力指示器,在液压系统中的位置见图4-65之13。此表是用外经为100mm最大压力为9.8MPa的1.5级普通簧管式表改制而成的。表的接头处装有缓冲装量。该表并联在给进油缸油路上,反映出给进油缸压力腔的压力,从而测出钻具质量及加压和减压钻进值。
目前国内常用的孔底压力指示器主要有两种类型:簧管式和柱塞式。XY-4型钻机采用的是簧管式孔底压力指示器。钻压表构造如图4-72所示,表盘有静盘、动盘,静盘上有顺时针方向从0~10t(即100kN)的总刻度值。每吨刻度分为5小格,即每小格0.2t(2000N)。静盘上各刻度值是以压力表相应压力乘以两个给进油缸圆面积得出的,动盘有旋钮突出表面,可以旋转记数。动盘上有加压和减压两种刻度,加压刻度为红色,从0~4t(40kN)按顺时针方向增加,其刻度值是以压力表相应压力乘以两个油缸上腔活塞面积减去活塞杆断面后的面积得出的。减压刻度是黑字,从0~7t(70kN)按逆时针方向增加,其刻度原理与静盘相同。
图4-72 钻压表构造
1—进油孔;2—簧管;3—静盘;4—动盘;5—有机玻璃罩;6—指针
钻压表使用方法如下:
称重。将钻具提离孔底,将立轴给进控制阀手柄扳至“称重”位置,指针在静盘上指示的刻度值即是钻具质量。
加压钻进。当钻具质量小于钻进工艺所需要的钻压时,应给钻具附加一定的压力。操作时应首先将钻具质量称出,假设称出的质量为1t(10kN)而钻具压力需要2t(20kN)则需将动盘红圈上1t的刻度值对准静盘的零位,然后将操纵阀手柄扳到“下降”位置,顺时针调节溢流阀微调手轮,增加给进油缸上腔压力,使指针对准动盘红色刻度2t值时,即是钻压值。此时表盘各刻度数据的含义是,动盘加压(红色)刻度1t是钻具质量,2t是钻压,其差值1t是加压数。加压钻进表盘状态见图4-73a。
减压钻进。当钻具质量大于钻进工艺所需的钻压时,就应由给进油缸下腔形成一个向上的作用力以抵消一部分钻具质量。使其差值为钻压值。操作时应先称出钻具质量,若称出钻具质量为3.5t(35kN),而钻压只需要2t,应减去1.5t。此时应将钻压表上动盘黑圈3.5t的刻度值对准静盘上的“零位”并扳动操纵阀手柄至“上升”位置,顺时针凋节溢流阀调压手轮进行“减压”,增加给进油缸下腔油压。直至表针对准动盘黑圈(减压)上2t刻度。此时表盘各数据的含义是:动盘减压钻进刻度值3.5t是钻具质量,刻度2t值是钻进压力,静盘1.5t刻度值是减压差值。减压钻进表盘状态见图4-73b。
图4-73 钻压表加压、减压状态示意图
(五)液压传动系统操作使用注意事项
1)在钻进和提升过程中,不得板动钻机移动操纵阀手柄。
2)液压操纵阀各手柄不能同时板到工作位置,当一个手柄处于工作位置时,其他手柄应置于“停止”位置。
3)板动操纵阀手柄应迅速准确到位。不能用力过猛,避免出现压力冲击、蹩泵、拉坏定位装置和冲坏仪表。
4)松开液压卡盘时,应先将操纵阀扳到“松开”位量,后扳动溢流阀快速调压手柄至极限位置,卡盘卡紧时须放松快速调压手柄。
5)液压操纵阀各阀片之间出厂前已调整密封好并用螺栓紧固成一整体。在机台不准随意拆卸,以免影响正常工作和漏油。
6)各软、硬油管不得挤压、碰伤和发生扭转现象,油管曲率半径应不小于外经尺寸的7倍。
7)应使用规定牌号的液压油,注意保持油液清洁,防止油液中混入杂质污物。野外搬迁钻机,应将拧开的油管接头用干净软布堵死,防止杂质进入系统造成故障。
8)应定期检查油箱中油位高度,使其符合油标刻线。油液工作温度应保持在35~60℃。
㈣ 液压系统工作原理图
如图所示:抄
一、二级柱塞为单向袭作用结构,在液压油作用下,柱塞动力伸出,柱塞回程时要靠自重回缩;三级活塞为双向作用结构,在液压油作用下,三级活塞动力伸出和缩回。
起升油缸设有三个油口,P1、P2和P3。油口P1设在缸头处,接通柱塞工作腔及三级活塞无杆腔,油道内设置有单向节流阀;油口P2设在三级活塞杆处,接通三级活塞有杆腔,油道内设置有节流孔。
油口P3设在三级活塞杆处,接通柱塞工作腔及三级活塞无杆腔,与P1油路相通,油道内设置有节流孔。在油缸三级活塞缸盖处设置有放气孔口,其上安装放气塞。
(4)液压机械装置设计图扩展阅读
液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。
1、主液压系统
主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。
2、转向液压系统
转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。
㈤ 挖掘机的液压结构及工作原理是什么
挖掘机的液压结构
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。
动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。
液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
工作原理
帕斯卡原理
帕斯卡原理是一个静力学原理,
对于“理想液体”有:
1、处于密闭容器内的“理想液体”对施加于它表面的压力向各个方向等值传递;
2、速度的传递按“容积变化相等”的原则;
3、液体的压力由外载荷建立。
4、能量守恒。
㈥ 半自动叉车的工作原理和液压系统原理图
某型号叉车工作装置的液压系统原理图如图3-3所示,该液压系统有起升液压缸8、倾斜液压缸6和属具液压缸7三个执行元件,由定量泵10供油,多路换向阀(属具滑阀1、起升液压缸滑阀3、倾斜液压缸滑阀4)控制各执行元件的动作,单向节流阀5调节起升和属具动作速度,从而驱动工作装置完成相应的工作任务。
向左转|向右转
由于叉车原动机(内燃机和电动机)的转速高,扭矩小,而叉车的行驶速度较低,驱动轮的扭矩较大,因此在原动机和驱动轮之间必须有起减速增矩作用的传动装置。当叉车在不同载荷和不同作业条件下工作时,传动装置必须要保证叉车具有良好的牵引性能。对于内燃叉车,由于内燃机不能反转,叉车要想倒退行驶,必须依靠传动装置来实现。叉车的传动装置有机械式、液力式、液压式和电动机械式几种。机械式传动只能具有有限数目的传动比,因此只能实现有级变速。液力式传动效率较机械式低,液压传动能够使传动系统大大简化,取消机械式和液力式传动中的传动轴和差速器。
某型号叉车行走驱动液压系统的原理图如图3-4所示,该液压系统由变量主液压泵1供油,执行元件为液压马达5,主液压泵的吸油和供油路与液压马达的排油路和进油路相连,形成闭式回路。双向安全阀3保证液压回路双向工作的安全,梭阀4和换油溢流阀6使低压的热油排回油箱,辅助液压泵7把油箱中经过冷却的液压油补充到系统中,起到补充系统泄漏和换油的作用,溢流阀8
叉车作业时转向频繁,转弯半径小,有时需要原地转向。叉车空载时,转向桥负荷约占车重的60%。为了减轻驾驶员的劳动强度,现在起重量2t以上的叉车多采用助力转向——液压助力转向或全液压转向。液压助力转向操作轻便,动作迅速,有利于提高叉车的作业效率,油液还可以缓冲地面对转向系统的冲击。
某叉车液压助力转向系统原理图如图3-5所示,该转向液压系统和叉车工作装置液压系统属各自独立的液压系统,分别由单独的液压泵供油。系统中流量调节阀2可保证转向助力器稳定供油,并使系统流量限制在发动机怠速运转时液压泵流量的1.5倍。随动阀3与普通的三位四通换向阀基本相同,只不过该阀的阀体与转向液压缸缸筒连接为一体,随液压缸缸筒的动作而动作。叉车直线行驶时,方向盘处于中间位置,随动阀3的阀芯也处于中间位置,转向液压缸4不动作,叉车直线行驶。当叉车转弯时,驾驶员转动方向盘,联动机构带动随动阀3的阀芯动作,使转向液压缸的两腔分别与液压泵或油箱连通,液压缸动作,驱动转向轮旋转,叉车转向,直到液压缸缸筒的移动距离与阀芯的移动距离相同时,阀芯复位,转向停止。
㈦ 液压系统设计有哪些步骤
液压传动系统设计计算459
第一节 概述
第二节 明确设计要求,进行工况分析
一、明确设计要求
二、进行液压系统的工况分析
第三节 确定液压系统的主要参数
一、初选系统的工作压力
二、计算液压缸的工作面积和流量
三、计算液压马达的排量和流量
四、绘制执行元件工况图
第四节 拟定液压系统原理图
一、选择液压系统的类型
二、选择执行元件
三、选择液压泵的类型
四、选择调速方式
五、选择调压方式
六、选择换向回路
七、拟定工艺循环顺序动作图表
第五节 计算执行元件主要参数
第六节 选择液压泵
一、计算液压泵的最大工作压力
二、计算液压泵的最大流量
三、选择液压泵规格
第七节 选择液压控制阀
第八节 计算液压泵的驱动功率,选择电动机
第九节 选择、计算液压辅助件
第十节 验算液压系统性能
一、验算系统压力损失
二、验算系统发热温升
三、验算液压冲击
第十一节 液压装置的结构设计
一、液压装置的结构形式
二、液压泵站的类型及其组件的选择
第十二节 绘制工作图、编写技术文件
一、绘制工作图
二、编写技术文件
还有液压系统设计计算举例 ,需要请追问
㈧ 液压系统能实现:快进→工进1→工进2→快退,顺序动作工作循环,试列出上述循环时的电磁铁动态表,
YL-381A型plc控制的液压装置液压系统的设计,安装调试与运行。内容:设计一能实现“快进-工进-停留-快退-原位停止”液压系统。
要求:系统压力调整为3MPa,快进时采用差动连接,工进时液压缸的运动速度控制在0.01/ms左右,原位停止是泵卸荷、执行原件浮动。
组合机床是由通用部件和某些专用部件所组成的高效率和自动化程度较高的专用机床。它能完成钻、镗、铣、刮端面、倒角、攻螺纹等加工和工件的转位、定位、夹紧、输送等动作。 动力滑台是组合机床的一种通用部件。
系统工作原理
可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。 不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。
以上内容参考:网络-液压系统
㈨ 确定系统方案,拟定液压系统图
1.确定系统方案
(1)初选系统压力:液压系统压力的大小,它直接影响液压装置的尺寸、质量、效率和经济性等一系列参数。在一定范围内提高系统压力,可减少液压装置的尺寸和质量。但压力过高会影响经济性和工作寿命。固定式、功率不大和尺寸不受限制的机械,压力可适当取低。移动式、功率较大、尺寸和质量受限制的机械,压力可取高一些。一般中、小型液压钻机系统压力可取为16~20MPa;大型液压钻机系统压力可取为25~30MPa;同一钻机的不同液压系统可选择不同压力,如1000m液压钻机的回转和卷扬机升降液压系统压力为25~30MPa,给进和辅助动作液压系统压力为16~20MPa。
(2)选择执行元件型式:高速回转动力头选用高速液压马达,岩心钻机回转动力头选用轴向柱塞变量马达。低速回转动力头选用低速液压马达。泥浆泵常用径向柱塞式马达和摆线齿轮马达。
钻机给进机构一般选用液压缸或液压缸—链条形式。液压缸给进机构可兼作快速升降用。钻机卡盘、夹持器和滑架起落机构等均选用液压缸。
(3)回转调速方式:钻机回转调速方式有两种,即有级调速和无级调速。国内中小型液压钻机,常采用有级调速。液压泵为齿轮泵,借助泵的分流与合流,以及双液压马达串联与并联(或一个液压马达单独工作与两个液压马达同时工作),可使动力头获得6种转速。岩心钻机采用轴向柱塞变量泵和轴向柱塞变量马达组成容积调速回路,为扩大调速范围和提高传动效率,再加上4~5挡齿轮变速。设变量泵处在最佳状态下工作,调节齿轮变速和液压马达变量,动力头可获得高效恒功率输出。适合钻进工艺要求。
(4)液压泵数量:液压动力头岩心钻机选用一个液压泵的情况很少。一般选用3个液压泵,组成3个独立的液压系统,即回转、升降系统;给进及辅助动作系统;以及泥浆泵系统。这样,钻机复合动作时不会产生相互干扰,有利于整机功率利用和生产率提高。
(5)开式系统和闭式系统:液压泵从油箱吸油,排出压力油供执行元件做功,这种油液循环方式,称为开式系统。液压泵吸、排油直接与液压马达油口相连,油液不经过油箱,则称为闭式系统。钻机的执行元件大多数为液压缸,由于无杆腔与有杆腔面积不同,只能选用开式系统。开式系统有利于液压系统散热,但需防止尘埃和空气等侵入液压系统。
2.拟定液压系统图
液压系统方案确定后,就可选择有关液压基本回路,并配置辅助回路(或辅助元件)组成液压系统图。实现同样工作任务,可以拟定出多种不同的液压系统图,然后进行分析、比较,选择一种最优的液压系统。在组成液压系统时,应注意以下问题:
(1)防止回路间相互干扰:一个液压泵驱动多个执行元件要求同时工作时,由于负载压力不同会使执行元件先后动作,即出现速度干扰。解决速度干扰的一般方法是在执行元件的进油路上串接减压阀和流量控制阀。在液压系统中,设某一执行元件处于保压工况,由于其他执行元件的负载变化或一个执行元件的卸荷,使油路压力下降,出现压力干扰。解决办法是借助设置储能器和单向阀,使其与其他油路隔开。
(2)防止液压冲击:液压系统中,由于工作机构运动速度变换,工作负载的突然消失,以及冲击负荷等原因,会在油路中产生液压冲击而影响液压系统的正常工作。为此,需采取防止措施。例如,由于换向阀关闭产生的液压冲击,可采用在滑阀控制边上开槽或加工成节流锥面(半锥角为2°~5°);由于负载突然消失产生液压冲击,可在回路上加设背压阀;由于液压马达惯性大,换向阀关闭产生的液压冲击,或由于冲击负载产生的液压冲击,可在换向阀或液压马达回路上设置过载阀。
(3)防止系统过热,提高系统效率:液压泵和液压马达的能量损失产生热量。油液流过溢流阀回油箱时产生热量最大,节流阀、减压阀等也都产生热量。合理选用油管内径、减少油管长度和弯曲处等,也是减少过热的有效措施。最根本的解决过热办法是在设计中采用高效率的液压回路,如恒压泵给进液压回路,回转机构负载敏感泵液压回路等。
(4)采用标准化液压元件:设计时尽量选用标准元件,减少自行设计的专用元件,以缩短设计、制造周期,保证液压系统的质量和经济性。
3.绘制液压系统图的步骤
(1)先画执行元件;
(2)然后画出各执行元件的基本回路;
(3)画出液压泵;
(4)按选定的系统方案,用并联、串联(钻机上多为并联)方式将各基本回路与液压泵连接起来;
(5)画出控制回路和辅助回路;
(6)画出液压辅件,如压力表、滤油器、冷却器和油箱等。
绘制液压系统图,要采用国家规定的标准图形符号。
㈩ 关于液压系统的选件,装配图的画法。
1.液压元件的尺寸需要参考各液压元件参加的外观图,连接尺寸基本是国标。
螺栓悄链轿为标准唤橘件,在CAD图库离可以选择
2.液压泵是泵,液压站是泵站,全称是液压启肆泵站,根据系统流量选择泵,根据泵选择电机。在液压装
配图中元件可以用外观尺寸画就行了,
3.这个需要根据你系统选择了,看是否需要背压阀,不是每个系统都需要背压阀。