A. 求化工原理的设计
http://www.chem-pm.com/shownew.asp?id=1188&hp=news
绣花鞋 18:38:45
何 勇(安徽省化工研究院 , 安徽合肥 230041) 摘要:2002年,我国CPE产量位居世界第一。干燥工序是CPE生产中一个重要环节,本文描述了CPE的干燥原理和干燥特点,选择了“气流-沸腾”干燥工艺,对比了几种CPE干燥工艺的工程数据。 关键词:干燥;氯化聚乙烯;工艺 前言 氯化聚乙烯(CPE)是由高密度聚乙烯经氯化制得的一种改性氯化高聚物,含氯量一般控制在30%~50%(质量份数)。产品外观为白色粉末或颗粒,170℃以上分解,类似于橡胶弹性体。2002年我国总生产能力达17万吨,实际产量为10万吨,已是世界上第一大生产国。在我国主要用于硬PVC制品的抗冲击改性。我院从上世纪70年代开始进行水相法CPE的研制工作,目前是国内主要CPE成套生产技术转让院所。干燥工序是CPE生产中主要耗能工序之一,CPE的干燥问题曾一度成为技术难题,制约生产的“瓶颈”,其工艺与设备的选择是否合理,决定着一个企业的生产成本、生产能力与劳动强度。 1 、PE的干燥原理 湿分以松散的化学结合形式或以液态溶液存在于固相中,或集在固体的毛细微结构中,这种液体的蒸汽压低于纯液体的蒸汽压,称之为结合水分;而游离在表面的湿分则称为非结合水[1]。由于在CPE的大分子结构中存在极性基因,而其粉末的结构又十分疏松,以致其湿粉中不仅会有“非结合水”,且会有“结合水”,要将其干燥到不大于0.3%(湿基)的含水量是比较困难的(此时方视为干燥合格)。为此我们选择热空气作为传热介质进行(流态化)干燥,含有水分的颗粒物料与热气流接触,由于其表面的水蒸汽压大于热空气中的水蒸汽分压,水蒸汽就由物料颗粒表面向热空气中扩散,而被不断流动更新的热空气带走。随着物料表面水分的不断汽化,物料颗粒内部的湿度又大于其表面湿度,形成了湿度梯度,则颗粒内部的水分不断地向表面扩散,直至达到该物料的平衡水分为止。 2 、PE的干燥特性 为了选择合适的CPE干燥工艺和合适的干燥器,我们对CPE进行干燥试验,得知干燥条件为:大气温度21℃、大气相对湿度90%、热风温度55±1℃,CPE的平衡水分接近于0,其第一临界湿含量为12%左右(干基),其第二临界湿含量为4%左右(干基),并且,其内部水分的干燥是比较困难的。 3 、PE的干燥工艺 PE的生产过程是一个批量生产、间歇操作、顺序控制的过程,CPE浆料经离心机离心后,得到含水率30%~40%(湿基)、最小颗粒150μm、最大颗粒不超过500μm、平均颗粒220μm的湿料。此时进入干燥工序,其工艺流程如下。湿物料由料斗加入,通过螺旋输送器进入气流干燥管,同时开启空气加热器和沸腾床顶部的引风机,物料经气流管初步干燥后进入沸腾床,细物料经旋风分离器捕集后也落入沸腾床继续干燥;控制进风温度与床层温度,调节进风量与风速,当床层与床顶温度得到工艺要求后,吹冷风降温,物料经出料阀流入包装袋。 4、结果和讨论 (1)工艺路线的选择 气流干燥也称“瞬间干燥”,使加热介质与待干燥固体颗粒直接接触,因相之间的传热传质的表面积大而使体积传热系数ha也相当高,普通直管气流干燥器的ha为2300~7000w/(m3.K)。热效率高,处理量大,对CPE“非结合水”干燥效果明显。由于物料在气流管中的停留时间较短,所以对CPE中的“结合水”干燥比较困难,若单用此法干燥CPE需反复干燥5~6次方能合格,生产周期长、劳动强度大、物料损失多、能量消耗大、工作环境恶劣。 沸腾干燥由于物料在沸腾床中剧烈搅动,大大地减少了气膜阻力,因而热效率高,更重要的是物料的停留时间可以任意调节。但单用此法干燥CPE,生产中容易产生“结床”或“跑料”现象。原因是:从离心机过来的湿料,含水率较高,物料较重,进入沸腾床后,若引风机风压不够,物料在床中“沸腾”效果欠佳,则物料很容易结团,以致最终整体结于床中。为避免产生“结床”现象,需提高引风机风压;但随着干燥过程的进行、物料水分的减少、颗粒的变轻,在引风机的排风尾气中会夹带有大量物料,特别在接近干燥终点时“跑料”尤为明显。 考虑到我们的CPE批量与间歇式生产的特点,根据气流干燥与沸腾干燥的各自优点,决定选择二者串联的工艺。 (2)干燥器型式的选择 气流管我们选用的是管径交替缩小和扩大的脉冲式干燥管,加入的物料在管径小的干燥管内得到加速,在管径大的管内突然扩散减速,如此交替进行,热空气和颗粒之间的相对运动速度较大,从而强化了传热传质的效果。根据CPE的干燥特点,沸腾干燥器选用的是单层卧式沸腾床,此床结构简单,容易操作,干燥速度快,处理量大。 (3)CPE干燥的工程数据 安徽省化工研究院自上世纪80年代首次用水相法生产CPE(千吨级)以来,到目前为止,在国内技术转让已达成十几家,在干燥工序上,经历了气流干燥、沸腾干燥、气流-沸腾干燥的不同阶段,下表列出了不同干燥工艺的对照工程数据。 表1 不同干燥工艺的对照工程数据 生产单位 原芜湖化工厂 本院试验厂淮北恒欣 生产规模/t a-1 800 500 3000 干燥形式 φ150双级气流 沸腾干燥 气流--沸腾 物料批号 80-6-13 02-06 含水量/%(wb) 湿粉 40 36 35 干粉 0.3 0.3 0.3 生产周期/h(批) 6.5 4.0 2.5 耗蒸汽量/t t-1(CPE) 4.0 2.2 1.9 耗电量/kWh t-1(CPE) 400 220 60 劳动强度 大 一般 小 5、结束语 干燥工序是CPE生产中一个重要环节,采用气流-沸腾干燥工艺符合CPE干燥特性。干燥设备结构的设计(如气流分布板开孔率[3])、附件(如风机与旋风分离器等)的选型,是影响干燥的重要因素,我们目前已研制出不同生产能力的系列专用氯化聚乙烯干燥装置,并在实际生产中取得了显著的经济效益和社会效益。 参考文献: [1] 潘永康,王喜忠.现代干燥技术[M].北京:化学化工出版社,1998,12-13. [2] 杨云.CPE沸腾干燥试验[J].安徽化工,1991(CPE专辑):34-36. [3] 何勇,宋秋生等.CPE干燥用沸腾床气流分布板开孔率的计算方法初探[J].安徽化工,2000,26(6):43-45. Making research Into drying process and technology of CPE HE Yong (Anhui Research Institute Of Chemical Instry ,Anhui Hefei 230041)
B. 旋风除尘器的原理与计算
旋风除尘器于1885年开始使用,已发展成为多种型式。按其流进入方式,可分为切向进入式和轴向进入式两类。在相同压力损失下,后者能处理的气体约为前者的3倍,且气流分布均匀。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从液体中分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除0.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。选用耐高温、耐磨蚀和腐蚀的特种金属或陶瓷材料构造的旋风除尘器,可在温度高达1000℃,压力达500×105Pa的条件下操作。从技术、经济诸方面考虑旋风除尘器压力损失控制范围一般为500~2000Pa。
在设计除尘器的进口截面时,必须使进入口气速为一适应值,一般为18~20m/s,最好不要超过30m/s,浓度高和颗粒粗的粉尘入口速度应选小些,反之可选大些。
旋风除尘器与其他除尘器相比,具有结构简单、无运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点,主要用于捕集5~10μm以上的非黏性、非纤维性的干燥尘粒。
C. 旋风除尘器工作原理
利用旋转的含尘气体所产生的离心力,将粉尘从空气中分离出来的一种干式净化设备,称为旋风除尘器。旋风除尘器应用挺广泛的,旋风除尘器特点是结构简单,除尘效率较高,操作简单,价格低廉。为了提高除尘效率,降低阻力,已出现各种型式的旋风除尘器,如媒旋型、蜗旋型、扩散型、旁路型、旋流型和多管式旋风除尘器等。
旋风除尘器对于大于10μm的较粗粒粉尘,净化效率很高。但对于5~10μm以下的细颗粒粉尘(尤其是密度小的细颗粒粉尘)净化效率较低,所以旋风除尘器多用于粗颗粒粉生的净化,或用于多级净化时的初步(第一级)处理。
目前在粉尘粒子粗、含尘浓度较大、要求除尘效率不太严格和高温高压条件下或是在流化床反应器内以及作为高效除尘器的预除尘器等方面,旋风除尘器仍不失为理想的除尘设备。对数微米以上(如>5μm)的尘粒使用小型高效旋风分离器有着良好的性能,对大气量可以采用数个至数十个并联设置的多管式旋风除尘器。当然设计与管理这种小型旋风除尘器或多管式旋风除空器须注意其结构应与处理的气体和粉尘的特性相适应,否则也可能导致不良后果(如堵塞与磨损等)。
但另一方面,它对细徴尘粒(如<5μm)的分离效率仍很低,而这种数微米以下的粉尘颗粒正是污染大气的主要危害。为了保护坏境以及进一步提高化工等产品的成量和降低成本,显然单纯使用旋风除生器分离含尘气体是不能満足要求的。
随着旋风除尘器的使用日益广泛,人们对其结构改进,研制出许多性能良好的旋风除尘器。如在磷肥工业中,由于粉尘易吸湿潮解、堵塞灰斗或黏结在筒壁上,现在已广泛采用利用气流运动带动清扫链条或钢丝绳运动清壁,在灰斗中设置旋转刮刀,防止堵塞;为防止气体冷凝,设置蒸汽盘管或电热带进行保温处理,増加了设备结构的复杂性。在水泥工业,为了提高旋风除尘器的使用寿命,不仅采用耐磨、耐高温的钢材、也使用耐热混凝土衬里或陶瓷衬里,内筒采用可多次更换的小件构成。
D. 设计旋风除尘器应考虑哪些主要结构尺寸
旋风除尘器的结构主要有进气管,筒体,锥体,出气管,下灰管,灰斗,卸灰阀组成。
主要结构的尺寸是
1.筒体直径:D0=150~1100mm
2.筒体高度:H1=1~1.5D0
3.入口尺寸:H/W=2~4,H=0.5D0, W=0.2D0
4.排气管:De=0.4~0.6D0 ;S>=H
5.椎体:H2>=L-H1约等于2D0
6.排尘口:Dd约等于1/3D0
如果还有疑问请继续追问,我在线为你解答
E. 简述气流干燥器的结构特点及工作原理
气流干燥器:通常与物料的粉碎操作结合进行。湿物料从加料槽通过可以调节数量的投入器送入加料滚筒,借加料滚筒的转动送入直立管的下部。空气由送风机送入预热器加热到80-90℃而后吹入直立管,管内流速决定于湿颗粒的大小和密度,一般是10-20米/秒。已干燥的颗粒被强烈的气流一直带到缓冲器内(上端封闭),再沿降落管落入旋风分离器内。干物料沉降后经卸料滚筒排出,废气通过袋滤器而由排气管的上端排走。主要优点是:(1)热空气与被干燥物料直接接触,干燥速度快,强度高;(2)干燥时间短,仅需5-7秒;(3)结构简单,占地面积小;(4)适用于大量生产。缺点是消耗能量较多。
工作原理:
湿物料自螺旋加料器进入干燥管,空气由鼓风机鼓入,经过加热器加热后与物料汇合,在干燥管内达到干燥的目的。干燥后的物料在旋风除尘器和布袋除尘器得到回收。
F. 精密干燥箱的选型技术概述
同其他工业技术一样,干燥技术在应用过程中也得到长足的进步。已开发出的干燥机的种类已达400多种,而且有约200多种干燥机已应用于工业化生产,其中出现了许多新型干燥机,它们有的是对普通干燥机进行结构上的改进,有的借鉴吸收了其他干燥机的优点,有的完全是一种新想法。
干燥又是工业耗能相当大的一个单元操作,据资料记载,发达国家工业耗能的14%被用于干燥,有些行业的干燥耗能甚至占到生产总耗能的35%,而且这个数字在不断地增大。同时,运用矿物燃料作为热源进行干燥操作产生大量的二氧化碳等气体。干燥设备的尾气(这些气体中夹带一些粉尘)对大气环境有不良的影响,这对于日益引起全球关注的“环境保护”是一个极大的挑战。
几乎所有的工业都离不开干燥操作,虽然正确地了解干燥及干燥设备的工作机理有助于成功地完成干燥过程,但是仍然需要我们不断地投人人力和物力去进一步进行干燥技术的研究和开发,以使其在生产高质量产品的同时,有效地利用能源,减少对环境的不利影响,并且更易于实现过程操作和控制。
精密干燥技术特点
干燥技术有很宽的应用领域,面对众多的产业、理化性质各不相同的物料、产品质量及其他方面千差万别的要求,干燥技术是一门跨行业、跨学科、具有实验科学性质的技术。通常,在干燥技术的开发及应用中需要具备三个方面的知识和技术。第一是需要了解被干燥物料的理化性质和产品的使用特点;第二是要熟悉传递工程的原理,即传质、传热、流体力学和空气动力学等能量传递的原理;第三要有实施的手段,即能够进行干燥流程、主要设备、电气仪表控制等方面的工程设计。显然,这三方面的知识和技术不属于一个学科领域。而在实践中,这三方面的知识和技术又缺一不可。所以干燥技术是一门跨行业、跨学科的技术。
现代干燥技术虽已有一百多年的发展史,但至今还属于实验科学的范畴。干燥技术还缺乏能够精准指导实践的科学理论和设计方法。实际应用中,依靠经验和小规模实验的数据来指导工业设计还是主要的方式,造成这一局面的原因有以下几方面:
原因之一是干燥技术所依托的一些基础学科,(主要是隶属于传递工程范畴的学科)本身就具有实验科学的特点。例如,空气动力学的研究发展还要靠“风洞”实验来推动,就说明它还没有脱离实验科学的范畴,而这些基础学科自身的发展水平直接影响和决定了干燥技术的发展水平。
原因之二是很多干燥过程是多种学科技术交汇进行的过程,牵涉面广、变化因素多、机理复杂。例如在喷雾干燥技术领域里,被雾化的液滴在干燥塔内的运行轨迹是工程设计的关键。液滴的轨迹与自身的体积、质量、初始速度和方向及周围其他液滴和热空气的流向、流速有关。但这些参数由于传质、传热过程的进行,无时无刻不在发生着变化、而且初始状态时,无论是液滴的大小还是热空气的分布都不可能是均匀的。显然,对于如此复杂、多变的过程只凭借理论计算来进行工程设计是不可靠的。
原因之三是被干燥物料的种类是多种多样的,其理化性质也是各不相同。不同的物料即使在相同的干燥条件下,其传质、传热的速率也可能有较大的差异。如果不加以区别对待,就有可能造成不尽人意的后果。例如某些中草药的干燥,虽然同属一种药材,只因为药材产地或收获期存在区别就须改变干燥条件,否则产品质量就会受到影响。
以上三方面的原因决定了干燥技术的开发与应用要以实验为基础。但干燥搜术的这些特点往往被人有意或无意地忽视。制造厂商由于实验装置缺乏或机型不全(这在我国是一个普遍存在的现象)经常回避应做的干燥实验,而用户由于不了解干燥技术的特点,也经常放弃进行必要实验的要求。其结局是装置使用效果不佳,甚至于造成方案设计失败。在我国,这样的事例屡见不鲜,曾有过一套价值2000万元人民币的工业干燥装置因达不到使用要求而被闲置的教训。因此,建设工业干燥装置尤其是较大的装置之前,一定要进行充分的、有说服力的实验,并以实验结果作为工业装置设计的依据。这是干燥技术应用的显著特点。
此外,干燥设备种类繁多、各具用途也是干燥技术的一个特点。每一种技术都有自己适宜应用的领域。在工程实践中,要根据具体情况选择适用的干燥技术种类。这对投资费用、操作成本、产品质量、环保要求等方都会产生重大的影响。例如某一企业,在白炭黑滤饼干燥上曾经分别选用过箱式干燥、喷雾干燥、旋转气流快速干燥三种型式。最终结果证明这三种技术各有所长。箱式干燥生产白炭黑虽然生产效率低、人员劳动强度大,但产品质量好。与橡胶混炼后所生成的制品扯断强度值较高。旋转气流快速干燥设备紧凑、投资少、生产效率高,但所生成的橡胶制品的强度指标却是三者间最差的。喷雾干燥生产白炭黑,产品各项指标在三者间居中,但具有产品流动性好、粉尘污染小,深受用户及操作者欢迎的特点。在20世纪90年代,为白炭黑生产中采用哪种干燥方式更为先进的问题,曾在我国干燥界引发过争论。其实,三种设备各有特点,选用哪种机型要看用户自身的条件和产品要求。不存在哪种技术更为先进的结论。类似的例子有很多,都表明了干燥设备种类繁多、各具用途的特点。所以在应用中要仔细比较、慎重选择技术方案,而通过干燥实验来考核技术方案也是必不可少的步骤。
工业精密干燥装置的发展现状
干燥在许多生产中是一个十分重要的单元操作,因为干燥在这里不仅是简单的固液分离过程,更重要的常常是生产过程的最后一道工序,产品的质量、剂型在很大程度上取决于干燥技术和设备的综合运用情况。从经济角度考虑,干燥器价格昂贵,工程投资较大。另一方面,干燥又是高耗能过程,热效率在15%一80%这样大的范围内波动,而设备的运转费用与干燥器的设计选型有非常密切的关系,所以企业的决策者对此历来都比较重视。被干燥物料的品种有许多,它们的理化性质又有很大差异。甚至同一品种不同的生产工艺、同一品种不同的产品要求,导致干燥条件可能都有区别,所以就决定了干燥工程的复杂性。由此可见,干燥过程较其他的单元操作具有更高的技术性。
我国干燥设备在解放前基本是空白,只有烘房、烘箱和滚筒干燥机,干燥技术落后、生产设备原始。到1957年才出现了真空耙式干燥机,1964年以后干燥技术有了较快的发展。纵观我国干燥技术及设备的发展史,在几十年间经历由简到繁、由低级到高级的发展阶段,常用于生产的干燥设备有十余类三十多个系列,加上组合干燥设备约有五十几种,再加上专用干燥设备就更难于统计,合理地选用这些干燥设备也不是一件易事,选型的前提是了解这些设备的基本工作原理、结构特点以及适用物料范围,这样在选型时才避免走弯路。
近些年来,由于干燥技术的发展,给筛选设备带来了更多的复杂因素。即使是干燥设备的设计、制造或使用者也常常弄不清如何去选择合适的设备。由于干燥设备的推销者在市场上只是对他们推销的干燥机种类感兴趣,而对其他种类则并不介绍,这样,用户就只得借助于有关的现代干燥技术参考资料决定对设备的最后选择。毫无疑问,用户很需要由推销者提供的实验室,实验范围及技术经济方面的资料。因此,就必须熟悉大多数干燥设备,才有可能选出合理的设备。应该强调的是,在特定的生产运行状态中,很有可能有很多较适用的干燥机,但也必须知道,在特定的工作状态中,没有一个严格的规则规定出极精确的最佳干燥设备,每一种产品都有自己独特的生产方式。影响最佳干燥装置选择的因素很多,如选择间歇干燥还是连续干燥、矿物燃料的消耗、电耗、地方环境法或噪音污染限制等。产品产量对干燥机的选择更是一个主要因素。
精密干燥设备使用概况
前面提到,干燥设备是在许多工业生产中大量应用。多年来已有多种机型用于工业化生产中,如气流干燥器、流化床干燥器、喷雾干燥器、滚筒干燥机、耙式干燥器、冷冻干燥机、红外线干燥及组合式干燥等达几十种之多。为什么干燥设备类型很多呢?这主要是由于干燥物料型态、性质各不相同,处理的物料有各种不同的具体要求所致。
随着我国各行业的生产技术的飞跃发展,国内干燥技术和设备也得到了迅速发展。在散粒状物料的干燥方面,近几年来流态化技术获得了更加广泛的应用和新的发展。流态化干燥充分改善了气固相接触条件(蒸发表面积增大),物料的剧烈搅动,大大减少了气膜阻力,给传热介质创造了极为有利的条件。除了国内在干燥技术中使用较早的气流干燥获得较迅速发展外,近年来流化干燥设备发展得最快。主要表现在利用流态化技术结合各种被干燥物料特性和要求创制了很多新型高效的流态化干燥器,分述如下。
直管气流干燥器是国内使用较早的流化干燥设备,经数年来的生产实践认为气流干燥对散粒状物料,特别是热敏性物料的干燥,还是比较理想的干燥设备。它无论生产量,占地面积等方面均比烘箱干燥优越,因此在制药、塑料、食品、化肥等工业中使用的更加广泛。但气流干燥还存在热利用率较低、设备高、气固两相相对速度较低等缺点。创制了脉冲气流干燥器、旋风气流干燥器、粉碎气流干燥器等新型气流设备,克服了直管气流干燥的缺点。粉碎气流除降低高度外,还扩大了气流干燥器的使用范围,使易氧化的物料能用空气作为干燥介质,既降低了干燥动力消耗,又提高了产品的产量和质量,此外还采用了多级气流干燥流程和组合气流干燥流程,在气流干燥器的应用上,许多工程采用了二级串联方式,在有些物料的干燥上更加合理,也提高了热效率。直管气流干燥在生产操作方面已很成熟。脉冲气流、旋风气流干燥已工业化多年,操作已较成熟,但理论设计方面还很缺少。在今后的实践发展中还需进一步完善。
大部分热敏性较强和易氧化的物料,均采用气流干燥。一般能将初湿为10%一25%的物料干燥至1%-0.05%,被干燥的物料粒度一般在60-100目,产量一般在100 - 200kg/h。目前国内在制药、食品、塑料等工业中广泛使用。随着我国生产技术的飞速发展,气流干燥在今后的工业生产中必定应用得更加广泛。
流化干燥是发展起来的又一干燥技术。经过生产实践证明它有很多优越性,能实现小设备大生产,由于热容系数较大和停留时间可任意调节,故对含表面水和需经过降速干燥阶段的物料均适用,特别适用于散粒物料的干燥。发展起来并已工业化的有下列几种型式:单层圆筒型、多层圆管型、振动流化床、卧式多室流化床干燥器、搅拌流化床以及内藏热管流化床等,其中以后者发展得较迅速。已在制药、化肥、食品、塑料、石油化工等工业中广泛使用。经过几年的实践,国内流化干燥无论在操作、设备结构等方面均已发展到较成熟阶段。从使用情况看,卧式多室流化干燥器由于结构简单、操作方便而稳定、物料适应性广,既能获得含水均匀的产品,动力消耗又少,是流态化干燥散粒状物料较理想的设备,今后值得推广与发展。内藏热管是流化床对流传热和传导传热相结合的产物,具有较高的热效率,干燥效果也效好,很受推荐的新机型。
国内锥形流化床按操作分有三种型式:一种是浓相溢流出料,国内较多在流化造粒方面使用;另一种即喷动床干燥,是由床顶出料,产品在旋风分离器内收集或间歇操作床底出料。这种结构比流化床结构简单,设备小,产量大,干燥强度高、床层等温性强、不发生局部过热。过去仅适用于大颗粒物料(聚氯乙烯),已发展至能应用于细粒物料的干燥。在塑料、谷物、制药等部门使用。但因动力消耗较大,使用受到一定限制。
在溶液状或浆状物料的干燥方面也获得了较新的发展,除使用得较多的喷雾干燥有了新的发展外,已成功地采用了锥形流化床进行喷雾造粒生产并已逐步在发展和完善中。喷雾流化造粒干燥器首先在化肥上采用,已在医药、食品等工业中采用。喷雾干燥在国内使用已有二十几年,在设计和操作等方面都已较成熟。喷雾干燥有以下几方面的进展:
(1)干燥室除向大型化发展外,喷头雾化器性能方面有关单位也作较多的实验研究工作,并取得了显著效果;
(2)除热敏性溶液更加广泛采用喷雾干燥外,浆液也成功地采用了喷雾干燥;
(3)喷雾干燥与其他干燥技术结合以达到干燥或干燥造粒同时进行的目的,这也是我国干燥技术水平进一步发展的体现;
(4)正在进行低温喷雾干燥的实验,它是将含湿量极低而温度不高的空气作载体,空气经过预先脱水干燥,在干燥过程中产品温度不超过35’C,因此适用于热敏性物料的干燥,如医药、食品脱水等。
G. 标准式旋风分离器各部分的尺寸比例是怎么确定的呀
标准式旋风分离器各部分的尺寸比例设计举例说明,设主体部分圆筒的直径为D的话,进气管截面为D/2*D/4的矩形,排气管直径为D/2,主体部分圆柱的高为2D,圆锥的高为2D,下部排灰口直径为D/4。
旋风分离器的切向进气口、升气管直径和设备直径之间,一般来说和介质组分有关,升气管直径不能太小,使得分离期内压力上升,影响旋转。
旋风分离器设计中应该注意的问题:
1、进入旋风分离器的气体,必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。
2、进入旋风分离器的尘粒和气体特性一样,也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。
这种做法值得商榷,有时候是不对的。获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。
有了这个粒径分布就可以计算旋风分离器总的分离效率。实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。
但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。
3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。
(7)小型旋风干燥装置的设计扩展阅读:
旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中,特别适合粉尘颗粒较粗,含尘浓度较大,高温、高压条件下,也常作为流化床反应器的内分离装置,或作为预分离器使用。
但是,它对细尘粒(如直径<5μm)的分离效率较低,细粉分离效率仅能达到70%~90%。为了提高除尘效率,降低阻力,已出现了如螺旋型、蜗旋型、旁路型、扩散型、旋流型和多管式等多种形式的旋风分离器。
气体和固体颗粒在旋风分离器中的运动非常复杂,在器内任一点都有切向、径向和轴向速度,并随旋转半径变化。在实际操作中应控制适当的气速。实验表明,气速过小,分离效率不高。但气速过高,易产生涡流和返混现象严重,同样会降低分离效率。
H. 气力输送,风机,管径等应如何选择和设计
1.你的这种设计难度大,气力输送机械对固体物料的输送是利用高速气流对扬起的固体物内料产生的后推力容来实现的,高速气流在支管处产生的负压只对物料产生拉力,而支管所连接盛装物料容器通常是封闭的,因此在这个物料容器的两端不可能产生压差,从而也就失去了物料输送的动力.
2.即便通用过你的考虑设计出了一种能让这种两头相通的容器,这时动力有了也未必能将固体物料吸推入风管,因为固体物料在进入气力输送系统的过程中必须是流化和离散的.
3.建议你的固体物料从上方导入风管,这时固体物料在重力作用下均匀而离散化的进入风管从而为固体物料的流化输送创造条件,你的固体物料就可以借助风力送至所需要的地方
4.风管的尺寸应根据你风机的风量的大小和输送距离的远近来确定,通常风量越大所送物料量越大,所以风量的大小是根据你输送物料量的大小来确定,至于风管的长度则取决于输送物料的距离.
5.风机的选型应根据风机的全压和风量来确定,通常所送距离越远,压降越大,所需风机的全压越高.风机的材料则取决于所送气体介质的温度和腐蚀性,若用常温下的空气做介质则对材料没有特殊的要求.
答案创立者