导航:首页 > 装置知识 > 列车制动装置的作用

列车制动装置的作用

发布时间:2021-02-14 09:22:52

A. 火车的制动原理是什么

制动装置一般可分为两大组成部分:
()“制动机”——产生制动原动力并进行操纵和控制的部分。
(2)“基础制动装置”——传送制动原动力并产生制动力的部分。
列车制动在操纵上按用途可分为两种。
(l)“常用制动”——正常情况下为调节或控制列车速度,包括进站停车所施行的制动。其特点是作用比较缓和而且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。
(2)“紧急制动”—一紧急情况下为使列车尽快停住而施行的制动(在我国,也称“非常制动”),其特点是作用比较迅猛,而且要把列车制动能力全部用上。
从司机实施制动(将制动手柄移至制动位)的瞬间起,到列车速度降为零的瞬间止,列车所驶过的距离,称为列车“制动距离”。这是综合反映列车制动装置的性能和实际制动效果的主要技术指标。
闸瓦制动,又称踏面制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。其他制动方式除闸瓦制动外,铁路机车车辆还有一些其他制动方式。
(一)盘形制动
盘形制动(摩擦式圆盘制动)是在车轴上或在车轮辐板侧面装上制动盘,一般为铸铁圆盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,把列车动能转变成热能,消散于大气。参看图4—1-4。
与闸瓦制动相比,盘形制动有下列主要优点:
(1)可以大大减轻车轮踏面的热负荷和机械磨耗。
(2)可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。
(3)制动平稳,几乎没有噪声。
但是,盘形制动也有它不足之处:
(1)车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否则,即使有防滑器,制动距离也比闸瓦制动要长。
(2)制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘形制动的制动力
(二)磁轨制动
磁轨制动(摩擦式轨道电磁制动)是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁(或称电磁靴),制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力,并把列车动能变为热能,消散于大气。参看图4—1-5。
磁轨制动的制动力

式中K——每个电磁铁的电磁吸力;
φ一一电磁铁与钢轨间的滑动摩擦系数。
与闸瓦和盘形制动相比,磁轨制动的优点是,它的制动力不是通过轮轨粘着产生的,自然也不受该粘着的限制。高速列车加上它,就可以在粘着力以外再获得一份制动力,使制动距离不致于太长。磁轨制动的不足之处是,它是靠滑动摩擦来产生制动力的,电磁铁要磨耗,钢轨的磨耗也要增大,而且,滑动摩擦力无论如何也没有粘着力大。所以,磁轨制动只能作
为紧急制动时的一种辅助的制动方式,用于粘着力不能满足紧急制动距离要求的高速列车上,在施行紧急制动时与闸瓦(或盘形)制动一起发挥作用。
(三)轨道涡流制动
轨道涡流制动又称线性涡流制动或涡流式轨道电磁制动。它与上述磁轨制动(摩擦式轨道电磁制动)很相似,也是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。不同的是,轨道涡流制动的电磁铁在制动时只放下到离轨面几毫米处而不与钢轨接触。它是利用电磁铁和钢轨的相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,并把列车动能变为热能消散于大气。
轨道涡流制动既不通过轮轨粘着(不受其限制),也没有磨耗问题。但是,它消耗电能太多,约为磁轨制动的10倍,电磁铁发热也很厉害,所以,它也只是作为高速列车紧急制动时的一种辅助制动方式。
(四)旋转涡流制动
旋转涡流制动(涡流式圆盘制动)是在牵引电动机轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力,并发热消散于大气,从而产生制动作用。
与盘形制动(摩擦式圆盘制动)相比,旋转涡流制动(涡流式圆盘制动)的圆盘虽然没有装在轮对上,但同样要通过轮轨粘着才能产生制动力,也要受粘着限制。而且,与轨道涡流制动相似,旋转涡流制动消耗的电能也太多。
(五)电阻制动
电阻制动广泛用于电力机车、电动车组和电传动内燃机车。它是在制动时将原来驱动轮对的自励的牵引电动机改变为他励发电机,由轮对带动它发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻发生的热量消散于大气,从而产生制动作用。
(六)再生制动
与电阻制动相似,再生制动也是将牵引电动机变为发电机。不同的是,它将电能反馈回电网,使本来由电能或位能变成的列车动能获得再生,而不是变成热能消散掉。显然,再生制动比电阻制动在经济上合算,但是技术上比较复杂,而且它只能用于由电网供电的电力机车和电动车组,反馈回电网的电能要马上由正在牵引运行的电力机车或电动车组接收和利用。
上述各种制动方式中,除磁轨制动和轨道涡流制动外,都要通过轮轨粘着来产生制动力并受粘着限制,所以习惯上统称为“粘着制动”,并把不通过粘着者统称为“非粘(着)制动”。
制动机种类
按制动原动力和操纵控制方法的不同,机车车辆制动机可分类为:手制动机、空气制动机、真空制动机、电空制动机和电(磁)制动机。
(一)手制动机
手制动机的特点是以人力为原动力,以手轮的转动方向和手力的大小来操纵控制。它构造简单、费用低廉,是铁路上历史最悠久、生命力最顽强的制动机。铁路发展初期,机车车辆上都只有这种制动机,每车或几个车配备一名制动员,按司机的笛声号令协同操纵。由于它制动力弱、动作缓慢、不便于司机直接操纵,所以很快就被非人力的制动机所代替。非人力的制动机成了主要的制动机,手制动机退居次要地位,成了辅助的备用的制动机。但是它的这个“配角”的地位很牢固。在调车作业、车站停放或者主要制动机突然失灵时,手机仍然是一个简单有效的救急的制动手段。
(二)空气制动机
空气制动机的特点是以压力空气(它与大气的压差,即压力空气的相对压强)作为原一以改变空气压强来操纵控制。它的制动力大、操纵控制灵敏便利。
我国铁路上习惯于把压力空气简称为“风”,把空气制动机简称为“风闸”。依此类推风缸、风泵、风管、风压、风表等名称均由此而来。直通式空气制动机的基本特点是:列车管直接通向制动缸(“直通”),列车管充气(增压)时制动缸也充气(增压),发生制动;列车管排气(减压)时制动缸也排气碱压),发生缓解。它的优点是构造简单,并且既有阶段制动,又有阶段缓解,操纵非常灵活方便。缺点是当列车发生分离事故、制动软管被拉断时,将彻底丧失制动能力,而且,列车前后部发生制动作用的时间差太大,不适用于编组较长的列车。因此,列车操纵后来就改用了自动式空气制动机。
2.自动式空气制动机
自动空气制动机包括机车制动机和车辆制动机,分别安装在机车和车辆上,构成制动机的一个整体。自动空气制动机由下列主要部件组成,并分别用管路连接。
(1)空气压缩机——一般称为风泵。利用机车的蒸汽或柴油机、电动机作动力,将空气压缩成压力空气,供制动系统及其他风动装置使用。在制动机中称压力空气为风或气。
(3)总风缸——机车贮存压力空气的容器。因没有压力调整器,能自动控制空气压缩机的运转或停止,使总风缸的空气压力始终保持为8~9kgf/cm2。
(3)给风阀——为调节压力空气的部件,总风缸的高压空气经给风阀调整为规定的风压后,送入制动管。我国规定货物列车制动管风压(简称定压)为5kgf/cm2,旅客列车为6kgf/cm2。
(4)自动制动阀——简称大闸或自阀,是司机操纵列车制动机的部件。机车上还装设单独调动阀(或称小闸、单阀),单机运行时,司机使用单独制动阀操纵机车制动机。
(5)副风缸——是每个车辆贮存压力空气的容器。机车上因有总风缸,不另设副风缸。
(6)制动缸——是将空气压力转变为制动原动力的部件。利用压力空气推动制动缸活塞,压缩缓解弹簧,使活塞杆推出产生制动作用;如排出制动缸的压力空气则缓解弹簧推回活塞,使制动机缓解。机车车辆都装有制动缸。
(7)三通阀——装设在车辆上,是依靠制动管风压的变化使制动机形成制动或缓解等作用的部件。机车上使用的是分配阀,它控制机车(及深水车)的制动和理解等作用。
与直通式相比,在组成上每辆车多了一个三通阀6和一个副风缸8。“三通”指的是:一通列车管,二通副风缸,三通制动缸。
(四)电空制动机
电空制动机为电控空气制动机的简称。它是在空气制动机的基础上加装电磁阀等电气控制部件而形成的。它的特点是制动作用的操纵控制用电,但制动作用的原动力还是压力空气(它与大气的压差)。在制动机的电控因故失灵时,它仍可以实行空气压强控制(气控),临时变成空气制动机。
(五)电磁制动机
操纵控制和原动力都用电的制动机称为电磁制动机,简称电制动机。例如轨道涡流制动和旋转涡流制动,其操纵控制和原动力都用电,所以,采用这两种制动方式的制动机都属于电磁制动机的范畴(其实,对于这种制动方式,制动机和基础制动已很难截然分开了)。

B. 制动力对列车的作用表现在哪几个方面

(1)制动力是由制动装置引起的与列车运行方向相反的外力,是纵向力。回
(2)制动力比列车运行阻力(自然产答生的)大得多。
(3)列车制动减速过程中,制动力起主要作用(尽管列车运行阻力也起作用)。
(4)与牵引力一样,制动力同样受黏着限制(非黏着制动除外)。

C. 列车制动软管的作用

老兄,列车的制动是靠压缩空气的,叫空气制动机。
每节车厢的空气制动装置都是通过主风管(就是你看到的那根气管)与机车头相连,并由机车头提供压力。在列车管排气(减压)时制动缸充气(增压),发生缓解,这时候列车才能走。制动时候,通过调节风管内的压力来控制制动力的大小。当列车发生分离事故,制动软管被拉断时,列车管风压急剧下降,这时候制动机内无压力,制动闸就会压紧车轮,列车自动迅速制动直至停车
(你听到的放气声是列车正在缓解)

至于你动的那个闸门,很不幸,你已经触犯了相关法规。你还是祈祷铁路不会来找你麻烦吧
因为那个叫紧急制动阀,属于“危险勿动”的列车特殊设备,旅客决不可以随便摆弄。只有当列车在运行中遇到紧急情况需要紧急停车,而司机又未能及时采取停车措施时,运转车长或其它列车乘务人员才可以拉动这个,迫使列车紧急停车。一旦使用,列车非正常停车,不仅会打乱正常的运行秩序,而且会因为紧急制动是“抱死闸”,车轮不能再滚动,而在巨大惯性的作用下滑过钢轨,造成车轮踏面和轨面擦伤,影响正常运行甚至报废。因此,在使阀停车前,必须准确判断,不得盲动。如果在万不得已的情况下使用紧急制动阀,停车后,运转车长应将列车运行中发生的问题及使用紧急制动阀的情况及时报告列车调度员和有关单位。

D. 火车制动的介绍

火车制动就是人为地制止列车的运动,包括使它减速,不加速或停止回运行。对已制动的列车或机车答解除或减弱其制动作用,则称为“缓解”。为施行制动和缓解而安装在列车上的一整套设备,总称为列车“制动装置”。“制动”和“制动装置”俗称为“闸”。施行制动常简称为“上闸”或“下闸”,施行缓解则简称为“松闸”。

E. 火车的制动缸干什么用的

19世纪初,以蒸汽为动力的火车出现了。在1829年举行的一次“火车竞赛”中,斯蒂芬森驾驶着满载的“火箭”号机车,以时速56公里创造了陆地第一个车辆奔跑速度。此后不久,呼啸的火车开始奔驰在美国和欧洲大陆。形成了铁路交通运输业蓬勃发展的新时代。
但是,这时的火车还不够完善。致命的缺点是刹车不灵,经常导致运行事故。在一般公众眼里,火车也是一种不安全的交通工具,有人将它戏称为“踏着轮子的混世魔王”。
当时的火车刹车装置十分原始,最初仅仅装在车头上,完全凭司机的体力扳动闸把来刹车,很难使沉重的列车迅速停下来。后来改进为每节车厢上都安一个单独的机械制动闸,配备一个专门的制动员,遇有情况,由司机发出信号,各个制动员再狠命接下闸把。这样虽然稍好一些,但仍然不能迅速地刹住列车。因此,发明一种灵敏有效的火车刹车装置,已成了铁路系统一项亟待解决的大问题。
很多人都曾致力于改进火车刹车装置的研究,但谁也没想到,最终获得成功的却是一位贫困的美国年轻人——威斯汀豪斯,他发明了一种灵敏可靠的空气制动闸,给火车这匹巨大不羁的“铁马”,系上了“缰绳”,在铁路安全运输史上竖立了一个值得纪念的里程碑。
威斯汀豪斯发明新型火车空气闸的念头,是由一次偶然的事件激发起来的。他在一次旅行中,恰好赶上了因火车刹车不灵造成的严重撞车事故。目睹了一场车毁人亡的惨剧,他当时就下定决心,要发明一种有效的制动闸,来避免交通事故的发生,保障铁路运输的安全。
他首先想到了蒸汽。既然列车是蒸汽推动的,为什么不能用蒸汽来制动呢?他设计了一套装置,用管路把锅炉和各个车厢连接起来,试图用蒸汽来推动汽缸活塞,从而压紧闸瓦,达到刹车的目的。但由于高压蒸汽在长长的管路里迅速冷凝,丧失压力,实验未能取得预想的效果。
威斯汀豪斯正在一筹莫展时,有一天他偶然买了一份《生活时代》报,一条报道法国开凿塞尼山隧道,介绍压缩空气驱动大型凿岩机的消息,使他联想到苦思冥索的制动闸:既然压缩空气可以驱动凿岩机,开掘坚硬的岩石,或许也能够驱动火车制动闸。
基于这个想法,威斯汀豪斯终于制成了新型的空气闸。其原理并不复杂,只要增加一台由机车带动的空气压缩机,通过管道将压缩空气送往各个车厢的汽缸就行了。刹车时,只要一打开阀门,压缩空气就会推动各车厢的汽缸活塞,将闸瓦压紧,使列车迅速停下来。
1868年,年仅23岁的威斯汀豪斯取得了空气制动闸的专利权,组成了威斯汀豪斯制动闸公司。直到今天,空气制动闸仍然是火车和汽车运行的安全保障。

F. 火车的制动原理

制动装置一般可分为两大组成部分:
(1)“制动机”——产生制动原动力并进行操纵和控制的部分。
(2)“基础制动装置”——传送制动原动力并产生制动力的部分。
列车制动在操纵上按用途可分为两种。
(l)“常用制动”——正常情况下为调节或控制列车速度,包括进站停车所施行的制动。其特点是作用比较缓和而且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。
(2)“紧急制动”—一紧急情况下为使列车尽快停住而施行的制动(在我国,也称“非常制动”),其特点是作用比较迅猛,而且要把列车制动能力全部用上。
从司机实施制动(将制动手柄移至制动位)的瞬间起,到列车速度降为零的瞬间止,列车所驶过的距离,称为列车“制动距离”。这是综合反映列车制动装置的性能和实际制动效果的主要技术指标。
闸瓦制动,又称踏面制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。其他制动方式除闸瓦制动外,铁路机车车辆还有一些其他制动方式。
(一)盘形制动
盘形制动(摩擦式圆盘制动)是在车轴上或在车轮辐板侧面装上制动盘,一般为铸铁圆盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,把列车动能转变成热能,消散于大气。参看图4—1-4。
与闸瓦制动相比,盘形制动有下列主要优点:
(1)可以大大减轻车轮踏面的热负荷和机械磨耗。
(2)可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。
(3)制动平稳,几乎没有噪声。
但是,盘形制动也有它不足之处:
(1)车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否则,即使有防滑器,制动距离也比闸瓦制动要长。
(2)制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘形制动的制动力
(二)磁轨制动
磁轨制动(摩擦式轨道电磁制动)是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁(或称电磁靴),制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力,并把列车动能变为热能,消散于大气。参看图4—1-5。
磁轨制动的制动力

式中K——每个电磁铁的电磁吸力;
φ一一电磁铁与钢轨间的滑动摩擦系数。
与闸瓦和盘形制动相比,磁轨制动的优点是,它的制动力不是通过轮轨粘着产生的,自然也不受该粘着的限制。高速列车加上它,就可以在粘着力以外再获得一份制动力,使制动距离不致于太长。磁轨制动的不足之处是,它是靠滑动摩擦来产生制动力的,电磁铁要磨耗,钢轨的磨耗也要增大,而且,滑动摩擦力无论如何也没有粘着力大。所以,磁轨制动只能作
为紧急制动时的一种辅助的制动方式,用于粘着力不能满足紧急制动距离要求的高速列车上,在施行紧急制动时与闸瓦(或盘形)制动一起发挥作用。
(三)轨道涡流制动
轨道涡流制动又称线性涡流制动或涡流式轨道电磁制动。它与上述磁轨制动(摩擦式轨道电磁制动)很相似,也是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。不同的是,轨道涡流制动的电磁铁在制动时只放下到离轨面几毫米处而不与钢轨接触。它是利用电磁铁和钢轨的相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,并把列车动能变为热能消散于大气。
轨道涡流制动既不通过轮轨粘着(不受其限制),也没有磨耗问题。但是,它消耗电能太多,约为磁轨制动的10倍,电磁铁发热也很厉害,所以,它也只是作为高速列车紧急制动时的一种辅助制动方式。
(四)旋转涡流制动
旋转涡流制动(涡流式圆盘制动)是在牵引电动机轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力,并发热消散于大气,从而产生制动作用。
与盘形制动(摩擦式圆盘制动)相比,旋转涡流制动(涡流式圆盘制动)的圆盘虽然没有装在轮对上,但同样要通过轮轨粘着才能产生制动力,也要受粘着限制。而且,与轨道涡流制动相似,旋转涡流制动消耗的电能也太多。
(五)电阻制动
电阻制动广泛用于电力机车、电动车组和电传动内燃机车。它是在制动时将原来驱动轮对的自励的牵引电动机改变为他励发电机,由轮对带动它发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻发生的热量消散于大气,从而产生制动作用。
(六)再生制动
与电阻制动相似,再生制动也是将牵引电动机变为发电机。不同的是,它将电能反馈回电网,使本来由电能或位能变成的列车动能获得再生,而不是变成热能消散掉。显然,再生制动比电阻制动在经济上合算,但是技术上比较复杂,而且它只能用于由电网供电的电力机车和电动车组,反馈回电网的电能要马上由正在牵引运行的电力机车或电动车组接收和利用。
上述各种制动方式中,除磁轨制动和轨道涡流制动外,都要通过轮轨粘着来产生制动力并受粘着限制,所以习惯上统称为“粘着制动”,并把不通过粘着者统称为“非粘(着)制动”。
制动机种类
按制动原动力和操纵控制方法的不同,机车车辆制动机可分类为:手制动机、空气制动机、真空制动机、电空制动机和电(磁)制动机。
(一)手制动机
手制动机的特点是以人力为原动力,以手轮的转动方向和手力的大小来操纵控制。它构造简单、费用低廉,是铁路上历史最悠久、生命力最顽强的制动机。铁路发展初期,机车车辆上都只有这种制动机,每车或几个车配备一名制动员,按司机的笛声号令协同操纵。由于它制动力弱、动作缓慢、不便于司机直接操纵,所以很快就被非人力的制动机所代替。非人力的制动机成了主要的制动机,手制动机退居次要地位,成了辅助的备用的制动机。但是它的这个“配角”的地位很牢固。在调车作业、车站停放或者主要制动机突然失灵时,手机仍然是一个简单有效的救急的制动手段。
(二)空气制动机
空气制动机的特点是以压力空气(它与大气的压差,即压力空气的相对压强)作为原一以改变空气压强来操纵控制。它的制动力大、操纵控制灵敏便利。
我国铁路上习惯于把压力空气简称为“风”,把空气制动机简称为“风闸”。依此类推风缸、风泵、风管、风压、风表等名称均由此而来。直通式空气制动机的基本特点是:列车管直接通向制动缸(“直通”),列车管充气(增压)时制动缸也充气(增压),发生制动;列车管排气(减压)时制动缸也排气碱压),发生缓解。它的优点是构造简单,并且既有阶段制动,又有阶段缓解,操纵非常灵活方便。缺点是当列车发生分离事故、制动软管被拉断时,将彻底丧失制动能力,而且,列车前后部发生制动作用的时间差太大,不适用于编组较长的列车。因此,列车操纵后来就改用了自动式空气制动机。
2.自动式空气制动机
自动空气制动机包括机车制动机和车辆制动机,分别安装在机车和车辆上,构成制动机的一个整体。自动空气制动机由下列主要部件组成,并分别用管路连接。
(1)空气压缩机——一般称为风泵。利用机车的蒸汽或柴油机、电动机作动力,将空气压缩成压力空气,供制动系统及其他风动装置使用。在制动机中称压力空气为风或气。
(3)总风缸——机车贮存压力空气的容器。因没有压力调整器,能自动控制空气压缩机的运转或停止,使总风缸的空气压力始终保持为8~9kgf/cm2。
(3)给风阀——为调节压力空气的部件,总风缸的高压空气经给风阀调整为规定的风压后,送入制动管。我国规定货物列车制动管风压(简称定压)为5kgf/cm2,旅客列车为6kgf/cm2。
(4)自动制动阀——简称大闸或自阀,是司机操纵列车制动机的部件。机车上还装设单独调动阀(或称小闸、单阀),单机运行时,司机使用单独制动阀操纵机车制动机。
(5)副风缸——是每个车辆贮存压力空气的容器。机车上因有总风缸,不另设副风缸。
(6)制动缸——是将空气压力转变为制动原动力的部件。利用压力空气推动制动缸活塞,压缩缓解弹簧,使活塞杆推出产生制动作用;如排出制动缸的压力空气则缓解弹簧推回活塞,使制动机缓解。机车车辆都装有制动缸。
(7)三通阀——装设在车辆上,是依靠制动管风压的变化使制动机形成制动或缓解等作用的部件。机车上使用的是分配阀,它控制机车(及深水车)的制动和理解等作用。
与直通式相比,在组成上每辆车多了一个三通阀6和一个副风缸8。“三通”指的是:一通列车管,二通副风缸,三通制动缸。
(四)电空制动机
电空制动机为电控空气制动机的简称。它是在空气制动机的基础上加装电磁阀等电气控制部件而形成的。它的特点是制动作用的操纵控制用电,但制动作用的原动力还是压力空气(它与大气的压差)。在制动机的电控因故失灵时,它仍可以实行空气压强控制(气控),临时变成空气制动机。
(五)电磁制动机
操纵控制和原动力都用电的制动机称为电磁制动机,简称电制动机。例如轨道涡流制动和旋转涡流制动,其操纵控制和原动力都用电,所以,采用这两种制动方式的制动机都属于电磁制动机的范畴(其实,对于这种制动方式,制动机和基础制动已很难截然分开了)。

G. 火车刹车系统的组成和工作原理

众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是什么样被扩大以至能让一台笨重的汽车停下来?首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。基本的制动原理当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法:?杠杆作用?利用帕斯卡定律,用液力放大制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理:?杠杆作用?液压作用?摩擦力作用杠杆作用制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。液压系统其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统:如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成各种形状绕过其他部件来连接两个圆桶型的液压缸。还有一个好处就是液压管可以分支,这样一个主缸可以被分成多个副缸,如图所示:使用液压系统的另外一个好处就是能使力量成倍的增加。在液压系统中你需要做的只是改变一个活塞和液压缸的尺寸,如下图:上图表示的就是力的加倍放大,力放大的倍数要以活塞的直径来定。左边的活塞直径为2寸(注:相当于5.08cm),右边的活塞直径为6寸(相当于15.24cm)。因为圆的面积等于Pi * r2,所以左边的活塞面积为3.14平方厘米,右边的活塞面积为28.26平方厘米。右边的活塞面积比左边的大9倍。这就意味着给左边的活塞施加任何一个力,右边的活塞就会产生一个比左边大9倍的力。因此当你给左边的活塞施加一个100磅的向下的力时,右边的活塞就会产生一个900磅的向上的力。唯一的不足就是当左边的活塞向下运动9寸时,右边的活塞只能向上运动1寸。摩擦力摩擦力是一个物体在另一个物体上滑动的相互阻力,参照下图。两个物体的接触面都是用相同材料做成的但其中一个较另一个重,所以不难看出哪一边较难推动。要了解其中的原因,我们可以分析下面的例子:即使用肉眼看起来接触面很平滑,但在显微镜下他们确是相当粗糙的。当你把物体平放在桌面上时,物体和桌面之间的小锯齿会结合在一起,而他们其中有一些合适的锯齿会相互咬合,如果给他的压力越大,那么咬合的锯齿就越多,其阻力也越大,所以重的物体就更难推动。不同的材料表面,有不同的锯齿结构;举例来说:橡皮与橡皮之间就比钢与钢之间更难滑动。材料的类型决定了摩擦系数。所以摩擦力与物体接触面上的正压力成正比。例如:如果摩擦系数为0.1,一个物体重100磅,另一个物体重400磅,那么如果要推动他们就必须给100磅的物体施加一个10磅的力,给400磅的物体施加一个40磅的力才能克服摩擦力前进。物体越重则需要克服更大的摩擦力。这个原理就跟制动抓紧装置相似,如果给制动碟的压力越大那么车辆获得的制动力就越大。简单制动系统模型当踩下制动踏板时,在踏板处通过杠杆原理把制动力放大了3倍,再通过液压机构驱动活塞把制动力又放大了3被。放大以后的制动力推动活塞移动,活塞推动蹄片带动刹车卡钳紧紧的夹住制动碟,由蹄片与制动碟产生的强大摩擦力,让车减速。这就是简单的制动模型。通过它我们就可以理解制动系统的基本原理了。

H. 列车制动装置的正文

用以实现列车减速或停止运行,保证行车安全的设备。
组成部件及其作用 列车制动装置由装在机车上的供风系统和自动制动阀、分装在机车和车辆上的制动机和基础制动装置,以及贯通全列车的制动管(又称刹车管)组成。整个制动系统中充以压缩空气。供风系统包括空气压缩机和总风缸,其作用是供给整个系统所需的压缩空气。柴油机车和电力机车的空气压缩机是电动的,而在蒸汽机车上则以蒸汽机带动,称为风泵。自动制动阀是机车司机用以操纵列车制动系统的装置。司机扳动自动制动阀手柄,控制制动管的排风或充风,使装在机车和车辆上的制动机动作。
制动机包括空气分配阀、副风缸和制动缸等。当制动管减压时,空气分配阀使副风缸中的压缩空气进入制动缸,推动鞲鞴,通过基础制动装置中杠杆的作用,使闸瓦(或闸片)紧压车轮踏面(或制动盘),阻滞车轮的转动,在轮轨间粘着力的作用下使列车减速或停止运行;制动管充风升压时,空气分配阀截断副风缸管路而使制动缸内的压缩空气排入大气,此时制动缸内的复原弹簧使鞲鞴恢复原位,闸瓦离开车轮,从而实现缓解(见图)。基础制动装置由一系列传动杠杆、制动梁和闸瓦(或闸瓦和制动盘)组成。传动杠杆起传递制动缸鞲鞴动作和分配鞲鞴推力的作用。
自动制动阀 机车司机用以操纵列车制动机的装置。自动制动阀最早是简单的排风塞门,以后发展成为由给气阀控制规定压力,由均衡风缸间接控制制动管减压的较为完善的结构。20世纪初,北美和欧洲铁路所使用的自动制动阀均采用回转式滑阀结构。50年代以后,改用柱塞阀、橡胶平面阀或弹簧调压均衡结构。当自动制动阀手柄处于制动区的某一位置时,自动制动阀在得到相应的减压量后能自动保压,在制动时能自动补充制动管漏泄的压缩空气,以保持所需要的减压量。欧洲型制动阀为了实现列车加快缓解功能,另设有能够在高压过充位和在转向运转位时能自动消除过充的装置,以避免产生自然再制动。70年代法国和联邦德国铁路还采用了按钮式自动制动阀,用电磁阀控制制动管的压力来实现制动和缓解。
制动机 机车和车辆上实现制动和缓解作用的装置。在早期的蒸汽机车牵引的列车上,机车和车辆的制动是分别进行的。机车使用蒸汽制动机;车辆则用手制动机,由人力操纵手轮或用杠杆拨动,使闸瓦紧压车轮踏面。机力制动机出现后,手制动机经过改进,仍作为辅助制动设备保留在车辆上,主要是在车辆单独停放时作为防止溜逸之用,在调车作业中也有使用。
随着铁路运输的发展,先后出现了多种机力制动机,如真空制动机、直通空气制动机、自动空气制动机、电空制动机等。
真空制动机 真空制动机系统在机车上设有真空泵、制动阀和真空制动缸,在车辆上则仅有真空制动缸。全列车制动部件用公称直径 50毫米(2英寸)以上的制动管连通。司机操纵制动阀,改变制动管中的真空度,真空制动缸中便产生压力差,从而起阶段的制动或缓解作用。这种制动机是英国铁路在1844年首先应用的。它的优点是构造简单,但制动力不大,而且海拔越高制动力越小。它的制动作用由列车头部车辆向后传播的速度(制动波速)低,制动空走时间和缓解时间都较长,列车前后冲动较大。英国铁路企业自1964年起逐步改用自动空气制动机。使用真空制动机的国家日益减少。
直通空气制动机 它的制动作用是:用空气压缩机产生压缩空气贮存在总风缸中,司机操纵制动阀,将总风缸中的压缩空气通过制动管送入机车和车辆上的制动缸实现制动,或将制动缸中的压缩空气排出,实现缓解。这种制动机是美国发明家G.威斯汀豪斯在1869年发明的。由于压缩空气由前向后逐车输送,列车前后车辆制动机动作时间差较大,这种制动机对较长的列车不适用。当列车分离时,制动能力全部丧失,列车运行安全不能保证,因此这种制动机应用不广。
自动空气制动机 在直通空气制动机基础上发展出来的空气制动机,有北美铁路应用的二压力机构(直接一次缓解)自动空气制动机和欧洲铁路应用的三压力机构(阶段缓解)自动空气制动机两个系统。二压力机构自动空气制动机为G.威斯汀豪斯于1872年所发明。这种制动机在车辆上设有副风缸,由制动管充风至规定压力,司机借助自动制动阀降低或恢复制动管压力,在制动管和副风缸间产生压力差(二压力机构因此得名),以控制制动机起制动或缓解作用。这种制动机可以根据制动管减压量的大小实现分阶段制动;但当制动管压力高于副风缸时,即可直接实现一次缓解。由于不能实现分阶段缓解,在坡道地区列车不易操纵,这是它的不足之处。这种制动机由于只用一根公称直径为25毫米(货物列车后来改用32毫米,按旧制分别为1和1.25英寸)的制动管,可以使用压缩空气(压力0.5~0.6兆帕),副风缸和制动缸的尺寸较小,重量较轻,因此于1889年被定为北美铁路联运货车的标准制动机,后来应用到客车上。随着列车长度的增加,这种制动机增加了快动功能、局部减压功能、常用和紧急制动后的加速缓解功能、常用制动的加速功能等。在结构上也有改进,使检修周期大为延长。新型的二压力机构自动空气制动机适用于100~150辆的长大货物列车,为重载列车的开行创造了条件。
三压力机构自动空气制动机是英国人汉弗莱在1892年设计成的。这种制动机是在每一车辆上除副风缸外再设一个工作风缸,以制动管和工作风缸间的压差来控制副风缸向制动缸的充气和排气,并使制动缸的压力参加力的平衡,所以称三压力机构。它可以按照制动管减压量的大小和压力恢复的多少,分阶段地实施制动和缓解,并且具有在制动系统未充满规定压力前制动缸压力不衰竭性能(压缩空气不会全部排尽)。三压力机构自动空气制动机适用于在山区运行的列车和短小列车,但因缓解作用慢,不适宜于长大列车。
电空制动机 以压缩空气为动力,利用电磁阀控制各节车辆上空气制动机的制动和缓解作用的制动系统。按作用原理可分为:①直通式,电磁阀直接控制压缩空气进入或排出制动缸;②自动式,电磁阀控制制动管压力增减,使自动空气制动机起作用。使用电空制动机可使列车前部和后部的车辆动作一致,能有效地减弱列车的纵向冲动,缩短制动距离。因此各国的地下铁道车辆、动车组和高速旅客列车广泛应用这种设备,货物列车采用尚少。
基础制动装置 制动缸鞲鞴杆的推力通过一系列杠杆扩大适当倍数(称为制动倍率),并分配到各闸瓦(或闸片)上,使其紧压车轮踏面(或制动盘)产生制动力。通常客车采用双侧闸瓦,货车用单侧闸瓦,机车上则两者均有采用。为补偿闸瓦磨耗对鞲鞴行程的影响,有些车辆装有闸瓦间隙自动调整器。为了按车辆载重调整空车或重车时的制动倍率,有些车辆装有两级或多级空重车自动或手动调整装置。欧洲一些高速车辆上还有用一个闸瓦托装两块闸瓦以增加闸瓦作用面积和改善制动性能的。在传统的制动装置结构中,一辆车只有一个制动缸,安装在底架下面。近30年来,美国有些货车把制动缸装在转向架上同制动梁连成一整体,不仅简化了结构,而且传动效率高。在部分客车上也采用安装在转向架上的制动缸以提高传动效率。柴油机车和电力机车上由于存在牵引电动机,在车轮前后的一侧或两侧,单独使用一套由制动缸、传动机构、间隙自动调节器和闸瓦紧凑地组合而成的制动单元。有些液力传动机车上还采用液力制动。
闸瓦 与车轮踏面接触产生摩擦,将列车动能转换为热能散入大气,达到列车减速或停止运行的部件。闸瓦按材质可分为铸铁闸瓦和合成闸瓦两类。
①铸铁闸瓦。已有100多年使用历史,早期是灰铸铁闸瓦,含磷量约0.2%左右,摩擦系数随速度的提高而迅速下降,耐磨性也很差。改用中磷闸瓦(含磷量0.7%~1.0%)可以改善性能,但在制动时容易产生火花引起火灾。高磷闸瓦(含磷量2.5%以上)产生的火花少,比较安全,但质脆容易断裂,浇铸时须添装钢制瓦背。高磷铸铁闸瓦的使用,日益普遍。
②合成闸瓦。又称非金属闸瓦,是用石棉及其他填料以树脂或橡胶作为粘合剂混合后热压而成。合成闸瓦也要用钢背加强。如果闸瓦压制成片状用于盘形制动则称闸片。合成闸瓦于1907年首先在伦敦地铁车辆上使用。50年代以来,应用日益普遍。合成闸瓦重量轻,耐磨,制动时基本上无火花。它与钢轮间的摩擦系数随速度提高的变化小,与轮轨间的制动粘着系数的变化基本一致,从而可以较好地利用粘着作用,改善制动性能和缩短停车制动距离。合成闸瓦有高摩擦系数和低摩擦系数之分。高摩擦系数合成闸瓦的摩擦系数约为铸铁闸瓦的两倍,可使用较小直径的制动缸和副风缸,从而减轻基础制动装置的重量,又能节省压缩空气,优点较多。低摩擦系数合成闸瓦可以直接取代铸铁闸瓦,适合于改造旧车之用。合成闸瓦的缺点是导热性能较差,摩擦所产生的热量使车轮踏面温度升高,甚至使踏面出现局部高温而导致热裂。近年来,为避免对环境的污染,无石棉、无铅等有害物质的合成闸瓦得到越来越多的采用。
盘形制动 用特设的制动盘和闸片作为摩擦副取代传统的车轮踏面和闸瓦摩擦副,将列车动能转换成热能以实现列车制动,多用于时速超过160公里的车辆上,可免制动时产生过高的热负荷而使车轮踏面热裂。自1930年德国在柏林地铁车辆上首次采用这种制动方式以来,对制动盘和闸片的材质、结构形式和安装方法已作了许多改进。制动盘有安装在车轴上的,有安装在车轮辐极上的。铸铁盘和高摩擦系数合成闸片这一对摩擦副有较好的摩擦特性,应用较广。使用盘形制动后,一般仍装有用于清扫踏面的铸铁闸瓦,以免因踏面油污而降低轮轨间粘着系数。在一些高速机车车辆上,踏面清扫闸瓦也承担一部分制动力和盘形制动结合使用,可取得更好的制动效果。

I. 列车制动装置的介绍

列车制动抄装置是用以实现列车减袭速或停止运行,保证行车安全的设备。列车制动装置由装在机车上的供风系统和自动制动阀、分装在机车和车辆上的制动机和基础制动装置,以及贯通全列车的制动管(又称刹车管)组成。整个制动系统中充以压缩空气。

J. 列车制动

列车制动主要靠闸缸里的风使闸瓦动作,若无风源闸缸里的风会漏完,闸瓦就不管用了,故一般停车超2小时,应用铁鞋防溜

阅读全文

与列车制动装置的作用相关的资料

热点内容
鱼线轮轴承数81是什么意思 浏览:247
对什么什么做实验装置 浏览:333
机械设备安全防护装置分类 浏览:156
学校检查仪容仪表的部门叫什么 浏览:197
鸿顺德五金机电城7栋怎么样 浏览:524
如何更换汽车仪表盘的时间表 浏览:303
有什么仪器可以隔墙伤人 浏览:3
轮轴承寿命多少公里 浏览:895
世嘉经典轴承间隔怎么调整 浏览:369
现代机车采用什么轴承轴箱 浏览:850
蒸气阀门需要年检吗 浏览:163
水域救援器材配件有哪些 浏览:66
铝铸造砂眼气孔怎么回事 浏览:515
冰箱制冷液泄漏怎么查 浏览:566
一种个人信息自动推送装置 浏览:758
如何在家里装唱歌设备 浏览:272
atsl仪表盘左右两侧怎么设置 浏览:903
水质检测装置的电路设计 浏览:239
轴承在什么情况下要去抛光 浏览:589
自动炒鸡设备多少钱 浏览:576