1. 传动机构的作用是干啥的
简单地讲:传动机构的作用是通过某一机构(或零件),将A零件的运动方式(旋转或静止)传递给B零件。例如,轴(或轴套)通过螺钉(销或键),使传动座旋转,传动座又通过某一零件使动环旋转。静环通过防转销和压盖保持静环静止。这里轴套和传动座、传动座与动环、静环和压盖之间均无相对运动发生。据我所知,我从专业的角度上讲一下概述机械传动机构,可以将动力所提供的运动的方式、方向或速度加以改变,被人们有目的地加以利用。我国古代传动机构类型很多,应用很广,除了上面介绍的以外,像地动仪、鼓风机等等,都是机械传动机构的产物。我国古代传动机构,主要有齿轮传动、绳带传动和链传动。图中是其中一种常见的传动机构作用上述也讲了传动机构的主要有齿轮传动、绳带传动和链传动组成。我就分开来讲述一下其中的作用齿轮传动:其出现时间不晚于西汉,西汉时的指南车、记里鼓车,东汉张衡发明的水力天文仪器上,都使用了相当复杂的齿轮传动系统。这些齿轮只用来传递运动,强度要求不高。至于生产上所采用的齿轮,要传递较大的动力,受力一般较大,强度要求较高。古代在利用畜力、水力和风力进行提水、粮食加工等工作时,都要应用此类齿轮。例如在翻车上,须应用一级齿轮传动机构,以改变运动的方位和传递,适应翻车的工作要求。 链传动:链,在我国古代出现很早,商代的马具上已有青铜链条,其他青铜器和玉器上也有用链条作为装饰的。西安出土的秦代铜车马上,有十分精美的金属链条。但这都不能算是链传动。作为动力传动的链条,出现在东汉时期。东汉时毕岚率先发明翻车,用以引水。根据其工作原理和运动关系,可以看作是一种链传动。翻车的上、下链轮,一主动,一从动,绕在轮上的翻板就是传动链,这个传动链兼做提水的工作件,因此,翻车是链传动的一种特例。到了宋代,苏颂制造的水运仪象台上,出现了一种天梯,实际上是一种铁链条,下横轴通过天梯带动上横轴,从而形成了真正的链传动。 绳带传动:这是一种利用摩擦力的传动方式。在西汉时, 四川出产井盐,在凿井、提水时,都是用牛带动大绳轮,收卷绕过滑轮上的绳索,来提升凿井工具、卤水等。西汉时出现的手摇纺车,是一种典型的绳带传动。在西汉时期的画像石上,有几幅手摇纺车图,可以清楚地看到:大绳轮主动,通过绳索带动纱锭,用手摇大绳轮旋转一周,纱锭旋转几十周,效率很高。以后出现的三锭、五锭的纺车,效率就更高了。元代的水运大纺车,也是用绳带传动的。东汉时,冶金手工业有一项重要发明水排,用于鼓风。这种绳带传动的工作原理是:水力推动卧式水轮旋转,水轮轴上装有大绳轮,通过绳带带动小绳轮,小绳轮轴上端曲柄随之旋转,通过连杆推动鼓风器鼓风。这种水排鼓风效力很高,可以抵得上几百匹马鼓风。它的出现,标志着东汉时发达的机械已经在我国出现了,因而意义十分重大。 希望此答案对您有帮助。
2. 传动装置的分类
汽车传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
汽车传动系按照结构和传动介质分,其型式有机械式、液力机械式、静液式(容积液压式)、电力式等。
机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。可分为:
1.前置后驱—FR:即发动机前置、后轮驱动
这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。
2.后置后驱—RR:即发动机后置、后轮驱动
在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。但由于优点较为突出,在大型客车上应用越来越多。
3.前置前驱—FF:发动机前置、前轮驱动
这种型式操纵机构简单、发动机散热条件好。但上坡时汽车质量后移,使前驱动轮的附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质量前移,前轮负荷过重,高速时易发生翻车现象。大多数轿车采取这种布置型式。
4.越野汽车的传动系
越野汽车一般为全轮驱动,发动机前置,在变速箱后装有分动器将动力传递到全部车轮上。轻型越野汽车普遍采用4×4驱动型式,中型越野汽车采用4×4或6×6驱动型式;重型越野汽车一般采用6×6或8×8驱动型式。
3. 传动系由哪些主要部件组成它起什么作用
传动系的组成:
对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。
传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。
传动系的布置型式:
机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。可分为:
1、前置后驱—FR:即发动机前置、后轮驱动
这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。
2、后置后驱—RR:即发动机后置、后轮驱动
在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。但由于优点较为突出,在大型客车上应用越来越多。
3、前置前驱—FF:发动机前置、前轮驱动
这种型式操纵机构简单、发动机散热条件好。但上坡时汽车质量后移,使前驱动轮的附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质量前移,前轮负荷过重,高速时易发生翻车现象。现在大多数轿车采取这种布置型式。
4、越野汽车的传动系
越野汽车一般为全轮驱动,发动机前置,在变速箱后装有分动器将动力传递到全部车轮上。轻型越野汽车普遍采用4×4驱动型式,中型越野汽车采用4×4或6×6驱动型式;重型越野汽车一般采用6×6或8×8驱动型式。
传动系的主要作用:
1、实现汽车倒驶
汽车在某些情况下,需要倒向行驶。然而,内燃机是不能反向旋转的,故与内燃机共同工作的传动系必须保证在发动机选择方向不变的情况下,能够使驱动轮反向旋转。一般结构措施是在变速器内加设倒档(具有中间齿轮的减速齿轮副)。
2、减速和变速
我们知道,只有当作用在驱动轮上的牵引力足以克服外界对汽车的阻力时,汽车才能起步和正常行驶。由实验得知,即使汽车在平直得沥青路面上以低速匀速行驶,也需要克服数值约相当于1.5%汽车总重力得滚动阻力。以东风EQ1090E型汽车为例,该车满载总质量为9290kg(总重力为91135N),其最小滚动阻力约为1367N。若要求满载汽车能在坡度为30%的道路上匀速上坡行驶,则所要克服的上坡阻力即达2734N。东风EQ1090E型汽车的6100Q-1发动机所能产生的最大扭距为353Nm(1200-1400rpm)。假设将这以扭距直接如数传给驱动轮,则驱动轮可能得到的牵引力仅为784N。显然,在此情况下,汽车不仅不能爬坡,即使在平直的良好路面上也不可能匀速行驶。
另一方面,6100Q-1发动机在发出最大功率99.3kW时的曲轴转速为3000rpm。假如将发动机与驱动轮直接连接,则对应这一曲轴转速的汽车速度将达510km/h。这样高的车速既不实用,也不可能实现(因为相应的牵引力太小,汽车根本无法启动)。
为解决这些矛盾,必须使传动系具有减速增距作用(简称减速作用),亦即使驱动轮的转速降低为发动机转速的若干分之一,相应地驱动轮所得到的扭距则增大到发动机扭距的若干倍。
汽车的使用条件,诸如汽车的实际装载量、道路坡度、路面状况,以及道路宽度和曲率、交通情况所允许的车速等等,都在很大范围内不断变化。这就要求汽车牵引力和速度也有相当大的变化范围。对活塞式内燃机来说,在其整个转速范围内,扭距的变化范围不大,而功率及燃油消耗率的变化却很大,因而保证发动机功率较大而燃油消耗率较低的曲轴转速范围,即有利转速范围很窄。为了使发动机能保持在有利转速范围内工作,而汽车牵引力和速度有能在足够大的范围内变化,应当使传动系传动比(所谓传动比就是驱动轮扭距与发动机扭距之比以及发动机转速与驱动轮转速之比)能在最大值与最小值之间变化,即传动系应起变速作用。
3、必要时中断传动
内燃机只能在无负荷情况下起动,而且启动后的转速必须保持在最低稳定转速上,否则即可能熄火,所以在汽车起步之前,必须将发动机与驱动轮之间的传动路线切断,以便起动发动机。发动机进入正常怠速运转后,再逐渐地恢复传动系的传动能力,即从零开始逐渐对发动机曲轴加载,同时加大节气门开度,以保证发动机不致熄灭,且汽车能平稳起步。刚学驾驶车的朋友应该有比较深的认识,起动时忘踩离合或者离合放得太快就会“死火”。此外,在变换传动系传动比档位(换档)以及对汽车进行制动之前,都有必要暂时中断动力传递。为此,在发动机与变速器之间,可装设一个依靠摩擦来传动,且其主动和从动部分可在驾驶员操纵下彻底分离,随后再柔和接合的机构——离合器。
同时,在汽车长时间停驻时,以及在发动机不停止运转情况下,使汽车暂时停驻,传动系应能较长时间中断传动状态。为此,变速器应设有空挡,即所有各档齿轮都能自动保持在脱离传动位置的档位。
4、差速作用
当汽车转弯行驶时,左右车轮在同一时间内滚过的距离不同,如果两侧驱动轮仅用一根刚性轴驱动,则二者角速度必然相同,因而在汽车转弯时必然产生车轮相对于地面滑动的现象。这将使转向困难,汽车的动力消耗增加,传动系内某些零件和轮胎加速磨损。所以,我们需要在驱动桥内装置具有差速作用的部件——差速器,使左右两驱动轮可以以不同的角速度旋转。
4. 翻车、筒车、水排有什么区别
翻车
汉代,出现了一种新式的提水工具——翻车。据《后汉书》记载,东汉时毕岚发明了翻车,“翻车设机车以引水”。翻车的工作原理是:其上、下链轮,一主动,一从动,绕在轮上的翻板就是传动链,这个翻板兼做提水的工作件,一面带动翻车转动,一面把水提上来。长期以来,翻车成为族搜我国农村中应用最广、最为重要的一种提水机械。马钧对翻车进行了改进,制造了新式翻车,结构精巧,能连续不断地提水,效率大大提高。这种新式翻车也较省力,儿童都能转动。以后,这戚凯种翻车发展为龙骨水车,对我国农业生产的发展起了重要作用。
http://image..com/i?ct=503316480&z=1129415952&tn=imagedetail&word=翻车&in=2
筒车
亦称“水转筒车”,是唐代出现的一种提水工具。一种以水流作动力,取水灌田的工具。其原理为:在水流很急的岸旁打下两个硬桩,制一大轮,将大轮的轴搁在桩叉上。大轮上半部高出堤岸,下半部浸在水里,可自由转动。大轮轮辐外受水板上斜系有一个个竹筒,岸旁凑近轮上水筒的位置,设有水槽。当大轮受水板受急流冲激,轮子转动,水筒中灌满水,转过轮顶时,筒口向下倾斜,水恰好倒入水槽,并沿水槽流向田间。此种筒车日夜不停车水浇地,不用人畜之力,功效高,约产生于隋唐时代。唐诗人刘禹锡有《机汲记》加以描述。直至今日,兆仔历云、桂、川、甘、陕、粤等地仍使用之。此外,尚有“畜力筒车”,依靠齿轮传动带动筒车;“高转筒车”,通过两大轮,将低处之水带向高处,结构均巧妙合理,为我国古代人民杰出发明。唐陈廷章《水轮赋》:“水能利物,轮乃曲成。升降满农夫之用,低徊随匠氏之程。始崩腾以电散,俄宛转以风生。虽破浪于川湄,善行无迹;既斡流于波面,终夜有声。”宋梅尧臣《水轮咏》:“孤轮运寒水,无乃农自营。随流转自速,居高还复倾。”《宋史.太祖纪三》:“六月庚子,步至晋王邸,命作机轮,挽金水河注邸中为池。”宋李处权《土贵要予赋水轮》诗:“江南水轮不假人,智者创物真大巧。一轮十筒挹且注,循环下上无时了。”明王临亨《粤剑编》卷三:“水车,每辐用水筒一枚,前仰后俯,转轮而上,恰注水槽中,以田之高下为轮之大小,即三四丈以上田,亦能灌之,了不用人力。”
http://image..com/i?ct=503316480&z=802764503&tn=imagedetail&word=筒车&in=5
水排
水排是我国古代一种冶铁用的水利鼓风装置。人类早期的鼓风器大都是皮囊。一座炉子用好几个囊,放在一起,排成一排,就叫“排囊”用水力推动这些排囊,就叫“水排”。水排发明于东汉早期,是南阳太守杜诗(?-38)在总结劳动人民实践经验基础上发明的。因为它“用力少,见功多”所以大家乐于使用。三国时期的韩暨把它推广到了魏国官营冶炼作坊中,用水排代替过去的马排、人排,四季不歇。水排不但节省了人力、畜力,而且鼓风能力比较强,因此促进了冶铁业的发展。水排在我国沿用了很长一个时期,直到本世纪七十年代,一些地方还在使用。
汉代的水排由同一时期的水碓和翻车结构推测,也是一种轮轴拉杆传动装置、我国古代水排构造的详细技术最早见于元代的《王祯农书》,依水轮放置方式的差别,分为立轮式和卧轮式两种。都是通过轮轴、拉杆及绳索把圆周运动变成直线往复运动的,以此达到起闭风扇和鼓风的目的。因为水轮转动一次,风扇可以起闭多次,所以鼓风效能大大提高。
http://images.google.com/imgres?imgurl=http://www.cws.net.cn/cwsadmin/UploadFiles/yemao20041123103618458.jpg&imgrefurl=http://www.cws.net.cn/kjcg/CWSArticle_View.asp%3FCWSNewsID%3D17232&h=330&w=371&sz=22&hl=zh-CN&start=25&tbnid=Wi5peo_Ly691MM:&tbnh=109&tbnw=122&prev=/images%3Fq%3D%25E6%25B0%25B4%25E6%258E%2592%26start%3D20%26ndsp%3D20%26svnum%3D10%26hl%3Dzh-CN%26lr%3D%26newwindow%3D1%26sa%3DN
5. 马均发明了什么天下之名巧
马钧发明的天下之名巧是还原指南车;改进当时操作笨重的织绫机;发明一种由低处向高地引水的龙骨水车;制作出一种轮转式发石机;改制了诸葛连弩等。
马钧最突出的表现有还原指南车;改进当时操作笨重的织绫机;发明一种由低处向高地引水的龙骨水车;制作出一种轮转式发石机,能连续发射石块,远至数百步;把木制原动轮装于木偶下面,叫做“水转百戏图”。此后,马钧还改制了诸葛连弩,对科学发展和技术进步做出了贡献。
马钧人物介绍
马钧出身贫寒。他是中国古代的机械大师。他的不少发明创造对当时生产力的发展起了相当大的作用。因为他在传动机械方面有很深的造诣,所以当时人们对他的评价很高,称他为“天下之名巧”。
马钧从小口吃,不善言谈。但是他很喜欢思索,善搭派于动脑,同时注重实践,勤于动手,尤其喜欢钻研机械方面的问题。马钧早年生活比较贫困,长时间住在乡间,比较关心生产工具的改革,并且作出了突出贡献。
马钧少年游乐,未认识到自己的才华。当博士时,生活贫困,于是改进绫机,并因此而出名。后来,在魏朝担任给事中,同时研制机械。他虽然一生不大得志,但刻苦钻研,设计制造出多种机械。
魏明帝时,见当时织机五十条经线者有配枝哗五十蹑(脚踏操纵板),六十条经线者六十蹑,便将织机一律改为十二蹑,大大提高了功效。在洛阳时,又发明了排灌水车,名叫“翻车”,它利用人力可以将水由低处提到高处。
他还研究制造出指南车,改进了诸葛亮的连弩,改进了攻城用培行的发石车。他制造的“水转百戏”以水为动力,以机械木轮为传动装置,使木偶可以自动表演,构思十分巧妙。
6. 转子轴冲筋有什么作用转子轴车工艺头有什么作用
转子轴上的冲筋是保证电机转子的铁芯在轴固定,起防转作用。
7. 曹魏时,马钧改进的翻车是一种啥
(9)关于马钧改进翻车
关于马钧制造翻车的事迹,历史上遗留下来的记载很少,只是在《三国志·魏志》卷二九《杜夔传》的后面,裴松之注云:“(魏明帝)时有扶风马钧,巧思绝世。”并附有三国魏末至晋初时期的著名思想家傅玄的一篇《马(钧)先生传》(后又被清严可均编入《全上古三代秦汉三国六朝文》中)。因此,我们对马钧的生平才略知大概。
据《马先生传》记载,“居京都,城内有地,可以为园,患无水以溉。先生乃作翻车,令童女儿转之,而溉水自复,更入更出其巧百倍于常。”这大概也就是课本所依据的主要史料。“其巧百倍于常”(它的功效比平常的翻车超出许多倍)说明在此以前即有旧式翻车,并非“创造”。所以这次教材修订为“制做如造”不用“创造”字样。那么,翻车究竟是谁“创造”的呢?
据《后汉书》卷七八《宦者列传·张让》载,汉灵帝时,“让、忠(赵忠)及……毕岚……宋典十二人皆为中常侍”,“明年,遂使铭盾令朱典缮修南宫王堂。又使掖庭令毕岚铸铜人四列于仓龙、玄武阙。又铸四钟,皆受二千斛,县(悬)于玉堂及台殿前。又铸天禄虾蟇,吐水于平门外桥东,转水入宫。又作翻车、渴乌,施于桥西,用洒南北郊路,以省百姓洒道之费。”这是我国“翻车”一词见于史籍之始。在此以前的任何书籍中均未见记载。毕岚的“作翻车”才是“始作”(“创造”)。据唐李贤(章怀太子)注云:“翻车,设机车以引水。渴乌,为曲弯胡冲简,以气引水水上也。”所谓“设机车”是说他所创造的翻车上已有轮槽板、齿轮等机械传动装置。
毕岚创造的“翻车”,据考证就是我国乡村中一直至现代还使用的龙骨水车的前身(见王桢《农书》),基本原理与结构并无多大变化。
从上述记载中可以看出,毕岚不仅负责铸造了“铜人”、巨“钟”,会“吐水”的“天禄”(神话传说中的兽名)、“虾墓”(即蛤蟆),还负责制作了“设机车以引水”的“翻车”和“以气引水”的“渴乌”。况且,东汉早有宦官监工制作器械的先例。所以,毕岚创制翻车是完全可能的。
诚然,身为宦官的毕岚是不可能亲自去制造翻车的。然而他负责制造的翻车,且能大量引水,开我国水车历史之先河,这在距今一千八百年前的确是一个了不起的的伟大发明。毕岚所创造的翻车,虽未直接运用于农业生产,但“用洒南北郊路,以省百姓洒道之费”,故对于国计民生也是有一定贡献的。
我们知道,汉灵帝是我国历史上有名的昏君,在位时宦官继续专权,贪污腐化成风,公开实官鬻爵,天下田亩增税十钱,大建宫室等等。阶级矛盾激化,终于爆发了黄巾起义。因而毕岚的发明创造就只能用于宫廷游乐,根本不可能用于发展生产力。到了曹操统一北方后,魏国的生产得到恢复和发展,在这样的历史条件下,要求当时的科学技术也能够适应生产的需要而有所发展,这时“发明家马钧”便应运而生了。
马钧在前人创造用来吸水洒路的翻车的基础上,设法加以改进,制造了既轻巧又便于操作的翻车。这种翻车,连小孩都能转动,且能连续提水,可见有很大改进,所以很快流传民间,促进了农业生产的发展。这是当时世界上最先进的生产工具之一,“后来逐渐推广使用,提高了抗旱能力”,在今天也还有一定的作用。
马钧虽“巧思绝世”,但出身贫苦,加之封建统治者对科学技术创造发明的极端不重视,他的革新与创造,往往遭到只会说空话的达官贵人的讥笑和非难,故多不见经传;毕岚虽见诸史册,但却是宦者,加埋歼之东汉的宦官多数横行不法,故也被世人所不齿。
毕岚是我国历史上“翻车”的“创造”者,而三国时的马钧,应是翻车技术的“改进”者。
8. 翻车是哪个朝代的
翻车又名龙骨水车,旧时中国民间灌溉农田用的龙骨水车。为世界上出现最早、流传最久远的农用水车。是一种刮板式连续提水机械,是中国古代劳动人民发明的最著名的农业灌溉机械之一。翻车是哪个朝代的?跟着我一起去看看吧。
曹魏时,经过改制的翻车用于灌溉。《后汉书》记有毕岚作翻车,三国马钧加以完善。翻车可用手摇、脚踏、牛转、水转或风转驱动。龙骨叶板用作链条,卧于矩形长槽中,车身斜置河边或池塘边。下链轮和车身一部分没入水中。驱动链轮,叶板就沿槽刮水上升,到长槽上端将水送出。如此连续循环,把水输送到需要之处,可连续取水,功效大大提高,操作搬运方便,还可及时转移取水点,即可灌溉悉饥,亦可排涝。中国古代链传动的最早应用就是在翻车上,是农业灌溉机械的一项重大改进。
兰州水车
又名天车、翻车、老虎车。为明嘉靖年间进士段续所造。据《皋兰县志》载,兰州人段续,博学多才,进士及第,曾宦游南方数省,多有惠政。致仕归里后,参考南方所见“创翻车,倒挽黄河水以灌田,致有巧思。沿河农民皆仿效焉。”兰州水车,与南方的'龙骨水车不同,外形酷似巨大的古式车轮,轮辐直径大的有20米左右,小的也有10米,可提水达15—18米高处。轮辐中心是合抱粗的轮轴,圆轮四周斜装有40—50 个长1米,宽、高30—40厘米的木斗,以及比木斗多一倍的横板。急流冲击圆轮上的横板,车轮便缓缓沿逆时针方向转动。这时没入水中的木斗猛键便盛满了水,待它上升至圆轮顶端时,河水就会倾入事先置好的槽内,流入农田,然后空斗又随圆轮返回水中,进行下一个循环。
北京土话
即翻脸的意思。
关于马钧制造翻车的事迹,历史上遗留下来的记载很少,只是在《三国志·魏志》卷二九《杜夔传》的后面,裴松之注云:“(魏明帝)时有扶风马钧,巧思绝世。”并附有三国魏末至晋初时期的著名思想家傅玄的一篇《马(钧)先生传》(后又被清严可均编入《全上古三代秦汉三国六朝文》中)。因此,我们对马钧枝陆巧的生平才略知大概。[1]
相关典故
据《马先生传》记载,“居京都,城内有地,可以为园,患无水以溉。先生乃作翻车,令童女儿转之,而溉水自复,更入更出其巧百倍于常。”这大概也就是课本所依据的主要史料。“其巧百倍于常”(它的功效比平常的翻车超出许多倍)说明在此以前即有旧式翻车,并非“创造”。所以这次教材修订为“改进”不用“创造”字样。那么,翻车究竟是谁“创造”的呢?
据《后汉书》卷七八《宦者列传·张让》载,汉灵帝时,“让、忠(赵忠)及……毕岚……宋典十二人皆为中常侍”,“明年,遂使铭盾令朱典缮修南宫王堂。又使掖庭令毕岚铸铜人四列于仓龙、玄武阙。又铸四钟,皆受二千斛,县(悬)于玉堂及台殿前。又铸天禄虾蟇,吐水于平门外桥东,转水入宫。又作翻车、渴乌,施于桥西,用洒南北郊路,以省百姓洒道之费。”这是我国“翻车”一词见于史籍之始。在此以前的任何书籍中均未见记载。毕岚的“作翻车”才是“始作”(“创造”)。据唐李贤(章怀太子)注云:“翻车,设机车以引水。渴乌,为曲简,以气引水水上也。”所谓“设机车”是说他所创造的翻车上已有轮槽板、齿轮等机械传动装置。
9. 传动系统的组成
机械传动系统包括离合器、变速器、万向传动装置、驱动桥以及分动器。机械传动系统:是机床组成的重要部分,主要是由滚珠丝杠进行传动的,滚珠丝杠在传动过程中丝杠和运动轴是一体的,在日本MAZAK也有机床是用电机作为传动的。机械传动的作用:机械传动的作用是传递运动和力,常用机械传动系统的的类型有齿轮传动、蜗轮蜗杆传动、带传动、链传动、轮系等。齿轮传动:齿轮传动是依靠主动齿轮依次拨动从动齿轮来实现的,其基本要求之一是其瞬时角速度之比必须保持不变。齿轮传动的分类:齿轮传动的类型较多,按照两齿轮传动时的相对运动为平面运动或空间运动,可将其分为平面齿轮传动和空间齿轮传动两大类。直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该线是跨过齿面的对角线
10. 急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计
前 言
机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。
本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。
本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。
最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。
由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。
带式输送机概论
带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。
输送机发展历史
中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架
空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。
1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。
输送机的特点
带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。
带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。
带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。
带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。
一、 设计任务书
设计一用于带式运输机上同轴式二级圆柱齿轮减速器
1. 总体布置简图
2. 工作情况
工作平稳、单向运转
3. 原始数据
运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 设计内容
(1) 电动机的选择与参数计算
(2) 斜齿轮传动设计计算
(3) 轴的设计
(4) 滚动轴承的选择
(5) 键和联轴器的选择与校核
(6) 装配图、零件图的绘制
(7) 设计计算说明书的编写
5. 设计任务
(1) 减速器总装配图1张(0号或1号图纸)
(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)
(3) 设计计算说明书一份
二、 传动方案的拟定及说明
为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:
三. 电动机的选择
1. 电动机类型选:Y行三相异步电动机
2. 电动机容量
(1) 卷筒轴的输出功率
(2) 电动机的输出功率
传动装置的总效率
式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则
故
(3) 电动机额定功率
由第二十章表20-1选取电动机额定功率
由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为
可选符合这一范围的同步转速的电动3000 。
根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:
电动机型号 额定功率
电动机转速
传动装置传动比
Y100L-2 3 同步 满载 总传动比 V带 减速器
3000 2880 62.06 2
三、 计算传动装置总传动比和分配各级传动比
1. 传动装置总传动比
2. 分配各级传动比
取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为
按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的
则i
所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。
四、计算传动装置的运动和动力参数:
按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数
1.各轴转速:
2.各轴输入功率:
Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。
3. 各轴输入转矩:
Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。
综上,传动装置的运动和动力参数计算结果整理于下表:
轴名 功率
转矩
转速
传动比
效率
输入 输出 输入 输出
电机轴 2.3 7.63 2880 2
0.96
I轴 2.21 14.65 1440
7.13
0.95
II轴 2.1 99.29 201. 96
4.35 0.95
III轴
2.0 410.58 46.43
1.00 0.98
卷筒轴 1.94 398.34
第三章 主要零部件的设计计算
§3.1 展开式二级圆柱齿轮减速器齿轮传动设计
§3.1.1 高速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 。
2. 按齿面接触强度设计
由设计公式进行试算,即
(1) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩:
3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
4)计算应力循环次数
5) 按接触疲劳寿命系数
(2) 计算:
1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为
3) 计算齿宽: 取 ,
4) 计算分度圆直径与模数、中心距:
模数: 取第一系列标准值m=1.5
分度圆直径:
中心距:
5) 校核弯曲疲劳强度:
符合齿形因数 由图6-40得 =4.35, =3.98
弯曲疲劳需用应力:
1) 查图6-41得弯曲疲劳强度极限 : ;
2) 查图6-42取弯曲疲劳寿命系数
3) 计算弯曲疲劳许用应力.
取弯曲疲劳安全系数S=1,得
4) 校核计算:
<
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
§3.1.2 低速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。
2. 按齿面接触强度设计
由设计公式进行试算,即
2) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩
3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
5) 查图6-42取弯曲疲劳寿命系数
按接触疲劳寿命系数
模数: 由表6-2取第一系列标准模数
分度圆直径:
中心距:
齿宽:
校核弯曲疲劳强度:
复合齿形因数 由图6-40得
6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
得
校核计算: <
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
对各个轴齿轮相关计算尺寸
表6-3高速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
表6-3低速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
V带的设计
1)计算功率
2)选择带型
据 和 =2880由图10-12<械设计基础>选取z型带
3)确定带轮基准直径
由表10-9确定 <械设计基础>
1) 验算带速
因为 故符合要求
2) 验算带长
初定中心距
由表10-6选取相近
3) 确定中心距
4) 验算小带轮包角
故符合要求
5) 单根V带传递额定功率
据 和 查图10-9得
8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得
10)确定带根数
查表10-3 查表10-4 <械设计基础>
11) 单根V带的初拉力
查表10-5
12)用的轴上的力
13带轮的结构和尺寸
以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽
§3.3 轴系结构设计
§3.3.1 高速轴的轴系结构设计
一、轴的结构尺寸设计
根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:
图2
由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表6 高速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
13.6
16
60
第2段
(由唇形密封圈尺寸确定)
20(18.88)
50
第3段 由轴承尺寸确定
(轴承预选6004 B1=12)
20
23
第4段
24(23.6)
145
第5段 齿顶圆直径
齿宽
33
38
第6段
24
10
第7段
20
23
二、轴的受力分析及计算
轴的受力模型简化(见图3)及受力计算
L1=92.5 L2=192.5 L3=40
三、轴承的寿命校核
鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.
校核步骤及计算结果见下表:
表7 轴承寿命校核步骤及计算结果
计算步骤及内容 计算结果
6007轴承
A端 B端
由手册查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66
计算比值Fa/Fr FaA /FrA>e FaB /FrB< e
确定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查载荷系数fP 1.2
计算当量载荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
计算轴承寿命
9425.45h
小于
12480h
由计算结果可见轴承6007合格.
表8 中间轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
由轴承尺寸确定
(轴承预选6008 )
33.6
40
25
第2段
(考虑键槽影响)
45(44.68)
77.5
第3段
50
12.5
第4段
99
109
第5段
46
39
考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表10 低速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
(由联轴器宽度尺寸确定)
52.49
60(55.64)
142
第2段
(由唇形密封圈尺寸确定)
64(63.84)
50
第3段
66
16
第4段 由轴承尺寸确定
(轴承预选6014C )
70
24
第5段
78
75
第6段
20
88
20
第7段
齿宽+10
80(79.8)
119
§3.3.4 各轴键、键槽的选择及其校核
因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.
一、 高速级键的选择及校核:
带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096
联结处的材料分别为: 45钢(键) 、40Cr(轴)
二、中间级键的选择及校核:
(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)
此时, 键联结合格.
三、低速级级键的选择及校核
(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格
(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096
联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格.
第四章 减速器箱体及其附件的设计
§4.1箱体结构设计
根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=322.5)
表12 箱体结构尺寸
名称 符号 设计依据 设计结果
箱座壁厚 δ 0.025a+3=11 11
考虑铸造工艺,所有壁厚都不应小于8
箱盖壁厚 δ1 0.02a+3≥8 9.45
箱座凸缘厚度 b 1.5δ 16.5
箱盖凸缘厚度 b1 1.5δ1 14.18
箱座底凸缘厚度 b2 2.5δ 27.5
地脚螺栓直径 df 0.036a+12 24(23.61)
地脚螺栓数目 n 时,n=6
6
轴承旁联结螺栓直径 d1 0.75df 18
箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12
轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6
窥视孔盖螺钉直径 d4 (0.3~0.4)df 8
定位销直径 d (0.7~0.8) d 2 9
轴承旁凸台半径 R1 c2 16
凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34
外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42
大齿轮顶圆距内壁距离 ∆1 >1.2δ 11
齿轮端面与内壁距离 ∆2 >δ 10
箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
轴承端盖凸缘厚度 t (1~1.2) d3 10
轴承端盖外径 D2 D+(5~5.5) d3 120
轴承旁边连接
螺栓距离
S
120
第五章 运输、安装和使用维护要求
1、减速器的安装
(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。
(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。
(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。
(4)减速器安装好后用手转动必须灵活,无卡死现象。
(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。
2、使用维护
本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:
1.减速器高速轴转速不高于1000r/min;
2.减速器齿轮圆周速度不高于20m/s;
3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。
3、减速器润滑油的更换:
(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。
(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。
(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。
(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。
减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。
小 结
转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.
因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.
首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.
但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.
最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。
参 考 文 献
1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,2006
2 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,2004
3 <<机械原理>> 申永胜主编 清华大学出版社 ,1999
4 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,2004
5 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,2003
6 <<机械制图>>