㈠ 机械原理课程设计
这样的问题 ,没有一百积分是没人回答的
㈡ 机械设计课程设计 带式运输机
武汉工程大学
机械设计课程
说明书
课题名称:带式运输机传动装置的设计
专业班级:2006级机制(中)1班
学生学号:0603070105
学生姓名:陈 明 伟
学生成绩:
指导教师:徐建生 教授
课题工作时间:2008.12.15至2008.01.02
武汉工程大学教务处
机械设计课程设计
-单级圆柱齿轮减速箱
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
第一节:设计任务书……………………………………………………2
第二节:传动方案的拟定及说明………………………………………3
第三节:电动机的选择…………………………………………………5
第四节:计算传动装置的运动和动力参数……………………………6
第五节:传动件的设计计算……………………………………………8
第六节:轴的设计计算…………………………………………………20
第七节:滚动轴承的选择及计算………………………………………23
第八节:键联接的选择及校核计算……………………………………23
第九节;连轴器的选择…………………………………………………23
第十节:减速器附件的选择……………………………………………23
第十一节:润滑与密封…………………………………………………23
第十二节:设计小结…………………………………………………… 23
第十三节参考资料目录………………………………………………. 24
第一节 机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中V带轮机展开式二级斜齿圆柱齿轮减速器
一. 总体布置简
图1—1
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
一般条件,通风良好,连续工作,近于平稳,单向旋转。
三. 原始数据
1.鼓轮的扭矩T(N/m):460
2.鼓轮的直径D(mm):380
3.运输带速度V(m/s):0.8
4.带速允许偏差(%):±5
5.使用年限(年):8年,大修期3年
6.工作制度(班/日):2
7.卷筒效率:∩=0.96
四.设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
第一阶段:机械系统方案设计,(选择传动装置的类型)
第二阶段:机械系统运动,动力参数计算,(电动机的 选择,传动装置运动动力参数计算)。
第三阶段:传动零件的设计计算,(传动系统中齿轮传动等的设计计算)。、 第四阶段:减速器装配图的设计。(轴系结构设计————初定轴颈,轴承型号,校核减速器中间轴及其键的强度,轴承寿命,减速器箱体及其附件结构设计)。
第五阶段:减速器装配图,零件图设计,(在绘图纸上绘制减器正式装配图,减速器中间轴及其中间轴上大齿轮的零件图)。
第六阶段:编写设计说明书。
第二节 传动方案的拟定及说明
一、 初拟三种方案如右图(图1—2、图1—3、图1—4)
图1—1
图1—1
图1—3
二、 分析各种传动方案的优缺点
方案a传动比小,齿轮及齿轮箱的尺寸小,制造成本低,工作可靠,传动效率高,维护方便,带的 寿命短,不宜在恶劣环境中工作。
方案b 传动比大,齿轮及齿轮箱的尺寸大,制造成本大,工作可靠,传动效率高,维护方便,环境适应性好。
方案c传动比小,齿轮及齿轮箱的尺寸小,制造成本高,工作可靠,传动效率高,维护方便,带的寿命短,不宜在恶劣环境中工作。
第三节 电动机的选择
一. 电动机类型和结构的选择
因为本传动的工作状况是:连续、载荷近于平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
二. 电动机容量的选择
1. 工作机所需功率Pw 。
由已知条件运输带速度(0.8m/s),鼓轮直径(380㎜) 得:
2. 电动机的输出功率
传动装置中的总效率 式中 , ………为从电动机至卷筒轴之间的各传动机构和轴承的效率。由表2—4(参考文献2)查得:闭式斜齿圆柱齿轮传动效率 ;滚动轴承(一对)的传动效率为 ;弹性联轴器的传动效率 ;卷筒效率 ;V带传动效率 ;卷筒滑动轴承的效率 。
3. 确定电动机的额定功率
根据计算出的电动机的功率 可选定电动机的额定功率
4. 电动机转速的选择及型号的确定
为了便于选择电动机的转速,先推算电动机的转速的可选范围。由表2—1(参考文献2 P4)查得V带传动常用的传动比范围 ;单级圆柱齿轮常用的传动比范围 。则电动机的转速可选范围为
可见同步转速为750r/min,1000r/min,和1500r/min的电动机均符合,这里初选同步转速为1000r/min 和1500r/min的两种电动机进行比较,如下 (表1)
方案 电动机型号 额定功率(KW) 电动机转速 电动机质量(kg) 传动装置的传动比 参考比价
同步 满载 总传动比 V带 高速级 低速级
1 Y100L2—4 3 1500 1420 38 35.3 3 3.678 3.2 1.87
2 Y132 5—6 3 .1000 960 63 23.88 3 3 2.65 3.09
由表中的数据可知两个方案均可行,但方案1参考比较较低,质量小,较方案2经济,可采用方案1,选定电动机型号为Y100L2—4,转速1500r/min..
三、电动机的技术数据和外形及安装尺寸
由表20—1表20—2查出Y100L1—4型电动机的主要技术数据和外形安装尺寸,并列表记录如下:(参考文献2 P197)
(表2)
电动机型号 H A B C D E F×GD G K AB AD AC HD AA BB HA L
4极 4极 4极 4极 4极
Y100L 100 160 140 63 28 60 8×7 24 12 205 180 105 245 40 176 14 380
第四节 计算传动装置的运动和动力参数
一、 传动装置的总传动比及其分配各级传动比
1.计算总传动比
由电动机的满载转速( )和工作机主动轴转速 可确定传动装置应有的总传动比为:
2.合理分配各级传动比
先试选皮带轮传动比 ,减速箱是展开式布置,为使两级大齿轮有相近的浸油深度,告诉级传动比 和低速级传动比 可按下列方法分配。
有 ,可取 , , 。
二.计算传动装置的运动和动力参数
如图各轴编号分别为轴Ⅰ、轴Ⅱ、轴Ⅲ。如图1—5
图1—5
1. 计算各轴转速
图1—5,所示传动装置中各轴的转速为
2. 计算各轴输入功率
各轴的输入功率为
式中: ——电动机与Ⅰ轴之间V带传动效率。
——高速级传动效率,包括高速级齿轮副和Ⅰ轴上一对轴承的效率。
——低速级传动效率,包括低速级齿轮副和Ⅱ轴上的一对轴承的效率。
3. 计算各轴输入转矩
图1—5所示传动系统中各轴转矩为
4. 将以上结果整理后列表如下
(| (表3)
项目 电动机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ 滚筒滑动轴Ⅳ
转速(r/min) 1420 473.330 128.693 40.220 40.220
功率(k0w) 3 2.880 2.7660 2.656 2.603
转矩(n/m) 2.3 58.108 205.258 630.706 630.706
传动比 i01=3 I12=3.678 I23=3.2 I34=1
效率 ∩01=0.96 ∩12=0.963 ∩23=0.9603 ∩34=0.9801
第五节 传动件设计计算
一.V带传动的设计计算(参考文献1)
由已知条件电动机功率P=3KW ,转速n1=1420r/min ,传动比 i=3 ,每天工作8小时,两班制,要求寿命8年。
试设计该V带传动。
1. 计算功率 。
由表8----7工况系数 ,故:
2. 选择V带的带型。
根据 , .由图8----11选用A型。
3. 确定带轮的基准直径 ,并验算带速v。
(1)初选小带轮基准直径,查表8-6和表8-8,取小带轮的基准直径 .
(2)验算带速V, 因为3<v<5m/s,故合适。
(3)计算大带轮大基准直径。
根据式8-15a,
根据表8-8,圆整为280mm。
4. 确定V带的中心距a和基准长度 。
(1) 根据式8-20,初定中心距
(2) 由式8-22,计算基准直径。
由表8-2选基准长度
(3) 验算小带轮的包角 。
6.计算带的根数Z.
(1) 计算单根v带的额定功率pr
△P0=0.17kw k =0.942. Kl=0.99,
于是
(2)计算V带的根数z
Z= 取4根V带。
7计算单根V带的拉力最小值
由表8-3得A型V带的长度质量为0.1kg/m所以
应使带的实际初拉力》
8计算压轴力Fp
9.带轮结构设计
材料HT200,A型,根数Z=4,长度Ld0=1600mm,中心距a=500mm
,
图1-6
二.高速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.88kw,小齿轮转速n1=473.33r/min
齿数比u=i12=3.678.
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3.678=88.272
取Z282齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=5.81076*104NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×473.33×1×(2×8×300×8)=1.09055×108
N2=N1/u=1.09055×108/3.678=2.965×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.948;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.948×650MPa=616.2MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]+ [σH])/2=(616.2+544.5)/2=580.36Mpa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 43.469mm
(2) 计算圆周速度
v= = =1.0733m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×43.469mm=43.469mm
mnt 1.7574
h=2.25mnt=2.25*1.7574mm=3.9542mm
b/h=43.469/3.9542=10.993
(4)计算重合度。
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1 根据v=1.0773m/s,7级精度,由
10—8查得动载系数KV=1.05; KHα=KHβ=1
查表10-2得 KA=1.0、
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时KHβ=1.418
由b/h=10.993, KHβ=1.418插图10-13得KFβ=1.38
固载荷系数为:
K=KAKVKHαKHβ=1×1.05×1×1.418=1.6378
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =44.7613mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
(1) 由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
(2) 由图10-18取疲劳寿命系数KFN1=0.92,KFN2=0.98
(3)查表10-28得螺旋角影响系数 .根据 。
(4)计算当量齿数
(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =361.429Mpa
[σF2]= = =280Mpa
(4) 计算载荷系数
K=KAKVKFαKFβ=1×1.05×1.1×1.38=1.5939
(5) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=12.186
(6) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.787
(7) 计算大小齿轮的 并加以比较
= =0.01147
= =0.01395
大齿轮的数值大。
2) 设计计算
mn≥ =1.3005mm
就近圆整为标准值(第一系列)为mn=1.5 分度圆直径d1=44.7613mm
则
z1 =d1cos /mn=44.7613*cos140/1.5=28.954,
取z1=28 z2=u*z1=3.678*24=106.662取107齿
4.几何尺寸计算
(1)计算中心距
a= = =105.123mm
将中心距圆整为105mm
(2)按圆整后的 中心距修正螺旋角。
因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =29*1.5/cos13043’45”=44.781mm
d 2=z2mn/ cos =107*1.5/ cos13043’45”=165.225mm
(4)计算齿宽
1*44.781=44.781mm
圆整后取B2=45mm,B1=50mm.
三.低速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.766kw,小齿轮转速n1=128.693r/min
齿数比u=i12=3.
2. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3=72
取Z72齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=2.0526*105NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×128.69×1×(2×8×300×8)=2.965×108
N2=N1/u=2.965×108/3=9.883×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.972;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.972×650MPa=631.8MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]1+ [σH]2)/2=(631.8+544.5)/2=587.75Mpa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 55.974mm
(2) 计算圆周速度
v= = =0.3772m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×55.974mm=43.469mm
mnt 2.263
h=2.25mnt=2.25*2.263mm=5.0917mm
b/h=55.974/5.0917=10.993
(4)计算重合度。
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.3772m/s,7级精度,由图10—8查得动载系数KV=1.03; KHα=KHβ=1.1
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时由b/h=10.993, KHβ=1.4206插图10-13得KFβ=1.399
固载荷系数为:
K=KAKVKHαKHβ=1×1.03×1.1×1.42.6=1.6095
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =57.303mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
1.由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
2.由图10-18取疲劳寿命系数KFN1=0.969,KFN2=1
3.查表10-28得螺旋角影响系数 .根据 。
4 计算当量齿数
(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =380.679Mpa
[σF2]= = =285.714Mpa
5 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.1×1.399=1.585
(6) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=2.236
(7) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.734
(8) 计算大小齿轮的 并加以比较
= =0.01089
= =0.01357
大齿轮的数值大。
2) 设计计算
mn≥ =1.982mm
就近圆整为标准值(第一系列)为mn=2 分度圆直径d1=57.303mm
则
z1 =d1cos /mn=57.303*cos140/2=27.8,
取z1=31 z2=u*z1=3*31=93取93齿
4.几何尺寸计算
(1)计算中心距
a= = =127.8mm
将中心距圆整为128mm
(2)按圆整后的 中心距修正螺旋角。
因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =31*2/cos14021’41”=64mm
d 2=z2mn/ cos =93*2/ cos14021’41”=192.010mm
(4)计算齿宽
1*64=64mm
圆整后取B2=65mm,B1=70mm.
四齿轮设计计算结果列表:.表1--4
齿轮
参数 齿轮1 齿轮2 齿轮3 齿轮4
mn(mm) 1 1 2 2
d(mm) 44.781 165.225 192.01
b(mm) 45 50 65 70
z 29 107 31 93
a(mm)圆整 105 128
材料 45Gr 45 45Gr 45
精度等级 IT7
六 轴的设计计算
一.中间轴的设计:
1.初选轴的材料为45号钢。查表15-3可知A0=112,最小直径为:
mm
由于此轴上要安装两个齿轮,且直径都较大,固按强度准则需加大轴的直径为0.7%/键。则最小直径d=31.140 由于最小直径地方是安装轴承的,而为了使安装齿轮的地方强度足够,应适当的加大开键槽段的轴径。固取安装轴承的地方为35mm,需根据轴承的标准系列选用。
2.轴的结构设计
(1)拟定轴上的装配方案
图四
(1) 如上图,轴上的零件分别为轴承,封油盘,小齿轮,大齿轮,封油盘。
① 径向尺寸的确定
左端1-2段选用的角接触球轴承为7307c,轴径为35mm,2-3段安装齿轮,为达到强度取42mm(也是轴承的安装定位尺寸),3-4段为一轴肩为达到齿轮定位齿轮的强度,取52mm,4-5段为了便于加工取同样直径段42mm,5-6段安装轴承同右边,按标准为35mm。
② 轴向尺寸的确定
由于齿轮2和齿轮一是要啮合的,且齿轮一的宽度比齿轮二宽5mm,平均分配到两边,又由于所有安装的轴承的内圈必须在同一直线上,所以二轴的1-2段的距离减去轴承的宽度应等于一小齿轮轮毂宽减去2-3段长度加封油盘的 宽度。3-4段为一轴肩,距离取12.5mm;4-5d段为齿轮3的宽度-2.5mm=41mm;5-6段的距离等于支撑的距离加封油盘的距离14+12=49mm。轴二的轴向尺寸确定后,轴一的部分尺寸也可以确定了。
③ 轴上零件的周向定位
齿轮2和3用两个键槽固定,根据轴的直径,查表14-1取标准,键槽为 ,键槽宽为12mm长为50mm,32mm。轴承不需考虑。
④ 轴上零件的轴向固定
左端轴承右端用封油盘固定,左端用端盖固定;齿轮2右端由封油盘固定,左端由轴肩固定;齿轮3左端用轴肩固定,右端用封油盘固定;右端轴承左端用封油盘固定,右端用端盖固定。
二. 高速级轴:
1.经过计算高速级的小齿轮,其x 2.5m;也就是说从键槽的顶端到齿根圆直径的距离小于2.5倍的模数,根据 要求将其做成齿轮轴。具体计算如下:
初选轴的材料为40Cr,调质处理。查表15-3可知,A0=112.最小直径为:
mm
由于安装带轮的地方需要开一键槽,固最小直径必须加大0.7%得d=20.447 (1+0.7%)=21.795mm为了和带轮相配合,取最小处直径为22mmm。
2.轴的结构设计
(1)拟定轴上的装配方案
图三
如上图,轴上共装有三个零件,一个带轮,两个轴承。
①径向尺寸的确定
为了满足带轮的安装要求,7-8段右端必须制出一轴肩,所以6-7段的直径d2-2=28mm,在轴的3-3段需安装一个轴承,根据计算,该处的轴承圆锥滚子轴承为30306,其内径为30mm,右端有一 当油盘并与一轴肩配合,更具轴承的安装定位尺寸可知为37mm,所以当油盘右端的轴肩为37mm,3-4段为小齿轮,其宽度为50mm,2-3段五任何零件安装,,便于加工取37mm,1-2段也需一轴承支撑,因为轴承一般配对使用,也用30306轴承,内径为35mm。
②轴向尺寸的确定
7-8段为了安装带轮,带轮的宽度是60mm固取60mm,6-7段五严格要求初取50mm,5-6段要安装一轴承宽度为20.75mm,在加上一当油盘,宽度为14mm,总长为34.75mm,2-3段单独不可确定,必须与另外亮根轴相配合后才能定其长度,5-5段是加工齿轮的宽度为50mm, 1-2段和5-6段情况一样,尺寸也一样为30mm。
③轴上零件的周向定位
带轮出用一键槽,根据轴的直径和长度查表14-1,取标准,键槽为c6*6,键槽宽为6mm长为100mm。轴承不需考虑。
④轴上零件的轴向固定
7-8-段为一带轮,左端需用一轴肩固定,6-7段安装轴承,其右端轴肩固定,但是由于轴承的是用润滑脂润滑的,为了防止轴承中的润滑脂被箱内齿轮啮合时挤出的油冲刷,稀释而流失,需在轴承内侧设置封油盘。于是轴承便由封油盘固定内圈,由端盖固定外圈。1-1段和5-6段一样处理。
三 低速级轴的设计
三轴的材料为45号钢,A0=112,最小直径为:
其上要开键槽,固需加大轴的直径。d=45.270 (1+0.7%)=49.637mm。
具体尺寸设计计算省略。
四 轴的强度校核
通过对以上三根轴的强度进行计算和分析,均达到了强度要求。
具体计算省略。
第七节 滚动轴承的选择
一 滚动轴承的选择:
通过以上计算出了三根轴的最小直径分别为d1min20.447mm=,d2min=31.140mm,d3min=45.270mm.前面计算出了每根轴所受到的力矩分别为T1=57.42N,T2=189.90N,T3=551.78.
由于减速箱使用的是两级齿轮传动,总传动比为35.4,但是外面用了一V带传动,分取了3个传动比,固减速其内部就只有35.4/3=11.8.再将11.8分给两级齿轮,则每一级的传动比就减小了许多,因此三根轴所受到了轴向力就不大,但齿轮较大,轴上零件安装的较多,径向力就较大,根据轴承的类型和各自的特性,本减速器选用了既可以承受较大径向力又可承受较大轴向力的角接触球轴承和圆锥滚子轴承。
一轴选用圆锥滚子轴承30306,二轴选用角接触球轴承7607c,三轴选用圆锥滚子轴承30311.尺寸如下表:
轴承型号 外形尺寸(mm) 安装尺寸(mm) 额定动载荷(KN) 额定静载荷(KN)
d D B D1 D2 ra
GB297-84 30306 30 72 19 40 37 1 55.8 38.5
GB292-80 7307C 35 80 21 44 71 1.5 34.2 26.8
GB297-84 30311 55 120 31.5 70 65 2 145 112
第七节 键的选择
本减速器共用键连接5个,分别是中间轴两个,低速轴一个,高速机接带轮处一个,输出轴接联轴器一个。
高速轴 C6×6×45 中间轴 A12×8×32头)A12*8*50 低速轴 A18×11×45 C14*9*70由于键采用静联接,冲击轻微,所以许用挤压力为 ,所以上述键皆安全。
第九节 连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84)其主要参数如下:
材料HT200
公称转矩 1250nm
轴孔直径48mm ,
轴孔长 112mm,
第八节 减速器附件的选择
1.通气器
由于在室内使用,选通气器(一次过滤),采用M12×1.5
2.油面指示器
选用游标尺M16
3.起吊装置
采用箱盖吊耳、箱座吊耳
4放油螺塞
选用外六角油塞及垫片M14×1.5
润滑与密封
第九节 齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
第十节 密封方法的选取
选用嵌入式缘式端盖易于制造安装,密封圈型号按所装配轴的直径确定为
21*32*3.5 54*71*7 摘自(FZ/T92010-91)
轴承盖结构尺寸按用其定位的轴承的外径决定。
第十一节 设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的
第十二节 参考目录
《机械设计》第八版 濮良贵 高等教育出版社
《机械设计 课程设计》 王昆 高等教育出版社
《机械原理》第七本 孙恒 高等教育出版社
《机械制造技术基础》 赵雪松 华中科技大学出版社
《机械基础》 倪森寿 高等教育出版社
《机械制图》第四版 刘朝儒 高等教育出版社
《机械设计简明手册》 杨黎明 国防工业出版社
《AUTOCAD机械制图习题集》 崔洪斌 清华大学出版社
㈢ 急求 机械设计课程设计说明书
MNO整理的1000份机械课设毕设,有图纸有说明书,给个采纳哦P
㈣ 机械加工设备安全防护装置的一般要求有哪些
机械加工设备安全防护装置的一般要求有哪些?
答:(1)安全防护装置应结构简单、布局合理,不得有锐利的边缘和突缘;
(2)安全防护装置应具有足够的可靠性,在规定的寿命期限内有足够的强度、刚度、稳定性、耐腐蚀性、抗疲劳性,以确保安全;
(3)安全防护装置应与设备运转联锁,保证安全防护装置未起作用之前,设备不能运转;
(4)安全防护罩、屏、栏的材料,及至运转部件的距离,按GB8196、GB8197执行;
(5)光电式、感应式等安全防护装置应设置自身出现故障的报警装置。
安全警示和安全距离、螺旋传动等都应该加设防护装置和防护隔离网,并有安全操作规程、齿轮传动、皮带轮,加以防护、链轮机械设备外露的旋转和传动部位如、联轴节:旋转传动轴
安全要求不会作废,只会加强。
重型机械加工设备分为热加工和冷加工,你问的可能是冷加工方面的,大致有镗铣床主轴直径160mm以上;5m以上的龙门铣、刨床;3.4m以上的立车;1.6m以上的卧车、磨床;9m以上的深孔钻镗床;等等,简单的说工件在30吨以上的机加工设备可列为重型机械加工设备。
《安全生产法》
第三十三条
安全设备的设计、制造、安装、使用、检测、维修、改造和报废,应当符合国家标准或者行业标准。
生产经营单位必须对安全设备进行经常性维护、保养,并定期检测,保证正常运转。维护、保养、检测应当作好记录,并由有关人员签字。
第三十五条
国家对严重危及生产安全的工艺、设备实行淘汰制度,具体目录由国务院安全生产监督管理部门会同国务院有关部门制定并公布。法律、行政法规对目录的制定另有规定的,适用其规定。
省、自治区、直辖市人民 *** 可以根据本地区实际情况制定并公布具体目录,对前款规定以外的危及生产安全的工艺、设备予以淘汰。
生产经营单位不得使用应当淘汰的危及生产安全的工艺、设备。
1、防坠安全器
2、上下限位
3、极限限位
4、缓冲弹簧
5、上下行门限位开关
6、单行门限位开关
7、顶门限位开关
8、围栏门锁
9、单行门锁
10、上下行门锁
通用设计要求
4.1 结构设计要求
4.1.1 机床的外形布局应确保具有足够的稳定性。使用机床时,不应存在意外翻倒、跌落或移动的危险。由于机床的原因不能确保足够稳定时,应采取固定措施。
4.1.2 应通过将维护、润滑和调整点设置在危险区外面,最大程度地减少进入危险区的需要。
4.1.3 除某些必须位于危险区的,如急停装置或示教盒等,手动控制装置应配置于危险区区域之外。
4.1.4 可接触的外露部分不应有可能导致人员伤害的锐边、尖角和开口。不可消除的,低于1.8米的设备尖锐易磕碰部分要加软防护。
4.1.5 易坠落的部件要有防坠落保护装置。
4.1.6 作业环境导致容易滑倒的作业地点,地面或脚踏板应采取防滑倒措施。
4.1.7 脚踏操作件应采取防护措施,以防止误操作。
4.1.8 机床的限位装置应尽量安装到无振动、不受影响的合适位置上,动作应可靠。
4.1.9 出现危害将造成不可承受影响的结构,应考虑设计双重保护。
4.1.10 运动中有可能松脱的零件、部件应设置防松装置。
4.2 控制设计要求
4.2.1 自动生产线、输送线等安全隐患不容易监控的设备,应采用安全继电器、安全PLC等专用安全器件进行安全防护设计。
4.2.2 除主电柜上主电源以外的区域电源必须使用钥匙电源开关锁,且带有挂牌后防止送电的连锁机构。
4.2.3 被保护装置触发功能引起停机后,机器的工作循环应该只有通过主控制柜启动方能再启动,而不应在危险消失后自动启动或在危险源附近就地启动。
4.2.4 所有具有相反动作不允许同时执行的,应具备互锁控制,逻辑上不允许同时发生动作。
4.2.5 不同的结构动作一旦同时发生,将造成设备或人员伤害的,应具备互锁控制,逻辑上不允许同时发生。
4.2.6 不同的结构动作必须遵循固定顺序,一旦紊乱将造成设备或人员伤害的,应具备连锁控制,逻辑上不允许紊乱发生。
4.2.7 所有涉及安全的连锁、互锁控制点,应保留硬件触点连锁、互锁控制,而不应只使用软件实现。
4.2.8 出现过载、欠电压、欠电流、过压力、欠压力、过流量等情况,将导致设备或人身安全隐患的结构,应利用敏感元件进行检测,并在接近危害时进行工作保护。
4.2.9 保护系统动作时,应具备可以同步启动的声光报警装置,提示作业人员采取措施。
4.2.10 安全保护电路引发的停止和报警应通过复位操作才能恢复。
4.2.11 220VAC电源的零线必须取自电力系统火线和中性线,或隔离变压器副边,不应利用有接零保护的机床外壳做零线。
4.2.12 设备停电、停气等能源供应中断时,应不发生任何可以预测的危险动作。如设备下沉、滑行、动作紊乱等,必要时应采取保护性设计,防止危险发生。
4.2.13 恢复供电、供气等动能供应时时,设备不能产生自行起动等非操作才发生的动作。
4.3 其它
4.3.1 设备必须考虑可预见的误用、误操作造成的危险,并设计防护措施。
4.3.2 安全装置设计采用的零部件、材料必须充分考虑其可靠性和寿命不低于设备主结构的可靠性和寿命,以保证其在设备寿命周期内一直有效。
4.3.3 电气控制系统元件必须考虑防火、防爆、防潮等特殊环境的要求,并按相关国家法规进行设计和制造。
4.3.4 有焊接、切削飞溅的场所 *** 电缆要求使用防飞溅、阻燃铜芯软电缆。
4.3.5所有用做临时电源的插座,必须设置漏电保护器。
应有护手安全装置,传动部位防护罩。
1.起升限位开关:重锤式限位、旋转限位,防止起升行程过极限。 2.起重量限制器或者电子秤,防止起吊重物过载。 3.行程限位开关:单限位、双限位(带有预减速限位),防止大、小车运行超过行程。 4.防撞装置:激光检测防撞,通过激光反射检测距离、缓冲器,吸收碰撞动能。 5.电气连锁开关:门开关、登机请求开关。 6.超速开关:检测起升电机转速,电机失速时起作用。 7.特殊起升机构有速度反馈、安全制动器(如行星减速器的铸造起重机)。安全制动器直接抱死卷筒。 8.钢结构防护设计:栏杆、防护罩等。必要处设置检修平台。 9.钢丝绳防脱槽装置。 10.特殊用途起重机设置防热辐射板、防火焰板、绝缘防酸等保护装置。 11.司机室讯响警告设备。
㈤ 机械电气安全技术课程设计任务书
这个简单啊,电气控制方面是几个常开点和常闭点的串并联组合。
㈥ 请问那位大侠有《机械电气安全技术》课程设计任务书 ---压力机两人双手按钮式安全装置设计
设计题目抄
压力机两人袭双手按钮式安全装置设计。
2、工作原理
双手按钮式安全装置的工作原理是将曲柄压力机滑块的下行程运动与对双手的限制联系起来,强制操作者必须双手同时按按钮,滑块才向下运动。此间如果操作者哪怕仅有一只手离开,或双手都离开操纵器,在手伸入危险区之前,滑块停止下行程或超过下死点,使双手没有机会进入危险区,从而避免受到伤害。这样就可切实保证人员安全。
3、功能要求
该按钮式安全装置适合2 人使用。当两人使用时,两个操作者必须双手都同时按按钮,滑块才向下运动。
4、设计任务
(1)画出该装置的工作原理简图。
(2)进行元器件选型,包括规格型号、数量、单价、总价、生产厂家等。
(3)画出电气元件实物连接示意图。
(4)编写该装置的使用说明书。
5、设计说明书
课程设计说明书是技术说明书的一种,是对课程设计的总结。主要内容包括:课程设计题目简介、元器件的选型及评价、工作原理简图的绘制、工作过程分析。
说明书用B5纸张书写,并按以下顺序装订成册:封面(按指定的统一格式)、课程设计任务书、目录、正文、参考文献。
㈦ 机械安全的设计基准
机械设计的安全基准:
1、机械设备的零部件的强度、刚度应符合安全要求,安装应牢固,不得经常发生故障。
2、机械设备的布局要合理,应便于操作人员装卸工件、加工观察和清除杂物;同时也应便于维修人员的检查和维修。
3、机械设备根据有关安全要求,必须装设合理、可靠、不影响操作的安全装置。例如:
(1)对于作旋转运动的零、部件应装设防护罩或防护挡板、防护栏杆等安全防护装置,以防发生绞伤。 (2)对于超压、超载、超温度、超时间、超行程等能发生危险事故的零、部件,应装设保险装置,如超负荷限制器、行程限制器、安全阀、温度继电器、时间断电器等等,以便当危险情况发生时,由于保险装置的作用而排除险情,防止事故的发生。
(3)对于某些动作顺序不能搞颠倒的零、部件应装设联锁装置。即某一动作,必须在前一个动作完成之后,才能进行,否则就不可能动作。这样就保证了不致因动作顺序搞错而发生事故。
(4)对于某些动作需要对人们进行警告或提醒注意时,应安设信号装置或警告牌等。如电铃、喇叭、蜂鸣器等声音信号,还有各种灯光信号、各种警告标志牌等都属于这类安全装置。
4、机械设备的电气装置必须符合电气安全的要求,主要有以下几点: (1)电机绝缘应良好,其接线板应有盖板防护,以防直接接触。
(2)供电的导线必须正确安装,不得有任何破损或露铜的地方。
(3)应有良好的接地或接零装置,连接的导线要牢固,不得有断开的地方。
(4)开关、按钮等应完好无损,其带电部分不得裸露在外。
(5)局部照明灯应使用36V的电压,禁止使用1lOV或220V电压。
5、机械设备的操纵手柄以及脚踏开关等应符合如下要求:
(1) 重要的手柄应有可靠的定位及锁紧装置。同轴手柄应有明显的长短差别。
(2)脚踏开关应有防护罩或藏入床身的凹入部分内,以免掉下的零、部件落到开关上,启动机械设备而伤人。
(3)手轮在机动时能与转轴脱开,以防随轴转动打伤人员。
(4)每台机械设备应根据其性能、操作顺序等制定出安全操作规程和检查、润滑、维护等制度,以便操作者遵守。
(5)机械设备的作业现场要有良好的环境,即照度要适宜,湿度与温度要适中,噪声和振动要小,零件、工夹具等要摆放整齐。
㈧ 机械安全技术知识
机械安全技术知识大全
机械的安全功能是指机械及其零部件的某些功能是专门为保证安全而设计的,它主要分为主要安全功能和辅助安全功能两大类。下面是我为大家整理的机械安全技术知识大全,欢迎大家阅读浏览。
第一节机械行业安全概要
知识点一、机械产品主要类别
1、机械行业的主要产品包括12类:
2、重点了解(2)重型矿山机械;(4)石油化工通用机械。
3、非机械行业包括铁道机械、建筑机械、纺织机械、轻工机械、船舶机械等。
知识点二、机械设备的危险部位及防护对策
(一)机械设备的危险部位
1、机械设备可造成碰撞、夹击、剪切、卷入等多种伤害。
2、旋转部件之间、连接件、运动部件;接近类型;通过类型;单向滑动。
(二)机械传动机构安全防护对策
1、机床上常见的传动机构有齿轮啮合机构、皮带传动机构、联轴器等,有必要把传动机构危险部位加以防护。
2、所采取的安全技术措施一般分为直接(设计时)、间接(防护装置)和指导性(安全规定、设置标志)三类。
3、重点:齿轮传动的安全防护:齿轮传动机构必须装置全封闭型的防护装置,没有防护罩不得使用;皮带传动装置的防护罩可采用金属骨架的防护网,与皮带的距离不要小于50mm,不要影响机器的运行。一般传动机构离地面2 m以下,要设防护罩。3种情况加以防护:皮带轮之间的距离在3 m以上;皮带宽度在15 cm以上;皮带回转的速度在9 m/min以上;联轴器等的防护最常见的是Ω型防护罩。
知识点三、机械伤害类型及预防对策
(一)机械伤害类型
1、机械状态:正常工作状态、非正常工作状态、非工作状态。
2、机械行业包括机械伤害、非机械危害。
3、主要危险和危害:物体打击、车辆伤害、机械伤害、起重伤害、触电、灼烫、火灾、高处坠落等14种。
(二)机械伤害预防对策措施:先后顺序
1、实现机械本质安全:①消除产生危险的原因。②减少或消除接触机器的危险部件的次数;③使人们难以接近机器的危险部位(或提供安全装置,使得接近这些部位不会导致伤害);④提供保护装置或者防护服。
2、保护操作者和有关人员安全:①通过培训来提高人们辨别危险的能力;②通过对机器的重新设计,使危险更加醒目(或者使用警示标志);③通过培训,提高避免伤害的能力;④采取必要的行动来避免伤害的自觉性。
(三)通用机械安全设施的技术要求
1、机械安全防护装置的一般要求。安全防护装置可靠,与设备运转连锁。
2、重点:紧急停车开关。紧急停车开关应保证瞬时动作时能终止设备的一切运动。对有惯性运动的设备,紧急停车开关应与制动器或离合器连锁,以保证迅速终止运行。紧急停车开关的形状应区别于一般开关,颜色为红色;紧急停车开关的布置应保证操作人员易于触及,且不发生危险;设备由紧急停车开关停止运行后,必须按启动顺序重新启动才能重新运转。
3、防护罩做平台或阶梯时,应能承受1500n的垂直力。
知识点四、机械安全设计与机器安全装置
(一)本质安全:是通过机械的设计者,在设计阶段采取措施来消除隐患的一种机械安全方法。
(二)失效安全:设计者应该保证当机器发生故障时不出危险。
(三)定位安全:把机器的部件安置到不可能触及的地点,通过定位达到安全。
(四)机器布置:空间、照明、管线布置、维护时的出入安全。
(五)机器安全防护装置
重点理解:连锁、控制、双手控制安全装置。
知识点五、机械制造场所安全技术
(一)采光:厂房跨度大于12 m时,单跨厂房的两边应有采光侧窗,窗户的宽度应不小于开间长度的1/2;多跨厂房相连,相连各跨应有天窗,跨与跨之间不得有墙封死。车间通道照明灯要覆盖所有通道,覆盖长度应大于90%车间安全通道长度。
(二)通道:包括厂区主干道和车间安全通道。
1、厂区干道的路面要求:车辆双向行驶的干道宽度不小于5m,有单向行驶标志的主干道宽度不小于3m;进入厂区门口,危险地段需设置限速牌、指示牌和警示牌。
2、车间安全通道要求。通行汽车,宽度>3m;通行电瓶车的宽度>1.8 m;通行手推车、三轮车的宽度>1.5 m;一般人行通道的宽度>l m。
(三)设备布局:长度>12 m者为大型设备,6~12m者为中型设备,<6m者为小型设备; 设备间距:大型≥2 m,中型≥lm,小型≥0.7 m; 设备与墙、柱距离:大型≥0.9 m,中型≥0.8 m,小型≥0. 7 m; 高于2 m的运输线应有牢固的防罩(网),对低于2 m的运输线的起落段两侧应加设护栏,栏高1.05m。
(四)物料堆放
1、包括工位器具、工件、材料的摆放。
2、产品坯料的存放量:产品坯料等应限量存入,白班存放量为每班加工量的1.5倍,夜班存放量为加工量的2.5倍,但大件不超过当班定额。
3、工件、物料摆放不得超高,在垛底与垛高之比为1:2的前提下,垛高不超出2m(单位超高除外),砂箱堆垛不超过3.5 m。
(五)地面状态:要求生产场地平坦、清洁。深大于0.2 m、宽大于0.1 m的坑、壕、池应有可靠的防护栏或盖板。
第二节金属切削机床及砂轮机安全技术
知识点一、金属切削机床的危险因素
静止部件、旋转部件、内旋转咬合、往复运动和滑动的危害、飞出物。
知识点二、金属切削机床的安全技术措施
1、机床运转异常状态:1)温升异常2)转速异常3)振动和噪声过大4)出现撞击声5)输入输出参数异常6)机床内部缺陷
振动故障率最大:机床由于振动而产生的故障占整个故障的`60%~70%。
2、运动机械中易损件的故障检测。
重点:易损件有传动轴、轴承、齿轮、叶轮,其中滚动轴承和齿轮的损坏更为普遍。
3、金属切削机床常见危险因素的控制措施:1)设备可靠接地,照明采用安全电压。2)楔子、销子不能突出表面。3)用专用工具,带护目镜。4)尾部安防弯装置及设料架。5)零部件装卡牢固。6)及时维修安全防护、保护装置。7)选用合格砂轮,装卡合理。
(8)加强检查,杜绝违章现象,穿戴好劳动保护用品。
知识点三、砂轮机的安全技术要求
砂轮机安装:地点选择。砂轮机正面装设不低于1.8m高度的防护挡板。
砂轮的平衡。直径大于或等于200mm的砂轮装上法兰盘后应先进行静平衡调试。
砂轮与卡盘的匹配。砂轮法兰盘直径不得小于被安装砂轮直径的1/3,且规定砂轮磨损到直径比法兰盘直径大10mm时应更换新砂轮。
砂轮机的防护罩。开口角度在主轴水平面以上不允许超过65゜,开口大于等于30゜时必须设挡屑屏板,砂轮圆周表面与挡板的间隙应小于6mm。
砂轮机的工件托架。直径在150m以上必须设置可调托架,砂轮与托架之间的距离应小于被磨工件最小外形尺寸的1/2,但最大不应超过3mm。
砂轮机使用安全要求:禁止侧面磨削;不准正面操作;不准共同操作。
第三节冲压(剪)机械安全技术
知识点一、冲压作业的危险因素
设备结构具有的危险;动作失控;开关失灵;模具的危险(伤害部位主要是手部)。
知识点二、冲压作业安全技术措施
包括改进冲压作业方式、改革冲模结构、实现机械化自动化、设置模具和设备的防护装置等。冲压作业机械化和自动化是减轻工人劳动强度、保证人身安全的根本措施。
重点:冲压设备的安全装置。按结构分为机械式、按钮式、光电式、感应式等。机械式防护装置。主要有:推手式、摆杆(拨手)、拉手安全装置。
知识点三、剪板机安全技术措施
操作剪板机时的注意事项(重点2、4、5)。不应独自1人操作剪板机;运动部位必须安装防护罩;操作者的手指保持安全距离,手指离剪刀口应保持最少200mm以外的距离,并且离开压紧装置。
第四节木工机械安全技术
知识点一、木工机械危险有害因素
刀轴转速高、多刀多刃、手工进料等。机械伤害:危险性大,发生概率高;火灾和爆炸:后果严重;木材的生物、化学危害;木粉尘危害;噪声和振动危害。
知识点二、木工机械安全技术措施
1、在设计上就应使木工机械具有完善的安全装置,包括安全防护装置、安全控制装置和安全报警信号装置。徒手操作者必须有安全防护措施,消声、吸尘或通风装置,刀轴与电气应有安全联控装置,采用安全送料装置或设置分离刀、防反弹安全屏护装置,设置遇事故需紧急停机的安全控制装置。
2、手压平刨伤手为多发性事故,手压平刨刀轴的设计与安装要求:1)必须使用圆柱形刀轴,绝对禁止使用方刀轴。2)压刀片的外缘应与刀轴外圆相合,当手触及刀轴时,只会碰伤手指皮,不会被切断。3)刨刀刃口伸出量不能超过刀轴外径1.1mm。4)刨口开口量应符合规定。
第五节铸造安全技术
知识点一、铸造作业危险有害因素
火灾及爆炸、灼烫、机械伤害、高处坠落、尘毒危害、噪声振动、高温和热辐射
知识点二、铸造作业安全技术措施
(一)工艺要求
在工艺可能的条件下,宜采用湿法作业,操作条件差的场合宜采用机械手遥控隔离操作。污染较小的造型、制芯工段在集中采暖地区应布置在非采暖季节最小频率风向的下风侧,在非集中采暖地区应位于全面最小频率风向的下风侧。
(二)建筑要求:铸造车间应安排在高温车间、动力车间的建筑群内,建在厂区其他不释放有害物质的生产建筑的下风侧;厂房主要朝向宜南北向;绿化带。
(三)除尘:电弧炉的烟气净化设备宜采用干式高效除尘器;冲天炉的排烟净化宜采用机械排烟净化设备。
第六节锻造安全技术
知识点一、锻造的特点
在金属灼热的状态下进行,所使用的设备如空气锤、蒸汽锤、摩擦压力机等,工作时发出的都是冲击力,作用力是很大的,
知识点二、锻造的危险有害因素
伤害事故:机械伤害、火灾爆炸、灼烫(800~1200)。
职业危害:噪声和振动、尘毒危害、热辐射。
知识点三、锻造的安全技术措施
12点(掌握重点启动装置3、4、5及11)。外露的传动装置(齿轮传动、摩擦传动、曲柄传动或皮带传动等)必须要有防护罩;启动装置必须能保证对设备进行迅速开关,并保证设备运行和停车状态的连续可靠;电动启动装置的按钮盒,其按钮上需标有“启动”、“停车”等字样。停车按钮为红色,其位置比启动按钮高10—12 mm;新安装和经过大修理的锻压设备,应该根据设备图纸和技术说明书进行验收和试验。
第七节安全人机工程基本知识
知识点一、定义与研究内容
(一)“人—机—环境”系统
解决安全问题的根本需求是实现生产过程的机械化和自动化。
(二)人机系统的类型:主要有两类,一类为机械化、半机械化控制的人机系统;另一类为全自动化控制的人机系统。
1)机械化、半机械化控制的人机系统:人主要充当生产过程的操作者与控制者。系统的安全性主要取决于人机功能分配的合理性、机器的本质安全性及人为失误状况。
2)全自动化控制的人机系统:人是监视着和管理者。系统的安全性主要取决于机器的本质安全性、机器的冗余系统失灵以及人处于低负荷时应急反应变差等。
第八节 人的特性
知识点一、人体测量
(一)静态测量。
测量方法:可采取不同的姿势,主要有立姿、坐姿、跪姿和卧姿等几种。
人体测量的数据是指人体不同部位的尺寸,在设计不同的设备或产品时会涉及到。
影响人体测量数据的因素:民族因素,性别、年龄因素,职业因素。
(二)动态测量
(三)人体测量数据的运用准则
最大最小准则,可调性准则,平均准则,使用最新人体数据准则,地域性准则,功能修正与最小心理空间相结合准则(着装修正量、功能修正量得到最小功能尺寸、附加心理修正量得到最佳功能尺寸)。
知识点二、人的生理特性
1、视觉
暗适应与明适应能力:暗适应的过渡时间较长,约需要30min;明适应约需1min;
眩光有害影响:使暗适应破坏,产生视觉后像;降低视网膜上的照度;减弱观察物体与背景的对比度;观察物体时产生模糊感觉等,这些都将影响操作者的正常作业。
视错觉:形状错觉,色彩错觉,物体运动错觉。其中常见的形状错觉有长短错觉、方向错觉、对比错觉、大小错觉、远近错觉及透视错觉等。色彩错觉有对比错觉、大小错觉、温度错觉、距离错觉及疲劳错觉等。
视觉损伤与视觉疲劳:眼睛能承受的可见光的最大亮度值约为106cd/m2。300m以下的短波紫外线可引起紫外线眼炎。紫外线照射4~5h后眼睛便会充血,l0~12h后会使眼睛剧痛而不能睁眼。常受红外线照射可引起白内障。直视高亮度光源如激光、太阳光等,会引起黄斑烧伤,有可能造成无法恢复的视力减退。低照度或低质量的光环境,会引起各种眼的折光缺陷或提早形成老花。眩光或照度剧烈而频繁变化的光可引起视觉机能的降低。
视觉的运动规律:人眼看一个目标要得到视觉印象,最短的注视时间为0.07~0.3s,这里与照明的亮度有关。人眼视觉的暂停时间平均需要0.17s。
2、听觉。听觉的功能有分辨声音的高低和强弱,还可以判断环境中声源的方向和远近。
听觉绝对阈限:频率阈限、声压阈限和声强阈限。
听觉辨别阈限:人耳具有区分不同频率和不同强度声音的能力。
辨别声音的方向和距离的能力。
3、人的感觉与反应
反应时间:是从包括感觉反应时间到开始动作所用时间的总和。一般条件下,反应时间约为0.1-0.5S,对于复杂的选择性反应时间达1-3S,要进行复杂判断和认识的反应时间平均达3-5S。
减少反应时间的途径:1)合理地选择感知类型(听觉的反应时间最短0.1-0.2S);2)按人机工程学原则设计机器;3)通过训练提高人的反应速度。
(二)人体的特性参数
与产品设计和操作机器有关参数:静态参数,动态参数,生理学参数,生物力学参数。
人体劳动强度参数:耗氧量、心率、人的劳动强度。体力劳动强度按劳动强度指数i大小分为4级:轻劳动、中等强度劳动、重强度劳动、很重体力劳动。
(三)疲劳
疲劳的定义:疲劳分为肌肉疲劳(或称体力疲劳)和精神疲劳(或称脑力疲劳)两种。
消除疲劳的途径:设计时应充分考虑人的生理心理因素;改善工作环境;合理安排作息时间。
3、疲劳测定的方法:主观感觉调查表法、分析脑电图、测定频闪值、智能测验、精神测验、连续拍摄人体动作的变化。
4、单调作业与轮班作业
避免作业单调的措施:培养多面手,工作延伸,操作再设计,显示作业终极目标,动态信息报告,推行消遣工作法,改善作业环境。
轮班作业:单班制、两班制、三班制或四班制等。许多企业实行“四班三运转制” 。
知识点三、人的心理特性
能力:是指一个人完成一定任务的本领。主要有感觉、知觉、观察力、注意力、记忆力、思维想象力和操作能力等。
各种能力的总和就构成人的智力,它包括人的认识能力和活动能力。
情绪与情感。不安全情绪有急躁情绪和烦躁情绪。
第九节 机械的特性
知识点一、机械安全的定义及特性
机械安全的特性。现代机械安全具有:系统性、防护性、友善性、整体性。
知识点二、机械故障诊断技术
故障诊断的基本流程包括诊断文档建立和诊断实施两大部分。诊断实施过程的基本步骤:信号检测 、特征提取(或称信号处理) 、状态识别、诊断决策 。
(三)故障诊断技术
1、振动信号的检测与分析
振动信号一般用位移、速度或加速度传感器来测量。传感器应尽量安装在诊断对象敏感点或离核心部位最近的关键点。
2、油液分析技术:应用较多的有光谱油液分析和铁谱油液分析 。
3、温度检测及红外线监测技术。
4、超声探伤技术:可以对所有固体材料进行探伤和检测。
5、表面缺陷探伤技术:磁粉探伤、渗透探伤、涡流探伤。
知识点三、 机械的可靠性设计与维修性设计
可靠性定义:指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。
可靠性度量指标:可靠度、故障率(或失效率)、平均寿命(或平均无故障工作时间)、维修度、有效度。
有效度:狭义可靠度r(t)与维修度m(τ)的综合称为有效度,也称广义可靠度。
(二)维修性设计
维修性是指对故障产品修复的难易程度。即在规定条件和规定时间内,完成某种产品维修任务的难易程度。
应考虑的主要问题:可达性、零组部件的标准化与互换性、维修人员的安全。
第十节 人机作业环境
知识点一、光环境
(一)光的度量
概念:光通量、发光强度(光强)、亮度、照度。照度不足是重要原因。
(二)照明对作业的影响
照明与疲劳、照明与事故。视觉疲劳是产生事故和影响工效的主要原因。
知识点二、色彩环境
颜色的特性颜色具有色调、明度、彩度三个基本特性。
色彩对生理的影响,视觉疲劳。
知识点三、微气候环境
构成微气候的要素:空气温度、空气湿度、气流速度、热辐射。
空气温度,分为舒适温度(21±3℃)和允许温度(舒适温度±3~5 ℃)。
空气湿度,有绝对湿度和相对湿度,相对湿度在80%以上为高气湿,低于30%为低气湿,舒适的湿度一般为40%~60%。
气流速度,室外一般为0.15m/s时空气新鲜。
(二)人体对微气候环境的感受与评价
1、微气候环境的综合评价。1)有效温度(感觉温度):干球温度、湿球温度和气流速度;2)不适指数:干球温度、湿球温度;3)三球温度指数wbgt:干球、湿球、黑球;4)卡他度:气温、湿度和风速。
2、高温作业环境对人体的影响:高温环境使人心率和呼吸加快、湿热环境对中枢神经系统具有抑制作用、高温环境下,人的水分和盐分大量丧失。
3、低温环境对人体的影响:手的触觉敏感性临界皮温是10℃左右。
第十一节 人机系统
知识点一、人机信息及能量交换系统模型
人机系统的任何活动实质上是信息及能量的传递和交换。
知识点二、人机功能分配
1、人在人机系统中的主要功能:传感功能、信息处理功能、操纵功能。
2、人机功能分配原则:笨重的、快速的、持久的、可靠性高的、精度高的、规律性的、单调的、高价运算的、操作复杂的、环境条件差的工作,适合机器;而研究、创造、决策、指令和程序的编排、检查、维修、故障处理及应付不测等工作,适合人。
知识点三、人机系统可靠性计算
(一)人机系统的可靠度计算
1、人机串联系统。人机并联系统:并行工作冗余法、后备冗余法。
2、两人监控人机系统的可靠度:异常时相当于两人并联;正常相当于两人串联。
异常情况时,Rsr′=RHb·RM=[1-(1-R1)(1-R2)]RM
正常情况时,Rsr″=RHc·RM=Rl·R2·RM
(二)人机系统可靠性设计基本原则
1、系统的整体可靠性原则、高可靠性组成单元要素原则 、具有安全系数的设计原则、高可靠性方式原则、标准化原则、高维修度原则(零件标准化、部件通用化、设备系列化)、事先进行试验和进行评价的原则、预测和预防的原则、人机工程学、技术经济性、审查原则、整理准备资料和交流信息原则、信息反馈原则、设立相应的组织机构。
2、高可靠性方式原则:冗余设计、故障安全装置、自动保险装置。
3、故障安全结构有以下几种:
①消极被动式。组成单元发生故障时,机器变为停止状态。
②积极主动式。组成单元发生故障时,机器一面报警,一面还能短时运转。
③运行操作式。即使组成单元发生故障,机器也能运行到下次的定期检查。
通常在产业系统中,大多为消极被动式结构。
;㈨ 机械设计课程设计---设计盘磨机传动装置!!!
我也在做这个题也 老兄
我只能提供样本给你哈 具体的还是得靠你自己啦
目 录
一 课程设计书 2
二 设计要求 2
三 设计步骤 2
1. 传动装置总体设计方案 3
2. 电动机的选择 4
3. 确定传动装置的总传动比和分配传动比 5
4. 计算传动装置的运动和动力参数 5
6. 齿轮的设计 8
7. 滚动轴承和传动轴的设计 19
8. 键联接设计 26
9. 箱体结构的设计 27
10.润滑密封设计 30
11.联轴器设计 30
四 设计小结 31
五 参考资料 32
一. 课程设计书
设计课题:
设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。
参数:
皮带有效拉力F(KN) 3.2
皮带运行速度V(m/s) 1.4
滚筒直径D(mm) 400
二. 设计要求
1.减速器装配图1张(0号)。
2.零件工作图2-3张(A2)。
3.设计计算说明书1份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 齿轮的设计
6. 滚动轴承和传动轴的设计
7. 键联接设计
8. 箱体结构设计
9. 润滑密封设计
10. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:
图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速器。
传动装置的总效率
为V带的传动效率, 为轴承的效率,
为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)
为联轴器的效率, 为滚筒的效率
因是薄壁防护罩,采用开式效率计算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.电动机的选择
电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW
滚筒轴工作转速为n= = =66.88r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,
则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。
方案 电动机型号 额定功 率
P
kw 电动机转速
电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动 比 V带传 动 减速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.确定传动装置的总传动比和分配传动比
(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05
(2)分配传动装置传动比
= ×
式中 分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为
= =17.05/2.3=7.41
根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29
4.计算传动装置的运动和动力参数
(1) 各轴转速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各轴输入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
则各轴的输出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各轴输入转矩
= × × N•m
电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
输出转矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.40 22.55 1440
1轴 3.26 3.19 49.79 48.79 626.09
2轴 3.04 2.98 151.77 148.73 193.24
3轴 2.83 2.77 326.98 320.44 84.38
4轴 2.75 2.70 307.52 301.37 84.38
5.齿轮的设计
(一)高速级齿轮传动的设计计算
1. 齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24
高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计
确定各参数的值:
①试选 =1.6
查课本 图10-30 选取区域系数 Z =2.433
由课本 图10-26
则
②由课本 公式10-13计算应力值环数
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25为齿数比,即3.25= )
③查课本 10-19图得:K =0.93 K =0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
许用接触应力
⑤查课本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.设计计算
①小齿轮的分度圆直径d
=
②计算圆周速度
③计算齿宽b和模数
计算齿宽b
b= =49.53mm
计算摸数m
初选螺旋角 =14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318 =1.903
⑥计算载荷系数K
使用系数 =1
根据 ,7级精度, 查课本由 表10-8得
动载系数K =1.07,
查课本由 表10-4得K 的计算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查课本由 表10-13得: K =1.35
查课本由 表10-3 得: K = =1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d =d =49.53× =51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式
≥
⑴ 确定公式内各计算数值
① 小齿轮传递的转矩 =48.6kN•m
确定齿数z
因为是硬齿面,故取z =24,z =i z =3.24×24=77.76
传动比误差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允许
② 计算当量齿数
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初选齿宽系数
按对称布置,由表查得 =1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y 和应力校正系数Y
查课本由 表10-5得:
齿形系数Y =2.592 Y =2.211
应力校正系数Y =1.596 Y =1.774
⑦ 重合度系数Y
端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系数Y
轴向重合度 = =1.825,
Y =1- =0.78
⑨ 计算大小齿轮的
安全系数由表查得S =1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10
查课本由 表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由 表10-18得弯曲疲劳寿命系数:
K =0.86 K =0.93
取弯曲疲劳安全系数 S=1.4
[ ] =
[ ] =
大齿轮的数值大.选用.
⑵ 设计计算
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:
z = =25.097 取z =25
那么z =3.24×25=81
② 几何尺寸计算
计算中心距 a= = =109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正.
计算大.小齿轮的分度圆直径
d = =51.53
d = =166.97
计算齿轮宽度
B=
圆整的
(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30
速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K =1.6
②查课本由 图10-30选取区域系数Z =2.45
③试选 ,查课本由 图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由课本 图10-19查得接触疲劳寿命系数
K =0.94 K = 0.97
查课本由 图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限 ,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查课本由 表10-6查材料的弹性影响系数Z =189.8MP
选取齿宽系数
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b= d =1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m =
齿高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度
6. 计算载荷系数K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系数K =1
同高速齿轮的设计,查表选取各数值
=1.04 K =1.35 K =K =1.2
故载荷系数
K= =1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d =d =65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩 =143.3kN•m
(2) 确定齿数z
因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9
传动比误差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允许
(3) 初选齿宽系数
按对称布置,由表查得 =1
(4) 初选螺旋角
初定螺旋角 =12
(5) 载荷系数K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由课本 表10-5查得齿形系数Y 和应力修正系数Y
(7) 螺旋角系数Y
轴向重合度 = =2.03
Y =1- =0.797
(8) 计算大小齿轮的
查课本由 图10-20c得齿轮弯曲疲劳强度极限
查课本由 图10-18得弯曲疲劳寿命系数
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
计算大小齿轮的 ,并加以比较
大齿轮的数值大,选用大齿轮的尺寸设计计算.
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
计算中心距 a= = =102.234
将中心距圆整为103
修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正
分度圆直径
d = =61.34
d = =143.12
计算齿轮宽度
圆整后取
低速级大齿轮如上图:
齿轮各设计参数附表
1. 各轴转速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各轴输入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各轴输入转矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P ,转速 ,转矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圆周力F ,径向力F 及轴向力F 的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取
输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本 ,选取
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.
D B
轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,
③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .
⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,
高速齿轮轮毂长L=50 ,则
至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.
传动轴总体设计结构图:
(从动轴)
(中间轴)
(主动轴)
从动轴的载荷分析图:
6. 按弯曲扭转合成应力校核轴的强度
根据
= =
前已选轴材料为45钢,调质处理。
查表15-1得[ ]=60MP
〈 [ ] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩 为 =311.35
截面上的弯曲应力
截面上的扭转应力
= =
轴的材料为45钢。调质处理。
由课本 表15-1查得:
因
经插入后得
2.0 =1.31
轴性系数为
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
综合系数为: K =2.8
K =1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩 为 =295
截面上的弯曲应力
截面上的扭转应力
= = K =
K =
所以
综合系数为:
K =2.8 K =1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d =55 d =65
查表6-1取: 键宽 b =16 h =10 =36
b =20 h =12 =50
②校和键联接的强度
查表6-2得 [ ]=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座壁厚
10
箱盖壁厚
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径
M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚
9 8.5
轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=9550 9550 333.5
查课本 ,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm
㈩ 请问那位大侠有《机械电气安全技术》课程设计任务书 ---压力机两人双手按钮式安全装置设计
QQ254539369