Ⅰ 高考试卷上化学实验装置图是用什么软件画的或者是用什么方法画出来的
应该是chendraw!这个软件很神奇啊!铁架台,基本的实验仪器,实验装置,化学式等等都有!
Ⅱ 画有机化学实验装置的软件(适合于大学)
ChemOffice Ultra 2008 v11.0已发行一段时间,这是2007.8最新正式完整版! 价值:$2,870.00
美国剑桥公司最新版本ChemOffice Ultra 2008 是世界上最优秀的桌面化学软件,集强大的应用功能于一身, 为您提供了优秀的化学辅助系统,使您的研究工作达到一个新的高度。ChemOffice Ultra 2008 包括:ChemDraw Ultra 化学结构绘图、Chem3D Ultra 分子模型及仿真、 ChemFinder Ultra 化学信息搜寻整合系统等一系列完整的软件。可以将化合物名称直接转为结构图,省去绘图的麻烦;也可以对已知结构的化合物命名,给出正确的化合物名称。
办公桌将成为科学家成功的起点,在这里科学家可以用 ChemDraw 和 ChemOffice 去完成自己的想法,和同事用自然的语言交流化学结构,模型和相关信息,在实验室,科学家用 E-Notebook 整理化学信息、文件和数据,并从中取得他们所要的结果。ChemNMR 可预示分子化学结构的 13C 和 1H NMR 位移。
ChemFinder/Word 通过你的计算机或互联网,可以在Word, Excel, Powerpoint, ChemDraw, ISIS 等文件中搜索化学结构,以便流览或修改,并输出到自己的目标文件中。ChemOffice 支持每一位科学家的日常工作,企业方案制定,建立在ChemOffice 服务器的数据库,有助于各个研究部门的合作,并共享信息。这将促进科学研究的迅猛发展。
ChemOffice Ultra 2008包含:
ChemDraw 化学结构绘图,Chem3D分子模型及仿真,ChemFinder化学信息搜寻整合系统,此外还加入了E-Notebook Ultra 10.0,BioAssay Pro 10.0,量化软件MOPAC、Gaussian和GAMESS的界面,ChemSAR,Server Excel, CLogP, CombiChem/Excel等等,ChemOffice Pro还包含了全套ChemInfo数据库,有ChemACX和ChemACX-SC,Merck索引和ChemMSDX。
功能:
ChemDraw模块 - 是世界上最受欢迎的化学结构绘图软件,是各论文期刊指定的格式。
Chem3D模块 - 提供工作站级的3D分子轮廓图及分子轨道特性分析,并和数种量子化学软件结合在一起。由于Chem3D提供完整的界面及功能,已成为分子仿真分析最佳的前端开发环境。
ChemPro模块 - 预测BP、MP、临界温度、临界气压、吉布斯自由能、logP、折射率、热结构等性质。
ChemFinder模块- 化学信息搜寻整合系统,可以建立化学数据库、储存及搜索,或与ChemDraw、Chem3D联合使用,也可以使用现成的化学数据库。ChemFinder是一个智能型的快速化学搜寻引擎,所提供的ChemInfo信息系统是目前世界上最丰富的数据库之一,包含ChemACX、ChemINDEX、ChemRXN、ChemMSDX,并不断有新的数据库加入。ChemFinder可以从本机或网上搜寻Word,Excel,Powerpoint,ChemDraw和ISIS格式的分子结构文件。还可以与微软的Excel结合,可连结的关连式数据库包括Oracle及Access,输入的格式包括ChemDraw、MDL ISIS SD及RD文件。
ChemOffice WebServer - 化学网站服务器数据库管理系统您可将您的ChemDraw、Chem3D作品发表在网站上,使用者就可用ChemDraw Pro Plugin网页浏览工具,用www方式观看ChemDraw的图形,或用Chem3D Std插件中的网页浏览工具观!
下载地址:
http://www.verycd.com/topics/190467/
Ⅲ 怎样画化学实验装置图
ChemDraw是全球领先来的科学绘图工具。它自不仅使用简便、输出质量高,并且结合了强大的化学智能技术,集成ChemOffice 套件和许多第三方产品,受到成千上万用户的喜爱。用它画化学实验装置图的步骤如下:
在ChemDraw中绘制装置图的具体步骤:
步骤一 打开ChemDraw的界面。
步骤二 选择工具栏中的“刻章”按钮,出现如下图子菜单:
ChemDraw刻章分类下的Clipware,part 2组件
步骤五 通过选中组件进行大小和位置的调整组成装置图。
以上就是介绍的在ChemDraw中绘制装置图的教程,其实很简单,只要选对相应的装置,然后拖到适当位置即可。
Ⅳ 怎样用DISLab系统来制作向心力演示器实验
“传感器及其工作原理”教学设计
江苏省靖江高级中学 陈斌 环晴
【教材】普通高中课程标准实验教科书《物理》选修3-2第六章第一节
【教学目标】
1.知识与技能
了解什么是传感器,知道非电学量转化为电学量的技术意义;
认识一些制作传感器的元器件,知道这些传感器的工作原理。
2.过程与方法
通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。
3.情感、态度与价值观
体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。
【设计思路】
从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。新课程标准紧扣时代脉搏,对传感器教学提出明确要求。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。
【教学过程】
一、引入新课
教师:今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。
二、新课教学
1.什么是传感器
演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。
教师提问:盒子里有怎样的装置,才能实现这样的控制?
学生猜测:盒子里有弹性铁质开关。
师生探究:打开盒子,用实物投影仪展示盒内的电路图(图2),了解元件“干簧管”的结构。探明原因:当磁体靠近干簧管时,两个由软磁性材料制成的簧片因磁化而相互吸引,电路导通,干簧管起到了开关的作用。
教师点拨:这个装置反过来还可以让我们通过灯泡的发光情况,感知干簧管周围是否存在着磁场。
演示实验2:教师出示一只音乐茶杯,茶杯平放桌上时,无声无息,提起茶杯,茶杯边播放悦耳的音乐,边闪烁着五彩的光芒。
教师提问: 音乐茶杯的工作开关又在哪里?开启的条件是什么?
学生猜测:在茶杯底部,所受压力发生改变。
实验探究:提起茶杯,用手压杯的底部,音乐并没有停止。
学生猜测:是由于光照强度的改变。
实验探究:用书挡住底部(不与底部接触),音乐停止,可见音乐茶杯受光照强度的控制。
师生总结:现代技术中,我们可以利用一些元件设计电路,它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
教师提问:实验1中的干簧管是怎样的传感器,实验2音乐茶杯中所用的元件又是怎样的传感器?
学生回答:干簧管是一个能感受磁场的传感器,音乐茶杯中所用的元件是能感受光照强度的传感器。
教师介绍:数字化信息系统实验室(Digital Information System Laboratory,简称:DISLab)
就是由“传感器+数据采集器+实验软件包+计算机”构成的新型实验系统。该系统成功克服了传统物理实验仪器的诸多弊端,有力地支持了信息技术与物理教学的全面整合,在实验上收到了许多意想不到的成功。
投影展示:
图3 DISLab系统构成
演示实验3:通过朗威DISLab数据采集器、位移传感器来观察简谐振动图象。
图4 弹簧振子实验装置图
图5 弹簧振子振动图线
2、认识一些制作传感器的元器件
(1)光敏电阻
学生实验1:学生两人一组,用万用电表的欧姆挡测量一只光敏电阻的阻值,实验分别在暗环境和强光照射下进行。
学生总结实验结果:光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小。
师生总结:光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量。
教师简单介绍:光敏电阻在光照射下电阻变化的原因。有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。
(2)热敏电阻和金属热电阻
教师提问:金属导体的导电性能与温度有关吗?关系如何?
学生回答:金属导体的电阻随温度的升高而增大,如白炽灯钨丝的电阻在正常工作情况下比常温下的电阻大得多。
演示实验4:如图6所示,AB间接有一段钨丝(从旧日光灯管中取出),闭合开关,灯泡正常发光,当用打火机给钨丝加热时,灯泡亮度明显变暗。
学生探究:钨丝的电阻随温度的升高而增大。
师生总结:用金属丝可以制作温度传感器,称为热电阻。如前面已经学过的用金属铂可制作精密的电阻温度计。
学生实验2:学生两人一组,用万用电表的欧姆挡测一只热敏电阻的阻值。第一次直接测量,第二次用手心捂住热敏电阻再测量,记录两次测得的电阻值。
学生探究:热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
师生总结:半导体热敏电阻也可以用作温度传感器。
师生总结比较:金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。
(3)霍尔元件
教师介绍:霍尔元件是在一个很小的矩形半导体(例如砷化铟)薄片上,制作4个电极E、F、M、N而成(如图7所示)。若在E、F间通入恒定的电流I,同时外加与薄片垂直的匀强磁场B,薄片中的载流子就在洛伦兹力的作用下发生偏转,使M、N间出现电压U。
师生讨论:霍尔元件的上的电压U与电流I、磁感应强度B的关系,设霍尔元件长为a,宽为b,厚为d,则当薄片中载流子达到稳定状态时,,即,又因,所以,即(为霍尔系数)。因此,我们就可以根据电压U的变化得知磁感应强度的变化。
师生共析:霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
演示实验5:利用朗威DISLab数据采集器、霍尔元件观察通电螺线管内部磁感应强度的大小分布规律。
图8 磁感应强度测定的实验装置图
图9 磁感应强度分布图线
三、小结
传感器是指一些能把光、力、温度、磁感应强度等非电学量转化为电学量或转换为电路的通断的元器件,它在生活、生产和科技领域有着非常广泛的应用。日本把传感器技术列为上世纪八十年代十大技术之首,美国把传感器技术列为九十年代的关键技术,而我国有关传感器的研究和应用正方兴未艾……
四、作业
1.观察与思考:日常生活中哪些地方用到了传感器,它们分别属于哪种类型的传感器,它们的工作原理如何?
2.实验设计:用热敏电阻、继电器等器材设计一个火警报警器。
【教学反思】
本节课依据学生的认知规律组织教学,引入新课从生活实例入手,设置悬念,提出问题,激发学生兴趣,增强学生的求知欲;在进行“什么是传感器”的教学中注重实验探究,引导学生从两个实验的探究中加以归纳,并通过DISLab系统显示传感器的优越性,让学生了解把非电学量转化为电学量的技术意义;在对光敏电阻、热敏电阻和热电阻、霍尔元件这些制作传感器的元器件教学中,注重将教师演示实验与学生动手实验相结合,注重理论与实践相结合。整个教学过程符合新课程的三维目标,体现新课程的理念,注意培养学生的自主、合作、探究能力,注意从生活走向物理,从物理走向生活,以此增进学生的学习能力和科学素养。
Ⅳ 模拟实验
油源对比发现,东营凹陷沙三段砂岩透镜体内的原油并非完全来自沙三段的烃源岩,其油源主要为沙三段和其下部沙四段的混源油。那么在没有明显大断层沟通的情况下,沙四段的油是如何进入到沙三段的烃源岩中的呢?前文提出油气可以通过裂缝和薄层砂作为输导通道运移到砂岩透镜体中成藏,裂缝和薄层砂这两种输导要素在空间上的配置关系和组合样式对油气输导效率及输导过程究竟如何呢?本次实验的目的就是应用细棉线模拟裂缝,将棉线和砂体连接,模拟油气是否能够由细棉线导入砂岩体中并在砂体中聚集成藏的过程。
(一)模型的物理模拟实验
1.模型
图3-15即为油气有机网络简单物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。左上角和右下两角扇形体分别以粒径0.4~0.45mm的石英砂充填,左上角扇形体半径为11cm,右下角扇形体半径为10cm;模型中央为一近椭圆形体,以粒径0.4~0.45mm的石英砂充填,长宽分别为22.5cm、16cm;与左上及右下砂岩扇体的距离分别为9.5cm、8cm。模型内其余部分以泥岩充填。红色箭头A、B指示注油口,孔a为注水口,孔b为排气口。线1、2、3为细棉线。单股棉线的直径约0.2mm。在常温常压下进行实验。
图3-15 简单模拟实验装置示意图
2.实验结果
首先由示意图中的a孔注水,排出装置中央透镜体中的空气,当b孔有水流出时,排气结束。然后将a、b孔皆关闭。然后由A、B两个注油口开始注油,注油速度皆为0.5mL/min。经过1h后,下扇形体内的油经过棉线运移到透镜体内并在浮力作用下至顶部聚集;同时上扇体的油也开始经过棉线运移到透镜体内(图3-16左)。
距开始注油大约70min后,A口注油的速度减小到0.1mL/min,B注油口的速度维持0.5mL/min不变。约20min后,上扇体内的油继续缓慢通过棉线运移到透镜体内;下扇体内的油也继续通过棉线运移到透镜体内,透镜体上部聚集的油量明显增加(图3-16中)。此时再次改变注油速度,A口注油速度变为0.2mL/min;B口停止注油。3h40min后,上扇体的油进一步通过棉线运移到透镜体内,并上浮至顶部聚集(图3-16右)。A口停止注油,进入静观阶段。
图3-16 实验进行时的油气运移结果图
在经历了18h的静观阶段后,由两边扇体通过棉线进入透镜体内的油量明显增多。油在透镜体上部大量聚集,累积油柱高度为9cm(图3-17)。
图3-17 实验进行23h油气运移结果图
至此实验结束,本次实验共持续23h15min,累积注油量:由A口注油77.5mL,由B口注油43.5mL。
(二)较复杂模型的物理模拟实验
1.实验模型
图3-18即为较复杂物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。一共分为上下5层,其充填物依次为含油泥、细砂、含油泥、细砂、泥岩,有4个透镜体分别布置在最下层和最上层中,上面两个透镜体由单股棉线(模拟裂缝)与其下端的细砂岩相连。其中细砂岩粒径为0.15~0.2mm(模拟薄砂层),透镜体内的砂砾粒径为0.35~0.4mm,含油泥中油与泥的比例约为1:5.16,a口为注油口,本实验在常温常压下进行。
图3-18 油气有机网络运移复杂模拟实验装置示意图
2.实验过程
实验装置完毕即为开始实验,7h25min后,右下侧透镜体开始进油(图3-19左),无其他现象发生。
26h15min后,左下侧透镜体内的聚集的油进一步增加,从下往上数第二层细砂岩条带有油气渗入(图3-19右)。
到第9天,改变实验措施,由a口开始注油,注油速度为0.15mL/min,53min后(222h33min),下条带细砂层开始进油(图3-20左)。
6h55min后,下细砂条带聚油量增加,左下侧扇体聚油量增加,此时停止注油,进入静观阶段。1天后,下细砂条带内油从右向左运移,且下侧两个透镜体聚油量增加,聚油体积都约占整个透镜体的70%。再过l天(累计进行到约269h),左下侧透镜体聚油体积约占整个透镜体体积的90%,右下侧透镜体的聚油体积约占95%(图3-20右)。
此后再次由a口注油,随着注油量的增加,下面两个透镜体都逐渐完全被油充注,下细砂条带的聚油量也逐渐占满整个条带,随后上细砂条带也开始见油(图3-21左)。
图3-19 复杂模拟实验油气运移图
图3-20 复杂模拟实验油气运移图
随着实验的继续进行,上细砂岩条带的聚油量逐渐增加,最终充满整个条带,且该条带内的油通过棉线导入上面两个透镜体中(图3-21右),至此实验结束,累计进行时间约359h,本次实验累积注油量348.69mL。
图3-21 复杂模拟实验油气运移图
3.实验讨论
本次实验历时共约359h,由以上实验可以发现,常温常压下,由于烃浓度差引起的渗透压差和扩散压差,底层含油泥岩内的油具有运移到与其相邻的砂岩体中的趋势。在毛细管力差和烃浓度差的作用下,底层泥岩中的油首先进入被其包围的孔隙较大的砂岩透镜体中,而不太容易运移到其上部的细砂岩条带中。
随着底层油不断的注入,压力不断增大,最终能够克服底层泥岩与其上层细砂岩的毛细管力时,油就进入到其中,当其浓度足够大时,在烃浓度差的作用下,油运移到层3中。层3中的油在渗透压差的作用下,运移到层4中。联结顶层砂岩透镜体与层4的棉线能起到很好的输导油的作用,因此层4的油能沿着棉线模拟的裂缝运移到顶层的两个砂岩透镜体中。
通过本次实验,可以看出,仅靠底层泥岩中的油自然渗透和扩散,其运移能力有限。但是在油源充足的情况下,底层的油最终能够运移到与之相隔几层的砂岩透镜体中。
Ⅵ 画化学实验装置图的软件有那些
Edraw max中有带有绘制化学实验器材的功能,软件中自带化学实验器材插图,是一款应用十版分广泛的教学权应用工具,操作简单,可以将自带的插图直接拖放到绘图页上,并且可以导出PDF,jpg,png,word等多种文件格式,方便打印。
Ⅶ 什么是物理过程
物理过程其实是一种专业的叫法 其实就是你所研究对象在你研究期间发生的各种物理变化 需要指出的是这里的物理变化含义很广 只要没有发生物质上的转变 都叫物理变化 这是为了和化学变化区别开来
Ⅷ 水的电解实验中的实验装置分析图
(1)在分解水时,在电极上有气泡生成,由于b管中产生的气体较回少,应是氧气,检验的操作是答:打开活塞,用带火星的木条接近玻璃管尖嘴部分;
(2)水电解过程中,由电能转变成化学能,生成的氧气与氢气体积比为1:2,由于同温同压下,同体积的气体的分子数相同,所以水电解后生成的氧气和氢气的分子个数比是1:2;
(3)水电解实验的主要实验目的是探究水的组成.
故答为:(1)有气泡产生 用带火星的木条接近玻璃管尖嘴部位,慢慢打开活塞(2)电 化学 1:2 (3)D.