『壹』 无功补偿原理图
2 工作原理
单独的TCR由于只能提供感性的无功功率,因此往往与并联电容器配合使用。并联上电容器后,使得总的无功功率为TCR与并联电容器无功功率抵消后的净无功功率,因而可以将补偿器的总体无功电流偏置到可吸收容性无功的范围内。另外,并联电容器串上小的调谐电抗器还可兼做滤波器,以吸收TCR产生的谐波电流。通过控制与电抗器串联的反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。由于该补偿装置响应时间快(小于半个周波),灵活性大,而且可以连续调节无功输出,所以目前在我国的输电系统和工业企业中应用最为广泛。码吵世
TCR+FC型SVC的基本原理图如图1,补偿前及补偿后电压电流示意图如图2、图3。单相的TCR由两个反并联的晶闸管与电抗器串联而成,而三相一般采用三角形接法。图中,QS为系统供给的无功功率;QL为负载无功功率,它是随机变化的;QC为滤波器提供的容性无功碰态功率,是固定不变的;QR为TCR提供的感性无功,它是可以调节的。
QS=QL+QR-QC
当负荷发生扰动变化时,SVC通过调节晶闸管的触发角从而调节TCR发出的感性无功,使得QR 总能弥补QL的变化。这样的电路并入到电网中相当于△QS=△QL+△QR=0。这就是TCR+FC型迟肢静止无功补偿装置对无功功率进行动态补偿的原理。
将此电路并联到电网上,就相当于交流调压器电路接入电感性负载,此电路的有效相移范围为90o~180o。当触发角α=90o时,晶闸管全导通,导通角δ=180o,此时电抗器吸收的无功电流最大。根据导通角与补偿器等效导纳之间的关系式:
BL=BLmax(δ-sinδ)/π
其中BLmax=1/XL。可知,增大导通角即可增大补偿器的等效导纳,这样就会减小补偿电流中的基波分量,所以通过调整触发角的大小就可以改变补偿器所吸收的无功分量,达到调整无功功率的目的。
图1 TCR+FC型SVC的基本原理图
图2 SVC投入前欠补偿,电压超前电流45°,cosφ=0.707
图3 SVC投入后完全补偿,电流、电压重合,cosφ=1
3 应用领域
(1)电弧炉作为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要影响有:导致电网三相严重不平衡,产生负序电流,产生高次谐波,其中普遍存在如2、4偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更为复杂化,存在严重的电压闪变,功率因数低。
SVC具有快速动态补偿、响应速度快的特点,它可向电弧炉快速提供无功电流并且稳定母线电网电压,最大限度地降低闪变的影响,SVC具有的分相补偿功能可以消除电弧炉造成的三相不平衡,滤波装置可以消除有害的高次谐波并通过向系统提供容性无功来提高功率因数。
(2)轧机及其他大型电机对称负载引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率,使功率因数降低;负载在传动装置中会产生有害的高次谐波,主要是以5、7、11、13次为代表的奇次谐波及旁频,会使电网电压产生严重畸变。安装SVC系统可解决上述问题,保持母线电压平稳,无谐波干扰,功率因数接近1。
(3)城市二级变电站(66kv/10kv):在区域电网中,一般采用分级投切电容器组的方式来补偿系统无功,改善功率因数,这种方式只能向系统提供容性无功,并且不能随负载变化而实现快速精确调节,在保证母线功率因数的同时,容易造成向系统倒送无功,抬高母线电压,危害用电设备及系统稳定性等问题。
TCR结合固定电容器组FC或者TCR+TSC可以快速精确的进行容性及感性无功补偿,稳定母线电压、提高功率因数。并且,在改造旧的补偿系统时,在原有的固定电容器组的基础上,只需增加晶闸管相控电抗器(TCR)部分即可,用最少的投资取得最佳的效果,成为改善区域电网供电质量的最有效方法。
(4)电力机车供电:电力机车运输方式在保护环境的同时也对电网造成了严重的“污染”,因电力机车为单相供电,这种单相负荷造成供电网的严重三相不平衡及较低的功率因数,目前世界各国解决这一问题的唯一途径就是在铁路沿线适当位置安装SVC系统,通过SVC的分相快速补偿功能来平衡三相电网,并通过滤波装置来提高功率因数。
(5)矿用提升机:提升机作为大功率、频繁启动、周期性冲击负荷以及采用硅整流装置对电网造成的无功冲击和高次谐波污染等危害不仅危及电网安全,同时也造成提升机过电流、欠电压等紧停故障的发生,影响了矿井生产。因此对提升机供电系统进行无功动态补偿和高次谐波治理,对于提高矿井提升机和电网的安全运行可靠性、提高企业的经济效益意义巨大。
提升机单机装机功率大,在矿井总供电负荷中占的比重较大。伴随煤矿生产规模的扩大、井筒的加深,要求配套的提升机装置容量也越来越大,单机容量已达到2000~3000kW,有的甚至达到5400kW,单斗提升装载量达34t。这么大的负载启动将对电网造成很大的冲击电流,无功电流成分较大,功率因数较低。所以大功率提升机对供电电网的容量和稳定性要求更高。
其中大功率提升机主要的问题是:
引起电网电压降低及电压波动;
高次谐波,其中普遍存在如2、4次偶次谐波与3、5等奇次谐波共存的状况,使电压畸变更趋复杂化;
功率因数低;
彻底解决上述问题的方法是用户必须安装具有快速响应速度的动态无功补偿器(SVC)。SVC系统响应时间小于lOms,完全可以满足严格的技术要求。
(6)远距离电力传输:全球电力目前正在趋向于大功率电网,长距离输电,高能量消耗,同时也迫使输配电系统不得不更加有效,SVC可以明显提高电力系统输配电性能,这已在世界范围内得到了广泛的证明,即当在不同的电网条件下,为保持一个平衡的电压时,可在电网的一处或多处适合的位置上安装SVC,以达到如下目的:
稳定弱系统电压、减少传输损耗
增加传输动力,使现有电网发挥最大功率
提高瞬变稳态极限
增加小干扰下的阻尼
增强电压控制及稳定性
缓冲功率振荡
(7)其他通用领域
油田,水泥化工等领域随着节能改造的有着较多的传动及变频调速等电力电子装置,其产生有害的高次谐波危害其他用电设备,导致用电效率降低,其他用电设备发热寿命降低。
『贰』 操作过电压之二——合空载线路(电容性元件)
空载线路的合闸分为两种情况,即正常合闸和自动重合闸。 这时出现的操作过电压称为合空线过电压或合闸过电压,重合闸过电压是合闸过电压中最严重的一种。
线路简化图如下所示:
首先分析正常合闸,现在介绍一种简便求法:
过电压幅值=稳态值+振荡幅值=稳态值+(稳态值-起始量)
此电路稳态值为Em,起始值为零。
由于回路中存在损耗,我国实测的过电压最大倍数为1.9倍至1.96倍。
其波形图如下所示:
物理解释:当合闸时,电源对电容电感同时充能,当电容电压为Em,充电电流为0,但由于自感效应,电感会保持原方向电流,继续对Em充电,直至电感中的能量消耗殆尽。此时电容上电压达到2Em。
然后是故障后的自动重合闸
① 三相自动重合闸
线路出现故障保护跳闸,经自动重合闸装置进行合闸操作,此时线路上存在残存电压,产生过电压比计划合闸更严重。
当线路C相接地时的示意图如下所示:
当C相接地时K2先跳闸,K1后跳闸,且当K1健全相容性电流为零、电源电压达到最大值(因电流电压相位差90°)时,开关熄弧。
经过0.5s左右,K1或K2自动重合闸,考虑最不利的情况,A、B相中的电压在合闸时达到幅值,且极性与该相导线上残存电压相反,那么重合闸时的过渡过程使导线上出现最大过电压。
中性点接地系统,健全相电压达到1.3~1.4Em,重合闸以前由于泄漏电荷经线路泄漏电阻入地(与污秽潮湿程度有关),经实测在较大范围内变化,假设经一定时间间隔残余电压下降了30%,即
在最严重情况下根据简便求法:
过电压幅值=稳态+(稳态-初态)=-Em+(-Em-0.98Em)=2.98Em≈3Em
其波形图如下所示:
重型纳合闸不一定正好在电源电压最大值的时刻,电压电压也不一定和残存电荷反相,故实际值往往比理论值会低些。
② 单相自动重合闸
只切除故障相,而健全相不与电源电压相脱离,那么当故障相重合闸时,因该相导线上不存在残余电荷和初始电压,就不会出现高幅值重合闸过电压。
影响因素如下:
a、合闸相位
合闸相位是随机的,有一定的概率分布,与断路器合闸过程中的预击穿特性及断路器合闸速度有和神关。
b、残余电荷 (大小与极性直接决定了与过电压幅值)
c、断路器的合闸不同期
由于三相线路之间有耦合,先合一相时,相当于在另外两相上产生残余电荷。
d、回路损耗
实际输电线路中,能量损耗(电阻、电晕)会引起振荡分量的衰减,使过电压降低。
e、电容效应 (使得线路的稳态电压增高,导致了合闸过电压幅值的增高)
限制措施:
⑴、针对e,可以 装设并联电抗器和静止补偿装置(SVC)。
⑵、针对d,可卜棚没 使用带并联电阻的断路器 ,来增大回路损耗使过电压降低。
其原理图如下所示:
先合辅助触头,电阻接入回路中,对高频振荡起阻尼作用,降低振荡幅值。在此过程中R越大,阻尼作用越大,产生的过电压越低。
经过8~15ms,主触头闭合,将R短接,电源直接与线路相连。此过程中R越小,主触头两端电压(稳态电压)越低,产生的过电压也越低。
综上,并联电阻的选择要合适,才能尽最大限度的使过电压降低。
其过电压倍数与电阻大小的关系图如下:
所以在上图中选择400-600Ω的合闸电阻,其过电压往往能限制在1.5Em左右。
⑶ 、同电位合闸
针对b,通过特殊装置自动选择在断路器触头两端的电位极性相同,甚至电位也相等的瞬间完成合闸操作,以降低甚至消除合空载回路过电压。
⑷ 、消除线路上的残余电荷
同样是针对b,在线路侧接电磁式电压互感器,可在几个工频周波内,将全部残余电荷泄放掉。
⑸ 、装设避雷器
在线路首端和末端装设磁吹避雷器或金属氧化物避雷器,当出现较高过电压时,避雷器应能可靠动作,将过电压限制在允许范围之内。作为断路器并联电阻的后备保护。
⑹ 、采用单相重合闸技术。
『叁』 电气原理图中,如下图,这三个符号各是什么,知道的麻烦告知下,谢谢
从左往右数:
第一个是个电抗器符号,在母线蔽庆主接线叫电抗器是用来限制短路电压的。但是在你的图中,应该是个电感符号,和电容搭配整体看是个“无功补偿装置”,是用来防止系统谐波的产生。
第二个符号,应该是个手转轮符号,说明这个电容器是可调式的。
第三个符号,整体看是个电压互感器装置,老标号是PT,新标是TV。所以图中,结合看应该是个小车式开关搜卖符号,是用来接通和断开电压互感器的装置,从而达到装置分段隔离检宏漏握修的目的。
上述,仅个人抛砖引玉的分析,欢迎大家共同交流。
『肆』 svg无功补偿器工作原理图
SVG的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。
图3:1为SVG的三种运行模式:
SVG并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿系统所需无功功率。由于SVG的响应速度极快,所以又称为静止同步补偿器(Static Synchronous Compensator, 简称STATCOM)。
一种可靠性更高、基本无谐波污染、体积更小、对环境适应能力更强的动态无功补偿装置SVG将在电力系统动态无功补偿,动态调压,变电站可调低抗、高抗,冶金、电气化铁路等场所的动态无功补偿等领域发挥积极的作用。
图3.2给出了SVG的示意图。(星接)
图3.2 SVG设备示意图(星接)
功率单元采用IGBT进行整流,中间采用电容滤波和储能,输出侧为4只IGBT组成的H桥,电路结构如下图3.3所示。
图3.3功率单元电路结构
在任意时刻,每个单元仅有三种可能的输出电压,如果G2和G3导通,从A到B的输出电压将为+U,如果G1和G4导通,从A到B的输出电压将为-U,如果G1和G3或者G2和G4导通,则从A到B的输出电压为0V。通过控制G1、G2、G3、G4 四只IGBT的导通和关断状态,在A、B输出端子可以得到U的等幅PWM波形。改变PWM波形中正电压和负电压的占空比,就改变了功率单元输出电压中交流基波的大小。
G5为泄放IGBT,当单元母线电压超过一定幅值时,G5开通,降低母线电压,使单元母线电压正常,使设备能正常运行
上图说明了如何通过改变G1、G2、G3、G4四只IGBT的触发脉冲,实现功率单元变压变频输出的基本原理。功率单元PWM输出波形为下图3.4所示。
图3.4为功率单元PWM输出
在实际系统中,控制器根据当前需要的输出电压和频率,用处理器产生G1、G2、G3、G4的触发脉冲,通过光纤传递给功率单元。因为功率单元逆变桥同桥臂上下管不能直通,需要考虑适当互锁时间,从而在每个功率单元的输出端得到大小和频率满足需要的交流基波电压输出。
SVG输出侧由每个单元的A、B输出端子相互串接而成,按照星型接法往电网输出相应电压,中性点悬浮。虽然每个功率单元输出的都是等幅PWM电压波形,但相互间有确定的相位偏移,通过串联叠加,可得到正弦阶梯状PWM波形。
图3.5各单元输出电压及叠加后的相电压波形(4级)
图3.6单元输出电压及叠加后的相电压波形(7级)
从以上波形图看出,SVG提供的输出电压正弦度很好。每个功率单元的开关频率可以较小(以减小器件损耗和发热),但SVG输出电压等效的开关频率却很高,仅含少量的极高次谐波,有确定的相位偏移,通过串联叠加,可得到正弦阶梯状PWM波形。SVG采用这种单元串联的结构,使SVG设备可以实现单元旁路功能(该功能为选件),当某一个单元出现故障时,通过使功率单元输出端子并联的继电器闭合,将此单元旁路出系统而不影响其他单元的运行。
『伍』 如何根据轨检车波形图,确定病害实际位置
我国XGJ-1准高速(140~160km/h)轨检车可检测13项内容,包括:左右轨的冲州前后答弯高低、左右轨的轨向、水平、左右轨的不平顺、曲线外轨超高、曲线半径、轨距、线路扭曲、清判闷车体水平和垂直振动加速度、左右轴箱垂直振动加速度等。
『陆』 如何使用示波器检测汽车气缸波形
用示波器检测汽车气缸波形,开始测棚慧试之前,确保蓄电池电量充足,保证起动机运转有力。发动机热机,使水温表指针指示中间位置。确保发动机气缸的喷油系统和点火系统处于关闭状态。连接一散租个压力探头至示波器的通道一(改探头是一个压力传感器,能将压力信号转换为电信号输入到示波器)。清洁火花塞周围,移除发动机缸上的火花塞,减少发动机运转阻力。启动汽车发动机进入怠速状态以清除气缸中残留的所有燃油,安装压力探头接入移除的缺口。节气门全开,踩下油门踏板,确保有足够进气量,启动发动机运转。
当检测的结果比标准值偏低,说明气缸有漏气现象
『柒』 车辆低速时和高速时曲轴位置传感器的波形图是什么
曲轴位伍和置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。它通常要配合凸轮轴位置传感器一起来工作——确定基本点火时刻。 曲轴位置传感器通常安装在分电器内,是控制系统渗橘岩中最重要的传感器丛御之一。其作用有:检测发动机转速,因此又称为转速传感...
『捌』 如何用示波器检查汽车独立点火线圈的波形
示波器点火信号波形分析是检测发动机点火系统故障常用的手段,在国内外应用十分普遍。
我们先来大致了解下汽车的点火系统:
发动机点火系统一般分为三种:第一种比较老式的是发动机所有气缸共用一个点火线圈,点火线圈产生的高压电通过分电器分配给各缸的火花塞。一般早期的汽车桑塔纳、夏利面包车等使用。然后第二种是双缸点火,即两缸共用一个点火线圈,这种点火方式只能用于气缸数目为偶数的发动机上,常见的四缸发动机就是一缸和四缸共用一个点火线圈,二缸和三缸共用一个点火线圈。第三种被称为COP独立点火,Coil-On-Plug中文直译为“线圈在火花塞上”,线圈直接安装在火花塞上,即一个汽缸一个独立线圈,俗称“独立点火”。每缸火花塞上一个点火线圈,通过凸轮轴传感器或通过监测气缸压缩来实现精确点火,它适用于任何缸数的发动机,现在生产的汽车基本上都是这种点火系统.
下图为一个点火线圈的横截面图片,从中我们可以看到两个线圈绕组,初级线圈和次级线圈。初级线圈用较粗的漆包线,通常用0.5-1毫米左右的漆包线绕200-500匝左右;次级线圈用较细的漆包线,通常用0.1毫米左右的漆包线绕15000-25000匝左右。初级线圈一端与车上低压电源(+)联接,另一端与开关装置咐戚碧(断电器)联接。次级线圈一端与初级线圈联接,另一端与高压线输出端联接输出高压电。
上图就是一个次级点火波形,它分为三个部分。
闭合部分:代表线圈通电状态,这段时间是触发闭合或者晶体管导通的时间。
点火部分:点火部分有一条点火线和一条火花线,点火线是一条垂直的线,代表克服火花塞空气间隙所需电压,上图这个是23.1KV。火花线则是一条近似水平的线,代表维持电流通过火花塞间隙所需电压。
中间部分:显示点火线圈剩余的能量,通过初级和次级之前的来回振荡来消耗剩余能量。
线圈振荡阶段应当显示最少4个尖峰(包括波峰和波谷)。损失尖峰意味着要更换线圈。线圈振荡与下一仔培个波形下降之间的时间,线圈处于空闲状态,此时线圈次级电路没有电压。下一个波形下降的开始为闭合部分,这个波形下降被称为负极性峰值,并产生一个与火花塞击穿电压相反方向的小振荡。这是由于线圈的初级电流刚开启。线圈里的电压只有在正确的点火时刻才被释放,然后高压火花点燃空气燃油混合物。火花塞击穿电压是击穿火花塞电极间隙所需的电压,上图的火花塞击穿电压即测量项的最大值23.1kV。
『玖』 怎样用示波器检测汽车故障
一、维修诊断技术的发展
汽车维修设备的发展与汽车整车技术的发展是同步发展的,汽车用电控系统的装备的应用已越来越广泛,从发动机、自动变速器、安全气囊,到牵引力控制、 车速稳定电子装置,更多的汽车上采用计算机微处理芯片,多个处理器之间相互连接、协调工作并共享信息构成了汽车网络。在这种情况下,对汽车维修技术的发展特别是如何快速准确地确定故障部位,找出故障原因是汽车维修诊断技术发展的方向.
汽车微机控制系统检测诊断设备就是在这种强大的市场需求下得到了蓬勃的发展.汽车微机控制系统检测诊断设备的发展经历了由简单的解码器,扫描器到汽车示波器等几个阶段。简单的解码器是利用配套连线和车上的电子控制单元(ECU)进行数据交流的专用仪器,只能读取与清除ECU存储器内的故障信息(故障代码及内容);扫描器增加了对汽车微机控制系统数据扫描的功能,并能显示出微机控制系统传感器等元件的实际运行参数(数据流),以便检修人员快速分析、诊断出故障部位;但是对扫瞄工具来讲,对错误信号的判断是有局限性的,对超范围的信号往往会错误的认为是正确的,或者是由于“假信号”发生的太快,扫瞄工具不能同步捕捉信号而不能显示出来。这也就是人们常常纳闷:为什么汽车明明有故障,而扫描工具不能显示故障码的原因所在。汽车示波器就是为进一步满足市场的需要,快速、准确的判断故障的部位与原因而出现的。汽车示波器是以微机为核心的汽车性能综合分析设备,它除了具有解码器和扫描器的功能外,还能通过测试接口和测试程序软件实现对汽车微机控制系统在线测试数据的自动分析,并以波形图的形式显示出来。示波器显示的波形是对所测信号的实时显示。因为取样的频率高,所以信号的每一重要细节都被显示出来,这样高的速度可在发动机运转时识别出任何可造成故障的信号。而且如果需要,任何时间都可重看波形,因为这些波形都可保存在示波器中,并在需要的时候来回放所保存的波形。示波器具有双线或多线功能,即同时可在屏幕上看到两个或多个单独的信号。这样就可观察一个信号如何影响另一个信号。例如可将氧传感器电压信号输入到通道1,将喷油器脉冲输入到通道2,然后观察脉冲是否响应氧传感器信号的变化。也可将数字示波器看成一个高速可视电压表,能够看到清晰的信号波形,在图形上能捕捉到瞬间干扰。尖峰脉冲、噪声和所测部件的不正常波形。
二、金奔腾汽车专用示波诊断仪介绍
我公司生产的汽车专用示波诊断仪型号为Diag Tech-I,具有四通道示波,采样频率为500KHz,装备有16位、33 KHz CPU,液晶显示器,带有RS232串行接口,集扫描仪、示波器、万用表与点火波形检测于一体,给广大用户在汽车维修诊断过程中如何快速、准确的确定故障的部位与原因提供了强有力的帮助。
示波技术在汽车维修诊断上的应用不仅可以对传统点火系统的初级、次级波形进行检测,还可以对电控单元的各种传感器的波形进行检测,从而依据波形的显示判断传感器的工作状态,确定故障的原因与部位。示波技术大大提高了汽车维修诊断的速度与准确性,从而使示波技术在汽车维修诊断上得到极大的应用。
对直接点火系统来讲,该形式的点火系统无高压电缆,火花塞被摇臂罩盖起来,上面还配置进气岐管 的空气 导管、曲轴箱排气管等各种零件,所以诊断发动机的点火系统相当困难。对于这种点火方式,因为没有高压电缆,无法采样二次信号电压波形,但是每缸都有点火器(点火功率三极管),因此采样点火一次信号电压波形进行点火系诊断是最好的方法,也是示波器的最得意之处。
三、维修实例
1、有一桑塔纳时代超人GSI轿车,发动机型号AJR。故障现象是发动机怠速不稳,突然加大油门时,进气回火、排气放炮且高速行驶性能不好。用解码器读出故障码是发动机霍尔传感器出现短路/断路,换件后还是一样。拔下霍尔传感器后,发动机仍可运转,更换火花塞和高压线及电子燃油泵,故障依然没有排除。再用解码器读故障码,仪器无故障码显示。用户在万般无奈的情况下,来我公司寻求技术支持。
在听完用户的基本介绍以后,用我公司生产的汽车专用示波诊断仪对汽车传感器进行检测.在检测空气流量计传感器的波形时,屏幕上显示出明显的故障波形,见插图1,由此判断空气流量计有故障.更换空气流量计后,故障消失。用示波器对传感器的波形检测往往会受到事倍功半的效果,用户对此非常满意。 为什么空气流量计损换以后,发动机控制单元不能监测到呢?上海桑塔纳时代超人GSI轿车空气流量计(MAP)采用的是热膜式空气流量计,为第四代产品,其工作原理是:ECU通过给热膜不同的电流来保持热膜恒温。当不同流量的空气流经热膜时带走不同的热量,这时的电流变化就成为进气量的度量。在热膜式空气流量计中,被电流加热的热电阻放在进气通道中,加热电阻保持一个不变的温度,由于进气气流的冷却作用,使热电阻在一定的情况下有下降的趋势。为了保持温度恒定,流过加热电阻的电流,随着进气流量、空气温度和密度的变化,因此,电流大小的变化,可以测出进气量的多少。
当空气流量计出现故障,特别是故障不太明显时,发动机电控单元往往监测不到空气流量计信号出故障,当然自诊断系统也就不可能储存或释放故障信息。相反,发动机控制单元会错误地改变喷油量和点火提前角,使发动机产生怠速不稳或加油时进气回火及排气放炮 .在此情况下,只有应用示波器对相关传感元件进行波形检测,才能手到病除。
2.一辆捷达GT型轿车,装备4缸20气门AHP电喷发动机.怠速不稳,加速时有冒黑烟现象,行驶过程中急加速顿车.
这种故障现象特征较为明显,首先拆检火花塞发现电极间隙过大,并且有积碳,可以判定混合气过浓.将火花塞更换后试火,点火能量很高,此时发动机的怠速状况有所改善,但加速时的故障现象仍然明显.
连接故障诊断仪进行检测,显示节流阀体存在故障.将故障码清除后,重新启动发动机,但该故障码再次出现.对节流阀体用清洗剂进行清洗后,对发动机电控单元进行基本设置.再次启动发动机,加速状况明显改善,怠速还是不稳.进行路试时,急加速顿车现象依然明显.再用故障诊断仪进行检测,无故障码显示.
接下来对燃油系统进行检测,怠速时燃油系统压力为0.25Mpa,拔下油压调节器真空管,加速时油压上升状况均正常。拆下喷油嘴发现其前端积碳较多,不过在实验台上进行超声波清洗、检查喷油嘴密封性、喷油量及雾化状况也未见异常。因此基本可以排除燃油系统出故障的可能性。
在排除了点火及燃油系统后,如何进一步判断故障存在的部位及原因便是用户最为关心的问题.用我公司生产的汽车专用示波诊断仪对传感元件进行检测,当检测到空气流量计时,出现非常明显的故障波形,见插图2。更换空气流量计后,故障消失,解决了困绕用户的难题。 3. 一辆97款丰田佳美SXV20L轿车,用户反映车辆低速行驶时发动机转速有时会突然升高,发动机行驶乏力,易熄火且熄火后重新起动困难,但发动机故障灯未亮.
该车的故障特征应与进气管路系统有关。首先检查各真空管有无泄漏,怠速控制阀是否存在卡滞现象。经仔细检查后确认:各真空管路情况良好,怠速控制阀除有些积碳外,阀门转动灵活。对怠速控制阀积碳进行清洗后,故障现象没有消失。接上故障诊断仪对车辆进行检测,显示结果却无故障码存在.
客户就是在这种情况下来我公司进行求援的。基于以上的介绍,初步确认是有一传感器有故障。利用我公司生产的汽车专用示波诊断仪对车辆的传感器进行波形检测。当检测到水温传感器的波形时,出现明显的故障波形。见插图3。更换水温传感器后,故障消失。 四、结束语
示波技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确度,特别是在利用扫描工具进行故障码的读取时,仪器显示无故障码,但汽车故障特征又非常明显的情况。示波技术适应汽车技术装备的发展的需要应用于汽车维修业,在实际的工作应用中因其在确定故障的部位与原因的准确与快速而得到推广与发展,示波技术已成为汽车维修业需要尽快普及与掌握的工具。
『拾』 怎样用示波器检测汽车故障
主要就是通过示波器测出的波形来判断汽车各个部件是否存在故障,当然就需要大量的时间去学习波形分析。
示波器可以测量汽车的充电/启动电路,以及各种传感器信号,如油门踏键搜板,空气流量计,凸轮轴,曲轴,爆震,氧传感器,进气压力,节气门等。还有点火信号,通信信号比如CAN, LIN。各种执行器,比如碳罐电磁阀,采油机预热塞,EGR电磁阀,电子燃油泵,怠速控制阀,压力调节器,流量控制阀,节气门伺服电机,冷却风扇等。