㈠ 飞机主要哪些部件组成各部件作用是什么
大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。
一、机身
机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
二、机翼
机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。
机翼通常有平直翼、后掠翼、三角翼等。机翼前后绿都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;
右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。
三、尾翼
1、垂直尾翼
垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后线设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右用航时,方向舵右们,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头有偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵。整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2、水平尾翼
水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。同样飞行员推杯时升降舵下偏,飞机低头。
超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。飞行员推拉杆时整个水平尾翼都随之偏转。飞行员用全动平尾来进行俯仰操纵。其操纵原理与升降舵相同。某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。
有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。这时放在机翼前面的水平尾翼称为鸭翼或前翼。也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。
四、起落装置
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。
早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。水上飞机的起落架由浮筒代替机轮。
五、控制系统
飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。
六、动力装置
飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。 喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。
设计制造
大多数飞机是由公司制造的,目的是为客户批量生产。小型涡轮螺旋桨飞机的设计和规划过程(包括安全测试)可持续长达四年,而大型飞机则需要更长的时间。
在此过程中,确定了飞机的目标和设计规范。首先,建筑公司使用图纸和方程、模拟、风洞测试和经验来预测飞机的行为。公司使用计算机来绘制、规划和进行飞机的初始模拟。然后在风洞中测试飞机全部或某些部分的小型模型和模型,以验证其空气动力学特性。
当设计通过这些过程时,该公司构建了数量有限的原型用于地面测试。航空管理机构的代表经常进行首飞。飞行测试继续进行,直到飞机满足所有要求。然后,国家航空管理公共机构授权该公司开始生产。
在美国,该机构是美国联邦航空管理局(FAA),在欧盟是欧洲航空安全局(EASA)。在加拿大,负责和授权大规模生产飞机的公共机构是加拿大运输部。
当零件或组件需要通过焊接连接在一起以用于几乎任何航空航天或国防应用时,它必须符合最严格和特定的安全法规和标准。Nadcap或国家航空航天和国防承包商认证计划为航空航天工程制定了质量、质量管理和质量保证的全球要求。
运输公共机构的许可。例如,欧洲公司空客制造的飞机需要获得美国联邦航空局的认证才能在美国飞行,而美国波音公司制造的飞机需要获得欧洲航空安全局的批准才能在欧盟飞行。
为了应对机场附近城市地区空中交通增长造成的噪声污染增加,法规已导致飞机发动机的噪声降低。
业余爱好者可以自行设计和建造小型飞机。其他自制飞机可以使用预先制造的零件套件组装成基本飞机,然后必须由制造商完成。
很少有公司大规模生产飞机。然而,为一家公司生产一架飞机实际上是一个涉及数十家甚至数百家其他公司和工厂的过程,这些公司和工厂生产进入飞机的零件。例如,一家公司可以负责起落架的生产,而另一家公司则负责雷达。
此类零件的生产不限于同一个城市或国家;就大型飞机制造公司而言,此类零件可能来自世界各地
零件被送到飞机公司的主要工厂,生产线就在那里。在大型飞机的情况下,可以存在专用于飞机某些部件组装的生产线,尤其是机翼和机身。
完成后,将对飞机进行严格检查以寻找缺陷和缺陷。经检查员批准后,飞机将进行一系列飞行测试,以确保所有系统都正常工作并且飞机操作正常。通过这些测试后,飞机就可以接受“最终修饰”(内部配置、喷漆等),然后就可以为客户做好准备了。
以上内容参考 网络-飞机
㈡ 飞机主要哪些部件组成各部件作用是什么
一,飞机的原理飞行
飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
二,飞行的主要组成部分及功用
到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。
1.
机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。
2.
机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3.
尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
*飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
㈢ 轮式起落架由哪些部分组成
【直升机起落装置的分类】 在陆地上使用时,直升机起落装置有轮式起落架和滑橇式起落架两种。如果要求直升机具备在 水面起降或应急着水迫降能力,一般要求有水密封机身和保证横侧稳定性的浮筒,或应急迫降浮筒。对于舰载直升机,还需装备特殊着舰装置,如拉降设备等。现详述如下:
1、轮式起落架缺棚: 和固定翼飞机相似,直升机轮式起落架由油气式减震器和橡胶充气机轮组成。优点是可以收放,有利于减小飞行阻力;地面滑行、移动方便,对起降地点有很好的适应性。缺点是结构较复杂,重量较大,容易损坏;不适合小型直升机使用。
2、滑橇式起落架:优点是结构简单,重量轻;可靠性肢搭高,不易损坏。缺点是无法收放,容易增大阻力;地面滑行、移动不便,且对起降地点适应性差;不适合大中型直升机。
3、浮筒式起落架:主要用于水上降落,可以看作滑橇式的衍生。
【直升机起落装置】是直升机上用于地面停放时支撑重量和着陆时吸收撞击能量的部件。主要作用是吸收在着陆时由于有垂直速度而带来的能量,减少着陆时撞击引起的过载,以及保证在整个使用过程中不发生“地面共振”。此外,起落装置往往还用来使直升机具有在地面运动的能力,减少滑行时由于地面不平而产生的撞击与颠簸。
直升机起落架减展器除了具有吸收伏饥则着陆能量、减小撞击等功能以外,还需要通过减震器弹性和阻尼的配置消除“地面共振”。为了在所有使用状态减震器都能提供阻尼,消除“地面共振”的发生,直升机上普遍采用双腔式减震器。
㈣ 起落架详细资料大全
起落架是飞机下部用于起飞降落或地面(水面)滑行时支撑飞机并用于地面(水面)移动的附属档案装置。起落架是唯一一种支撑整架飞机的部件,因此它是飞机不可分缺的一部份;没有它,飞机便不能在地面移动。当飞机起飞后,可以视飞行性能而收回起落架。
㈤ 飞机的翅膀叫什么名字
飞机的翅膀叫机翼。
翼主要是指飞行动物的翅膀,但是飞机是由人类制造出来的飞行器械,而且飞机的翅膀发生的作用与飞行动翅膀的作用是不同的,为了区别这两种不同我们把飞行动物的叫做翅膀把飞机的叫做机翼。
机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,与尾翼一起形成良好的稳定性与操纵性。另外可以在机翼内部装载弹药、设备和油箱,在机翼上可以安装起落架、发动机、悬挂导弹、副油箱以及其他外挂设备。
飞机的各部位名称
1、机翼
机翼—主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定渣缓闷和操作作用。
在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。
2、机身
机身—主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3、尾翼
尾翼—包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为哪培全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4、起落装置
起落装置—飞机的起落架大都由如弯减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5、动力装置
动力装置—动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电等。
㈥ 谁能跟我讲解飞机上的各部件作用
超轻型飞机-蟋蟀
蟋蟀的原型机(注册号F-WTXJ)装有两台137cc的单缸二冲程Rowena6507J发动机,单台重6.5公斤,输出功率9马力。作为当时最小的双引擎飞机,蟋蟀的载重比是最高的,有效载荷达空重的1.7倍!由于特殊的设计使得整架飞机的拆装只要5分钟,其极小的尺寸和重量也便于运输。
蟋蟀的首飞是在1973年7月19日,是由有12000小时飞行经验的68岁老飞行员Robert Buisson试飞的,在15天的时间里共试飞了13个小时,动作包括了横滚、急上升转弯、半滚倒转、倒飞等特技动作!试飞中最大飞行速度超过220公里/小时。试飞得出飞机具有很好的稳定性和操纵性,飞行员不需要特殊的技术就可以驾驶。难得的是蟋蟀操纵起来象一架单发飞机,它的单发飞行性能特别棒,这主要得益于发动机装配很一致、座舱盖巧妙的避开了螺旋桨的滑流,而且尾翼的设计使得单发停车时不会带来危险的操纵问题(众所周知,双发飞机单发停车后的横侧操纵很麻烦)。当把一台发动机的油门收到最后,手脚松开杆舵,蟋蟀只会缓慢的进入柔和的转弯。
以下是蟋蟀的一些详细资料:
类型:
双发单座微型飞机,最大使用载荷+10g,-5g
机翼:
悬臂式矩形下单翼,翼型相对厚度21.7%(按弦长48厘米算,最大厚度在10.4厘米),机翼上反角4度,翼根安装角1度,翼尖-30秒,无后掠角。机翼为单梁盒型结构,主梁是两块缘条铆接在一块腹板上,均为AU4G铝制作,梁沿翼展方向带一定的扭转角,一端是类似滑翔机上的“叉舌”,用来和机身快速连接(只需2分钟)。翼肋是由Klegecell(一种聚胺酯泡沫塑料)切割而成,总共70块。蒙皮是单块的AU4G铝板,前缘是预成型的(直接蒙是很困难的),之后被粘接到翼肋和梁上。每块机翼的两端各是一个铝翼肋。在机翼的后缘连接了两块全展长的襟副翼(用作襟翼时上偏5度,下偏30度;用作副翼时上偏8度下偏5度),为无梁硬壳式结构,每块有4个金属翼肋(两端和两个连接处各一个),全展长填充了20%弦长的Klegecell泡沫塑料,每块襟副翼在根部都有一个球型连接用来和操纵系统相接。除了带翼尖副油箱的改型有一根铝输油管贯穿翼盒外,没有操纵刚索或连杆通过。
尾翼:
悬臂式T型尾翼,包括一块带后掠角的垂尾和一块平直矩形 全动平尾,结构都类似机翼结构,没有调整片;平尾是硬式连杆操纵,而方向舵则是软式刚索操纵。平尾的载荷感觉由一根弹簧绳提供。
机身:
简单的全金属盒型结构,分前后两段,后段的截面呈倒三角形,前段则是矩形,前后两段通过四个角片连接在一起;机身中粘接有Klegecell泡沫塑料的加强隔框;AU4G的骨架在机翼、起落架、尾翼、发动机支杆等连接处都有接头。
起落架:
不可收放的前三点式,前轮装在一个弹簧减震器上,并且与方向舵操纵系统相连。主轮装在玻璃钢制的悬臂式支柱上。主轮尺寸为210-70,前轮为200-50,刹车为炭片盘式。三个轮子都装有整流罩(原型机没有)。
动力装置:(适用MC-12)
两台单缸二冲程活塞发动机,单台排量120cc,最大输出功率12hp/5300rpm,重量9公斤,驱动一副双叶螺旋桨,薄膜式化油器准许飞机倒飞;油箱装在机身中。后来的改型装有各类发动机,甚至喷气发动机!
座舱:
巨大的透明座舱盖向右打开,左座舱壁上有通风口,没有加温装置。
尺寸:
翼展(有或没有副油箱): 4.90米
翼弦(包括襟副翼,等长): 0.63米
翼弦(不包括襟副翼,等长): 0.48米
机翼总面积: 3.10平方米
展弦比: 7.75
机长: 3.91米
机高: 1.20米
平尾展长: 1.55 米
主轮距: 1.10 米
前主轮距: 1.15 米
螺旋桨直径: 0.75米
螺旋桨中心距: 0.95米
座舱
长: 1.30米
最大宽度: 0.55米
最大高度: 0.82米
重量:
空重: 75公斤
最大起飞着陆重量: 180公斤
主油箱载油量: 20公升
副油箱载油量: 24公升
最大翼载: 58.1公斤/平方米
最大功载: 10.06公斤/千瓦
性能:
最大允许速度: 293公里/小时
最大平飞速度: 220公里/小时
最大巡航速度(75%功率): 195公里/小时
失速速度:
襟翼放下: 77公里/小时
襟翼收上: 93公里/小时
海平面最大爬升率: 336米/分钟
单发海平面最大爬升率: 80米/分钟
升限: 4600米
起飞滑跑距离: 170米
㈦ 遥控飞机主要组成部分在飞行中起到什么样的作用
遥控飞机的飞行原理是根据空气动力学来设计的,在设计的时候要遵守这三个守恒定律.质量守恒是只有在气体的速度高至必须考虑相对论效应时此定律才会失效。动量守恒由牛顿第二定律推导可得。能量守恒在不考虑粘性时,即机械能守恒;在必须考虑粘性的情况下,即机械能和热能的守恒。这样方可保证飞机在空中能保持不下落的状态,大多数遥控飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成.这五个部分在飞行中起到什么样的作用呢? 1. 机翼—机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身—机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼—尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置—飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置—动力装置主要用来产生拉力和推力,使飞机前进。
㈧ 民航客机起落装置大多都是可收放式的对吗
飞机起落架系统简介;起落架是飞机的重要部件,用来保证飞机在地面灵活运;后三点式起落架具有以下优点:(1)在飞机上易于装;时的姿态与地面滑跑、停机时的姿态相同;暴露出了越来越多的缺点:(1)在大速度滑跑时,遇;(3)在起飞、降落滑跑时是不稳定的;前三点式起落架的主要优点有:1)着陆简单,安全可靠;接地时,作用在主轮的撞击力使迎角急剧减小,因而不;2)前起落架。
起落架是飞机的重要部件,用来保证飞机在地面灵活运动,减小飞机着陆撞击与颠簸,滑行刹车减速;收上起落架减小飞行阻力,放下支持飞机。本文将简要介绍现代民用飞机起落架的组成及工作。 一、起落架的作用 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。概括起来,起落架的主要作用有以下四个: 1、承受飞机在地面停放、滑行、起飞着陆滑跑时的重力; 2、承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;3、滑跑与滑行时的制动;4、滑跑与滑行时操纵飞机。二、起落架的配置形式 起落架的布置形式是指飞机起落架支柱(支点)的数目和其相对于飞机重心的布置特点。目前,飞机上通常采用四种起落架形式: 1、后三点式:这种起落架有一个尾支柱和两个主起落架。并且飞机的重心在主起落架之后。后三点式起落架的结构简单,适合于低速飞机,因此在四十年代中叶以前曾得到广泛的应用。目前这种形式的起落架主要应用于装有活塞式发动机的轻型、超轻型低速飞机上。