导航:首页 > 装置知识 > 蜗轮箱传动装置

蜗轮箱传动装置

发布时间:2023-03-10 20:46:59

㈠ 带锯床构造原理

带锯床是一种以金属锯条作为切削工具,并用于切削金属材料的锯切设备,主要用于黑色金属的方料,园料及各种型材的切割,亦可用于切割有色金属及非金属材料,由于带锯切口窄,切削效率高,因此能耗小,材料浪费少。是一种具有显著节能,节材效果的高效切削设备。
本机床主传动采用蜗轮箱变速。进给采用液压传动,工件夹紧采用手动和液压混合式夹紧,具有结构紧凑,操作维修方便等优点。
四. 机床主要机械结构的概述

1, 床身,工作台:床身采用焊接箱式结构,主要用于支撑其他部件,内腔兼用液压池和冷却液池,工作台为铸件,用于承料,安装夹紧装置及锯架。
2, 主传动装置:主传动采用蜗轮传动方式,由电机,皮带轮,蜗轮变速箱,锯轮箱及锯轮组成。主要用以传递扭矩,驱动带锯轮回转,以便实现切削运动。通过变化皮带轮上的皮带位置,可以变换速度。
3, 锯带张紧机构:是由从动齿轮,滑座,滑块和丝杆,螺母组成的,通过移动从动轮使带锯条得以张紧,保证带锯条和锯轮轮缘之间形成一定的压力,产生足够的摩擦力来带动锯条作回转动作,实现切削运动,张紧力的大小可以通过测力扳手确定。
4, 工作夹紧机构:工作夹紧采用液压和手动夹紧混合方式。手动夹紧是通过手轮丝杆螺母和齿条齿轮,使钳锷移动达到夹紧和松开的目的。液压夹紧则是通过油缸和手动阀进行操纵,实现夹紧和松开。
5, 锯带导向:由左,右导向臂及导向头组成,导向头则由导向滚及导向块组成,主要用来将带锯条扭转一定角度使之与工作台面垂直,保证锯条的正确位置,提高切割精度。
6, 冷却系统:是由冷却液箱,冷却泵,管道,阀及喷嘴组成,用来保证对切削区域供给充足的冷却液,以提高切削效果和锯带使用寿命与切削断面精度,同时还用于清除齿上的切屑。
7, 承料架:是由滚轮,支架及托料架组成,用以支撑较长的工件,并使与之工件台面平行,以保证正常切削。

五. 机床的液压传动系统

1, 机床液压系统概述:本系统由机池(床身内腔),电机,泵站,油管及执行元件----油缸和控制系统组成,用以实现锯架的供给,抬升和工件的夹紧(液压夹紧型),通过调速阀可以实现进给速度的无级调整,以保证对不同材质的工件的正常切割。
六. 机床电气控制系统

1, 电气系统是由电气箱,操纵盒及行程开关组成,用来控制机床个部分动作执行元件(油缸),使之按一定的工作程序有序地动作来实现正常的切削循环,并对机床实施保护,避免发生设备事故。
2, 电气控制说明:电气控制元件除行程开关和电磁阀外,所有操作按钮都集中在操作板上,操作时只需按一定的程序按下相应的功能按钮既可进行正常工作,每个按钮都有相应的功能指示标牌指示。机床停止运行则按下带红色蘑菇头按钮即可实现总停。锯架抬高的高度可由固定在锯架回转轴端的行程开关碰杆进行调整,从而达到所需高度。锯架下降的极限行程由安装在工作台左端的限位开关控制。

㈡ 蜗轮蜗杆减速机有什么优势

蜗轮蜗杆减速机作为一个传统的传动装置,内部是涡轮蜗杆,齿形是渐开线的。

蜗轮减速机具有以下优势性能:
1.机械结构紧凑、体积轻巧、小型高效;
2.热交换性能好,散热快;
3.安装简易、灵活轻捷、性能优越、易于维护检修;
4.传动速比大、扭矩大、承受过载能力高;
5.运行平稳,噪音小,经久耐用;
6.适用性强、安全可靠性大;
7.使用寿命长,允许输入的转速范围很低,减速的范围很大;
8.具有自锁功能适合用于提升作业。
其缺点是:
工作效率太低,只能达到百分之60~70之间。而且涡轮蜗杆通常都是以轴输出。很难控制空回,特别是当涡轮与蜗杆磨合时间比较长后,其空回都比较大。

㈢ 起重机的蜗轮蜗杆传动装置一般采用开式还是闭式

如果条件允许,自然是闭式好-----------利于润滑,不易污染

㈣ 蜗轮传动显示开关怎样关闭

蜗轮蜗杆传动可从指示标牌看出,手柄传动一般手柄方向与管道流向一致时,阀门开,反之阀门关。在传动装置箱体内设有开向、关向两个微动开关,分别在阀门全开和关闭时动作,接通控制室阀开,阀关指示灯源,使之准确显示阀门开关状态。

在传动装置箱体内设关向微动开关蝶板全关位置为0度,当蝶板由0度至40度位置时微动开关支作,输出阀门关闭信号,40度至90度位置时另一对常闭可输出阀门打开信号。

蜗轮传动的作用

蜗杆传动是一种简单的蜗轮组机构,中蜗杆与蜗轮啮合。即使很简单,也有两个重要的元素:蜗杆和蜗轮。它们也称为蜗杆和蜗轮,蜗杆和蜗轮是重要的运动控制部件,可提供大的减速。它可以降低转速或增加扭矩输出。

蜗杆传动运动的优点是它们可以以直角传递运动。它还有一个有 趣的特性:蜗杆或蜗杆轴可以轻松转动齿轮,但齿轮不能转动蜗杆。这种蜗杆传动自锁功能让蜗轮在输送系统或提升系统中具有制动功能。

㈤ 蜗轮蜗杆工作原理

http://ke..com/view/1424713.html?wtp=tt

蜗轮蜗杆蜗轮蜗杆 蜗轮蜗杆(Worm)
[编辑本段]蜗轮及蜗杆机构
一、用途:
蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。
二、基本参数:
模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数 、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。其中,模数m和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮端面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m的比值。
三、蜗轮蜗杆正确啮合的条件
1.中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等于蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等于蜗杆的轴面压力角且为标准值,即 ==m ,==
2.当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。
四、几何尺寸计算与圆柱齿轮基本相同,需注意的几个问题是:
1.蜗杆导程角()是蜗杆分度圆柱上螺旋线的切线与蜗杆端面之间的夹角,与螺杆螺旋角的关系为,蜗轮的螺旋角,大则传动效率高,当小于啮合齿间当量摩擦角时,机构自锁。
2.引入蜗杆直径系数q是为了限制蜗轮滚刀的数目,使蜗杆分度圆直径进行了标准化m一定时,q大则大,蜗杆轴的刚度及强度相应增大;一定时,q小则导程角增大,传动效率相应提高。
3.蜗杆头数推荐值为1、2、4、6,当取小值时,其传动比大,且具有自锁性;当取大值时,传动效率高。
与圆柱齿轮传动不同,蜗杆蜗轮机构传动比不等于,而是,蜗杆蜗轮机构的中心距不等于,而是。
4.蜗杆蜗轮传动中蜗轮转向的判定方法,可根据啮合点K处方向、方向(平行于螺旋线的切线)及应垂直于蜗轮轴线画速度矢量三角形来判定;也可用“右旋蜗杆左手握,左旋蜗杆右手握,四指拇指”来判定。
五、蜗轮及蜗杆机构的特点
1.可以得到很大的传动比,比交错轴斜齿轮机构紧凑
2.两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构
3.蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小
4.具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在其重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
5.传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高
6.蜗杆轴向力较大
六、应用
蜗轮及蜗杆机构常被用于两轴交错、传动比大、传动功率不大或间歇工作的场合。

㈥ 蜗杆,蜗轮,机架组成的装置叫什么

叫作 涡轮增压 装置。

㈦ 蝶阀蜗轮传动装置坏了,怎么办

可以去厂里买个涡轮头,配这个口径的蝶阀涡轮。就可以了。支架上面链接涡版轮头的螺栓拧掉。拿掉涡轮头权,装上新的涡轮头.就可以驱动蝶阀蝶板转动了。蝶阀:‍蝶阀是指关闭件(阀瓣或蝶板)为圆盘,围绕阀轴旋转来达到开启与关闭的一种阀,在管道上主要起切断和节流作用。蝶阀启闭件是一个圆盘形的蝶板,在阀体内绕其自身的轴线旋转,从而达到启闭或调节的目的。

㈧ 蜗杆蜗轮传动设计需要哪些基本参数(可测绘)

蜗轮蜗杆传动用于传递空间交错的两轴间的运动和动力,应用广泛;但在使用过程中难免会损坏,因此,对蜗轮蜗杆的测绘就显得尤为重要。根据蜗轮蜗杆成对使用的特点,首先对蜗杆进行测绘并确定出其主要参数,然后从蜗杆的参数推断出蜗轮的各部分尺寸,该方法是生产实际中较为实用的测绘方法。
回转驱动副其他称谓:回转驱动装置、回转齿轮装置、回转减速机、回转转盘装置、蜗轮蜗杆传动、涡轮蜗杆副、蜗轮蜗杆副、涡轮蜗杆装置,主要应用在航天航空、塔吊机、挖掘机、工程机械、卫星接收系统、太阳能跟踪系统等诸多行业。特别是近几年发展迅猛的太阳能光伏发电行业的应用十分广泛
回转驱动副的规格型号大小不一,其规格型号按照回转支承的近似滚道直径分为:WD-080、WD-0130、WD-0170、WD-0223、WD-0343、WD-0419、WD-0478、WD-0625等规格,国内型号的命名标准按照回转支承的近似滚道直径分,以英寸为单位(1英寸=25.4mm),分为:SE3、SE5、SE7、SE9、SE12、SE14、SE17、SE21、SE25等规格。国外型号标注中的“WD”代表意思是: Worm和Drive的英文缩写;国内型号标注中的“SE”代表:Slewing 和Enclose 的英文缩写。无论用哪种方式命名,其各型号的对应的安装尺寸及性能参数都是一样的。
由于核心部件采用回转支承,因此可以同时承受轴向力、径向力、倾翻力矩。回转驱动副具有安装简便、易于维护、更大程度上节省安装空间。该产品可以广泛使用于重型平板运输车、集装箱起重机、随车吊、高空作业车、巡日太阳能发电机系统等工程机械及新能源领域。
回转驱动装置可基本分为单蜗杆传动回转驱动装置和双蜗杆传动回转驱动装置。
蜗轮蜗杆机构的特点:
1.可以得到很大的传动比,比交错轴斜齿轮机构紧凑
2.两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构
3.蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小
4.具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在其重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
5.传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高
6.蜗杆轴向力较大
回转驱动的三大优势:
模块化:由于回转驱动副的高集成度,使得用户不必对组成旋转装置的每一款配件进行逐一采购和加工,在一定程度上也减少了产品生产之初的准备工序,从而大幅度提高劳动生产率。
安全性:蜗轮蜗杆传动(回转驱动副)具有反向自锁的特点,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆运动。这一特性使得回转驱动可被广泛应用于起重、高空作业等设备当中,在提高主机的科技含量的同时,也大大提升了主机的作业稳定性和作业的安全系数。
简化主机设计:与传统的齿轮传动相比,蜗轮蜗杆传动可以得到相对较大的减速比,在某些情况下,可以为主机省却减速机部件,从而为客户降低采购成本,同时也大大降低了主机故障产生率。
回转驱动的应用领域
蜗轮及蜗杆机构常被用于两轴交错、传动比大、传动功率不大或间歇工作的场合。回转驱动可应用于做圆周运动的主机,如起重机回转台、旋转机械、等一些进行圆周工作的机械。该产品一经投产可广泛应用于高空作业车、汽车起重机为代表的工程机械领域及以太阳能光伏发电、风力发电为代表的新能源领域,以及其它自动化、机床制造、航天通讯等领域,可以说,该产品的市场潜力是巨大的。
回转驱动副应用列表:工程机械用双蜗杆回转驱动、随车吊回转驱动、重型平板运输车回转驱动、高空作业车回转驱动、轨道车回转驱动、吸污车回转驱动、旋转爪具回转驱动、桥梁检测车回转驱动装置、中铁提梁机回转驱动装置、风电偏航回转驱动装置、太阳能回转驱动。
1、运梁车领域传统的运梁车回转总成核心部件大多使用传统的回转支承产品,与回转驱动相比,由于回转支承不具备外包壳体,抗腐蚀能力也不是很理想,而靠液压油缸来推动轮胎的转向系统来说,轮胎的旋转角度范围也受到了很大的限制。而选用回转驱动装置作为回转部件来说,不但可以使部件的抗腐蚀能力有所提升,还可以加大每组轮胎的转向角度。
2、高空作业车领域高空作业车是回转驱动的一个重要使用领域,通常高空作业车都需要主机具备较高的安全系数,回转驱动的高安全性(蜗轮蜗杆的自锁性)是广大用户选择其作为高空作业平台配件的一个重要因素;另外一方面,蜗轮蜗杆传动具有较大的传动速比,这样一来再提高主机安全系数的同时,也可为主机省略一组蜗轮蜗杆减速器,从而降低主机的制造成本。
3、光伏发电领域光伏发电是回转驱动的一个重要应用领域,采用回转驱动为旋转部件的太阳能光伏组件,可根据一天中太阳不同的位置来对主机的转角及仰角进行精确的调整,时刻是太阳能电池板出于最佳的接收角度。
4、风力发电领域与光伏发电相同,回转驱动可应用于风力发电机的偏航部位,实现机构的水平360°旋转,从而更好的调整接收角度。
5、工程机械爪具领域工程机械辅助器具是回转驱动的一个全新的应用领域,采用回转驱动作为旋转机构爪具,使得设计结构更加简洁,更利于使用和维护,同时蜗轮蜗杆传动具有较大的减速比,使得爪具等工程机械辅具的定位精度也大大提高了。
蜗轮蜗杆减速机常见原因
1.减速机发热和漏油。为了提高效率,蜗轮减速机一般均采用有色金属做蜗轮,蜗杆则采用较硬的钢材。由于是滑动摩擦传动,运行中会产生较多的热量,使减速机各零件和密封之间热膨胀产生差异,从而在各配合面形成间隙,润滑油液由于温度的升高变稀,易造成泄漏。造成这种情况的原因主要有四点,一是材质的搭配不合理;二是啮合摩擦面表面的质量差;三是润滑油添加量的选择不正确;四是装配质量和使用环境差。
2.蜗轮磨损。蜗轮一般采用锡青铜,配对的蜗杆材料用45钢淬硬至HRC4555,或40Cr淬硬HRC5055后经蜗杆磨床磨削至粗糙度Ra0.8μm。减速机正常运行时磨损很慢,某些减速机可以使用10年以上。如果磨损速度较快,就要考虑选型是否正确,是否超负荷运行,以及蜗轮蜗杆的材质、装配质量或使用环境等原因。
3.传动小斜齿轮磨损。一般发生在立式安装的减速机上,主要与润滑油的添加量和油品种有关。立式安装时,很容易造成润滑油量不足,减速机停止运转时,电机和减速机间传动齿轮油流失,齿轮得不到应有的润滑保护。减速机启动时,齿轮由于得不到有效润滑导致机械磨损甚至损坏。
4.蜗杆轴承损坏。发生故障时,即使减速箱密封良好,还是经常发现减速机内的齿轮油被乳化,轴承生锈、腐蚀、损坏。这是因为减速机在运行一段时间后,齿轮油温度升高又冷却后产生的凝结水与水混合。当然,也与轴承质量及装配工艺密切相关。
回转减速机常见问题的解决方法
1.保证装配质量。可购买或自制一些专用工具,拆卸和安装减速机部件时,尽量避免用锤子等其他工具敲击;更换齿轮、蜗轮蜗杆时,尽量选用原厂配件和成对更换;装配输出轴时,要注意公差配合;要使用防粘剂或红丹油保护空心轴,防止磨损生锈或配合面积垢,维修时难拆卸。
2.润滑油和添加剂的选用。蜗齿减速机一般选用220#齿轮油,对重负荷、启动频繁、使用环境较差的减速机,可选用一些润滑油添加剂,使减速机在停止运转时齿轮油依然附着在齿轮表面,形成保护膜,防止重负荷、低速、高转矩和启动时金属间的直接接触。添加剂中含有密封圈调节剂和抗漏剂,使密封圈保持柔软和弹性,有效减少润滑油漏。
3.减速机安装位置的选择。位置允许的情况下,尽量不采用立式安装。立式安装时,润滑油的添加量要比水平安装多很多,易造成减速机发热和漏油。
4.建立润滑维护制度。可根据润滑工作“五定”原则对减速机进行维护,做到每一台减速机都有责任人定期检查,发现温升明显,超过40℃或油温超过80℃,油的质量下降或油中发现较多的铜粉以及产生不正常的噪声等现象时,要立即停止使用,及时检修,排除故障,更换润滑油。加油时,要注意油量,保证减速机得到正确的润滑。
世必爱采用二次包络技术生产的回转驱动副装置,以环面包络蜗杆技术作为实现最大化负载和提高传动效率、精度的最重要的手段。环面包络蜗杆在与回转支承啮合时,能够实现多齿啮合,而普通蜗杆啮合时,只能实现单齿啮合。由此增加的5到11个齿的齿面啮合极大的增强了变速器的强度和动力。
洛阳世必爱特种轴承有限公司生产的回转驱动装置有多个系列,覆盖多种型号。性能范围以及安装尺寸能满足不同使用场合的需要。目前我们的产品可划分为9种基本型号,滚道直径范围从75mm到800mm。负荷范围从6kNm到220kNm,转矩输出从200Nm到63kNm,翻转力矩力从500Nm到271kNm, 变速器减速比从30:1到156600:1。 安装方式可以为水平,垂直或者多轴结合的方式。

㈨ 一级蜗轮蜗杆课程设计

机械设计课程设计说明书

前言
课程设计是考察学生全面在掌握基本理论知识的重要环节。根据学院的教学环节,在2006年6月12日-2006年6月30日为期三周的机械设计课程设计。本次是设计一个蜗轮蜗杆减速器,减速器是用于电动机和工作机之间的独立的闭式传动装置。本减速器属单级蜗杆减速器(电机——联轴器——减速器——联轴器——带式运输机),本人是在周知进老师指导下独立完成的。该课程设计内容包括:任务设计书,参数选择,传动装置总体设计,电动机的选择,运动参数计算,蜗轮蜗杆传动设计,蜗杆、蜗轮的基本尺寸设计,蜗轮轴的尺寸设计与校核,减速器箱体的结构设计,减速器其他零件的选择,减速器的润滑等和A0图纸一张、A3图纸三张。设计参数的确定和方案的选择通过查询有关资料所得。
该减速器的设计基本上符合生产设计要求,限于作者初学水平,错误及不妥之处望老师批评指正。

设计者:殷其中
2006年6月30日

参数选择:
总传动比:I=35 Z1=1 Z2=35
卷筒直径:D=350mm
运输带有效拉力:F=6000N
运输带速度:V=0.5m/s
工作环境:三相交流电源
有粉尘
常温连续工作
一、 传动装置总体设计:
根据要求设计单级蜗杆减速器,传动路线为:电机——连轴器——减速器——连轴器——带式运输机。(如图2.1所示) 根据生产设计要求可知,该蜗杆的圆周速度V≤4——5m/s,所以该蜗杆减速器采用蜗杆下置式见(如图2.2所示),采用此布置结构,由于蜗杆在蜗轮的下边,啮合处的冷却和润滑均较好。蜗轮及蜗轮轴利用平键作轴向固定。蜗杆及蜗轮轴均采用圆锥滚子轴承,承受径向载荷和轴向载荷的复合作用,为防止轴外伸段箱内润滑油漏失以及外界灰尘,异物侵入箱内,在轴承盖中装有密封元件。 图2.1
该减速器的结构包括电动机、蜗轮蜗杆传动装置、蜗轮轴、箱体、滚动轴承、检查孔与定位销等附件、以及其他标准件等。

二、 电动机的选择:
由于该生产单位采用三相交流电源,可考虑采用Y系列三相异步电动机。三相异步电动机的结构简单,工作可靠,价格低廉,维护方便,启动性能好等优点。一般电动机的额定电压为380V
根据生产设计要求,该减速器卷筒直径D=350mm。运输带的有效拉力F=6000N,带速V=0.5m/s,载荷平稳,常温下连续工作,工作环境多尘,电源为三相交流电,电压为380V。
1、 按工作要求及工作条件选用三相异步电动机,封闭扇冷式结构,电压为380V,Y系列
2、 传动滚筒所需功率
3、 传动装置效率:(根据参考文献《机械设计课程设计》 刘俊龙 何在洲 主编 机械工业出版社 第133-134页表12-8得各级效率如下)其中:
蜗杆传动效率η1=0.70
搅油效率η2=0.95
滚动轴承效率(一对)η3=0.98
联轴器效率ηc=0.99
传动滚筒效率ηcy=0.96
所以:
η=η1•η2•η33•ηc2•ηcy =0.7×0.99×0.983×0.992×0.96 =0.633
电动机所需功率: Pr= Pw/η =3.0/0.633=4.7KW
传动滚筒工作转速: nw=60×1000×v / ×350
=27.9r/min
根据容量和转速,根据参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社 第339-340页表附表15-1可查得所需的电动机Y系列三相异步电动机技术数据,查出有四种适用的电动机型号,因此有四种传动比方案,如表3-1:
表3-1
方案 电动机型号 额定功率
Ped kw 电动机转速 r/min 额定转矩
同步转速 满载转速
1 Y132S1-2 5.5 3000 2900 2.0
2 Y132S-4 5.5 1500 1440 2.2
3 Y132M2-6 5.5 1000 960 2.0
4 Y160M-8 5.5 750 720 2.0

综合考虑电动机和传动装置的尺寸、重量、价格和减速器的传动比,可见第3方案比较适合。因此选定电动机机型号为Y132M2-6其主要性能如下表3-2:
表3-2
中心高H 外形尺寸
L×(AC/2+AD)×HD 底角安装尺寸
A×B 地脚螺栓孔直径K 轴身尺寸
D×E 装键部位尺寸
F×G×D
132 515×(270/2+210)×315 216×178 12 38×80 10×33×38
四、运动参数计算:
4.1蜗杆轴的输入功率、转速与转矩
P0 = Pr=4.7kw
n0=960r/min
T0=9.55 P0 / n0=4.7×103=46.7N .m
4.2蜗轮轴的输入功率、转速与转矩
P1 = P0•η01 = 4.7×0.99×0.99×0.7×0.992 =3.19 kw
nⅠ= = = 27.4 r/min
T1= 9550 = 9550× = 1111.84N•m
4.3传动滚筒轴的输入功率、转速与转矩
P2 = P1•ηc•ηcy=3.19×0.99×0.99=3.13kw
n2= = = 27.4 r/min
T2= 9550 = 9550× = 1089.24N•m
运动和动力参数计算结果整理于下表4-1:
表4-1
类型 功率P(kw) 转速n(r/min) 转矩T(N•m) 传动比i 效率η
蜗杆轴 4.7 960 46.75 1 0.679
蜗轮轴 3.19 27.4 1111.84 35
传动滚筒轴 3.13 27.4 1089.24

五、蜗轮蜗杆的传动设计:
蜗杆的材料采用45钢,表面硬度>45HRC,蜗轮材料采用ZCuA110Fe3,砂型铸造。
以下设计参数与公式除特殊说明外均以参考由《机械设计 第四版》 邱宣怀主编 高等教育出版社出版 1996年 第13章蜗杆传动为主要依据。
具体如表3—1:

表5—1蜗轮蜗杆的传动设计表
项 目 计算内容 计算结果
中心距的计算
蜗杆副的相对滑动速度
参考文献5第37页(23式) 4m/s<Vs<7m/s
当量摩擦
系数 4m/s<Vs<7m/s
由表13.6取最大值

选[ ]值
在图13.11的i=35的线上,查得[ ]=0.45
[ ]=0.45

蜗轮转矩

使用系数 按要求查表12.9

转速系数

弹性系数 根据蜗轮副材料查表13.2

寿命系数

接触系数 按图13.12I线查出

接触疲劳极限 查表13.2

接触疲劳最小安全系数 自定

中心距

传动基本尺寸
蜗杆头数
Z1=1
蜗轮齿数模数

m=10
蜗杆分度圆 直径


蜗轮分度圆
直径
mm

蜗杆导程角
表13.5

变位系数 x=(225-220)/10=0.5 x=0.5
蜗杆齿顶圆 直径 表13.5
mm

蜗杆齿根圆 直径 表13.5
mm

蜗杆齿宽
mm

蜗轮齿根圆直径
mm

蜗轮齿顶圆直径(吼圆直径)
mm

蜗轮外径
mm

蜗轮咽喉母圆半径

蜗轮齿宽 B =82.5

B=82mm
mm

蜗杆圆周速度
=4.52 m/s

相对滑动速度
m/s

当量摩擦系数 由表13.6查得

轮齿弯曲疲劳强度验算
许用接触应力

最大接触应力

合格
齿根弯曲疲劳强度 由表13.2查出

弯曲疲劳最小安全系数 自取

许用弯曲疲劳应力

轮齿最大弯曲应力

合格
蜗杆轴扰度验算
蜗杆轴惯性矩

允许蜗杆扰度

蜗杆轴扰度

合格
温度计算
传动啮合效率

搅油效率 自定

轴承效率 自定

总效率

散热面积估算

箱体工作温度
此处取 =15w/(m²c)

合格
润滑油粘度和润滑方式
润滑油粘度 根据 m/s由表13.7选取

润滑方法 由表13.7采用浸油润滑

六、蜗杆、蜗轮的基本尺寸设计
6.1蜗杆基本尺寸设计
根据电动机的功率P=5.5kw,满载转速为960r/min,电动机轴径 ,轴伸长E=80mm
轴上键槽为10x5。
1、 初步估计蜗杆轴外伸段的直径
d=(0.8——10) =30.4——38mm
2、 计算转矩
Tc=KT=K×9550× =1.5×9550×5.5/960=82.1N.M
由Tc、d根据《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社第334页表14-13可查得选用HL3号弹性柱销联轴器(38×83)。
3、 确定蜗杆轴外伸端直径为38mm。
4、 根据HL3号弹性柱销联轴器的结构尺寸确定蜗杆轴外伸端直径为38mm的长度为80mm。
5、 由参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社的第305页表10-1可查得普通平键GB1096—90A型键10×70,蜗杆轴上的键槽宽 mm,槽深为 mm,联轴器上槽深 ,键槽长L=70mm。
6、 初步估计d=64mm。
7、 由参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社第189页图7-19,以及蜗杆上轴承、挡油盘,轴承盖,密封圈等组合设计,蜗杆的尺寸如零件图1(蜗杆零件图)
6.2蜗轮基本尺寸表(由参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社第96页表4-32及第190页图7-20及表5—1蜗轮蜗杆的传动设计表可计算得)
表6—1蜗轮结构及基本尺寸
蜗轮采用装配式结构,用六角头螺栓联接( 100mm),轮芯选用灰铸铁 HT200 ,轮缘选用铸锡青铜ZcuSn10P1+* 单位:mm

a=b C x B
160 128 12 36 20 15 2 82
e n

10 3 35 380 90º 214 390 306

七、蜗轮轴的尺寸设计与校核
蜗轮轴的材料为45钢并调质,且蜗轮轴上装有滚动轴承,蜗轮,轴套,密封圈、键,轴的大致结构如图7.1:

图7.1 蜗轮轴的基本尺寸结构图

7.1 轴的直径与长度的确定
1.初步估算轴的最小直径(外伸段的直径)
经计算D6>51.7>100mm
又因轴上有键槽所以D6增大3%,则D6=67mm
计算转矩
Tc=KT=K×9550× =1.5×9550×3.19/27.4=1667.76N.M<2000 N.M
所以蜗轮轴与传动滚筒之间选用HL5弹性柱销联轴器65×142,
因此 =65m m
2.由参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社的第305页表10-1可查得普通平键GB1096—90A型键20×110,普通平键GB1096—90A型键20×70,联轴器上键槽深度 ,蜗轮轴键槽深度 ,宽度为 由参考文献《机械设计基础》(下册) 张莹 主编 机械工业出版社 1997年的第316页—321页计算得:如下表:
图中表注 计算内容 计算结果
L1 (由参考文献《机械设计课程设计》 刘俊龙 何在洲 主编 机械工业出版社第182页表15-1查得滚动轴承6216的基本结构) L1=25
L2 自定 L2=20
L3 根据蜗轮 L3=128
L4 自定 L4=25
L5 (由参考文献《机械设计课程设计》 刘俊龙 何在洲 主编 机械工业出版社第182页表15-1查得滚动轴承6216的基本结构) L5=25
L6 自定 L6=40
L7 选用HL5弹性柱销联轴器65×142 L7=80
D1 (由参考文献《机械设计课程设计》 刘俊龙 何在洲 主编 机械工业出版社第182页表15-1查得滚动轴承6216的基本结构) D1=80
D2 便于轴承的拆卸 D2=84
D3 根据蜗轮 D3=100
D4 便于轴承的拆卸 D4=84
D5 自定 D5=72
D6 D6>51.7>100mm
又因轴上有键槽所以D6增大3%,则D6=67mm D6=67
7.2轴的校核
7.2.1轴的受力分析图

图7.1
X-Y平面受力分析

图7.2
X-Z平面受力图:

图7.3

水平面弯矩
1102123.7

521607

97 97 119

图7.4
垂直面弯矩 714000

图7.5
436150.8
合成弯矩

1184736.3
714000
681175.5

图7.6
当量弯矩T与aT
T=1111840Nmm
aT=655985.6Nmm

图7.7

7.2.2轴的校核计算如表5.1
轴材料为45钢, , ,
表7.1
计算项目 计算内容 计算结果
转矩

Nmm

圆周力 =20707.6N

=24707.6N

径向力
=2745.3N

轴向力 =24707.6×tan 20º
Fr =8992.8N
计算支承反力
=1136.2N

=19345.5N

垂直面反力
=4496.4N
水平面X-Y受力图 图7.2
垂直面X-Z受力 图7.3
画轴的弯矩图
水平面X-Y弯矩图 图7.4

垂直面X-Z弯矩图 图7.5

合成弯矩 图7.6

轴受转矩T T= =1111840Nmm
T=1111840Nmm
许用应力值 表16.3,查得

应力校正系数a a=

a=0.59
当量弯矩图
当量弯矩 蜗轮段轴中间截面
=947628.6Nmm
轴承段轴中间截面处
=969381.2Nmm

947628.6Nmm
=969381.2Nmm

当量弯矩图 图7.7
轴径校核

验算结果在设计范围之内,设计合格
轴的结果设计采用阶梯状,阶梯之间有圆弧过度,减少应力集中,具体尺寸和要求见零件图2(蜗轮中间轴)。
7.3装蜗轮处轴的键槽设计及键的选择
当轴上装有平键时,键的长度应略小于零件轴的接触长度,一般平键长度比轮毂长度短5—10mm,由参考文献1表2.4—30圆整,可知该处选择键2.5×110,高h=14mm,轴上键槽深度为 ,轮毂上键槽深度为 ,轴上键槽宽度为 轮毂上键槽深度为
八、减速器箱体的结构设计
参照参考文献〈〈机械设计课程设计》(修订版) 鄂中凯,王金等主编 东北工学院出版社 1992年第19页表1.5-1可计算得,箱体的结构尺寸如表8.1:

表8.1箱体的结构尺寸
减速器箱体采用HT200铸造,必须进行去应力处理。
设计内容 计 算 公 式 计算结果
箱座壁厚度δ =0.04×225+3=12mm
a为蜗轮蜗杆中心距 取δ=12mm
箱盖壁厚度δ1 =0.85×12=10mm
取δ1=10mm
机座凸缘厚度b b=1.5δ=1.5×12=18mm b=18mm
机盖凸缘厚度b1 b1=1.5δ1=1.5×10=15mm b1=18mm
机盖凸缘厚度P P=2.5δ=2.5×12=30mm P=30mm
地脚螺钉直径dØ dØ==20mm dØ=20mm
地脚螺钉直径d`Ø d`Ø==20mm d`Ø==20mm
地脚沉头座直径D0 D0==48mm D0==48mm
地脚螺钉数目n 取n=4个 取n=4
底脚凸缘尺寸(扳手空间) L1=32mm L1=32mm
L2=30mm L2=30mm
轴承旁连接螺栓直径d1 d1= 16mm d1=16mm
轴承旁连接螺栓通孔直径d`1 d`1=17.5 d`1=17.5
轴承旁连接螺栓沉头座直径D0 D0=32mm D0=32mm
剖分面凸缘尺寸(扳手空间) C1=24mm C1=24mm
C2=20mm C2=20mm
上下箱连接螺栓直径d2 d2 =12mm d2=12mm
上下箱连接螺栓通孔直径d`2 d`2=13.5mm d`2=13.5mm
上下箱连接螺栓沉头座直径 D0=26mm D0=26mm
箱缘尺寸(扳手空间) C1=20mm C1=20mm
C2=16mm C2=16mm
轴承盖螺钉直径和数目n,d3 n=4, d3=10mm n=4
d3=10mm
检查孔盖螺钉直径d4 d4=0.4d=8mm d4=8mm
圆锥定位销直径d5 d5= 0.8 d2=9mm d5=9mm
减速器中心高H H=340mm H=340mm
轴承旁凸台半径R R=C2=16mm R1=16mm
轴承旁凸台高度h 由低速级轴承座外径确定,以便于扳手操作为准。 取50mm
轴承端盖外径D2 D2=轴承孔直径+(5~5.5) d3 取D2=180mm
箱体外壁至轴承座端面距离K K= C1+ C2+(8~10)=44mm K=54mm
轴承旁连接螺栓的距离S 以Md1螺栓和Md3螺钉互不干涉为准尽量靠近一般取S=D2 S=180
蜗轮轴承座长度(箱体内壁至轴承座外端面的距离) L1=K+δ=56mm L1=56mm
蜗轮外圆与箱体内壁之间的距离 =15mm
取 =15mm

蜗轮端面与箱体内壁之间的距离 =12mm
取 =12mm

机盖、机座肋厚m1,m m1=0.85δ1=8.5mm, m=0.85δ=10mm m1=8.5mm, m=10mm
以下尺寸以参考文献《机械设计、机械设计基础课程设计》 王昆等主编 高等教育出版社 1995年表6-1为依据
蜗杆顶圆与箱座内壁的距离 =40mm
轴承端面至箱体内壁的距离 =4mm
箱底的厚度 20mm
轴承盖凸缘厚度 e=1.2 d3=12mm 箱盖高度 220mm 箱盖长度
(不包括凸台) 440mm
蜗杆中心线与箱底的距离 115mm 箱座的长度
(不包括凸台) 444mm 装蜗杆轴部分的长度 460mm
箱体宽度
(不包括凸台) 180mm 箱底座宽度 304mm 蜗杆轴承座孔外伸长度 8mm
蜗杆轴承座长度 81mm 蜗杆轴承座内端面与箱体内壁距离 61mm

九、减速器其他零件的选择
经箱体、蜗杆与蜗轮、蜗轮轴以及标准键、轴承、密封圈、挡油盘、联轴器、定位销的组合设计,经校核确定以下零件:
表9-1键 单位:mm
安装位置 类型 b(h9) h(h11) L9(h14)
蜗杆轴、联轴器以及电动机联接处 GB1096-90
键10×70 10 8 70
蜗轮与蜗轮轴联接处 GB1096-90
键25×110 25 14 110
蜗轮轴、联轴器及传动滚筒联接处 GB1096-90
键20×110 20 12 110
表9-2圆锥滚动轴承 单位:mm
安装位置 轴承型号 外 形 尺 寸
d D T B C
蜗 杆 GB297-84
7312(30312) 60 130 33.5 31 26
蜗轮轴 GB/T297-94
30216 80 140 28.25 26 22

表9-3密封圈(GB9877.1-88) 单位:mm
安装位置 类型 轴径d 基本外径D 基本宽度
蜗杆 B55×80×8 55 80 8
蜗轮轴 B75×100×10 75 100 10

表9-4弹簧垫圈(GB93-87)
安装位置 类型 内径d 宽度(厚度) 材料为65Mn,表面氧化的标准弹簧垫圈
轴承旁连接螺栓 GB93-87-16 16 4
上下箱联接螺栓 GB93-87-12 12 3

表9-5挡油盘
参考文献《机械设计课程设计》(修订版) 鄂中凯,王金等主编 东北工学院出版社 1992年第132页表2.8-7
安装位置 外径 厚度 边缘厚度 材料
蜗杆 129mm 12mm 9mm Q235

定位销为GB117-86 销8×38 材料为45钢

十、减速器附件的选择
以下数据均以参考文献《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社的P106-P118
表10-1视孔盖(Q235) 单位mm
A A1 A。 B1 B B0 d4 h
150 190 170 150 100 125 M 8 1.5

表10-2吊耳 单位mm
箱盖吊耳 d R e b
42 42 42 20
箱座吊耳 B H h
b
36 19.2 9..6 9 24

表10-3起重螺栓 单位mm
d D L S d1

C d2 h
M16 35 62 27 16 32 8 4 2 2 22 6

表10-4通气器 单位mm
D d1 d2 d3 d 4 D a b s
M18×1.5 M33×1.5 8 3 16 40 12 7 22
C h h1 D1 R k e f
16 40 8 25.4 40 6 2 2

表10-5轴承盖(HT150) 单位mm
安 装
位 置 d3 D d 0 D0 D2 e e1 m D4 D5 D6 b1 d1
蜗杆 10 130 11 155 180 12 13 35.5 120 125 127 8 80
蜗轮轴 10 140 11 165 190 12 13 20 130 135 137 10 100
表10-6油标尺 单位mm

d1 d2 d3 h a b c D D1
M16 4 16 6 35 12 8 5 26 22
表10-7油塞(工业用革) 单位mm
d D e L l a s d1 H
M1×1.5 26 19.6 23 12 3 17 17 2

十一、减速器的润滑
减速器内部的传动零件和轴承都需要有良好的润滑,这样不仅可以减小摩擦损失,提高传动效率,还可以防止锈蚀、降低噪声。
本减速器采用蜗杆下置式,所以蜗杆采用浸油润滑,蜗杆浸油深度h大于等于1个螺牙高,但不高于蜗杆轴轴承最低滚动中心。
蜗轮轴承采用刮板润滑。
蜗杆轴承采用脂润滑,为防止箱内的润滑油进入轴承而使润滑脂稀释而流走,常在轴承内侧加挡油盘。
1、《机械设计课程设计》(修订版) 鄂中凯,王金等主编 东北工学院出版社 1992年
2、《机械设计 第四版》 邱宣怀主编 高等教育出版社出版 1996年
3、《机械设计、机械设计基础课程设计》 王昆等主编 高等教育出版社 1995年
4、《机械设计课程设计图册》(第三版) 龚桂义主编 高等教育出版社 1987年
5、《机械设计课程设计指导书》(第二版) 龚桂义主编 高等教育出版社 1989年
6、简明机械设计手册(第二版) 唐金松主编 上海科学技术出版社 2000年
《机械设计课程设计》 刘俊龙 何在洲 主编 机械工业出版社 1993年
《机械零件设计课程设计》 毛振扬 陈秀宁 施高义 编 浙江大学出版社1989
《机械设计 第四版》 邱宣怀主编 高等教育出版社出版 1996年

要的就Q我406592117

阅读全文

与蜗轮箱传动装置相关的资料

热点内容
图纸管道阀门手柄角度W45N 浏览:569
初中化学实验装置自制 浏览:623
尼尔机械纪元如何用辅助机甩 浏览:471
铸造铝锭都有什么型号 浏览:870
换塑料阀门短了一节怎么弄 浏览:576
机械手表几天没戴不走了怎么办 浏览:616
pn在阀门代表什么 浏览:571
阀门ANSI150什么意思 浏览:297
天然气阀门控制器怎么安装 浏览:617
庆安制冷是什么企业 浏览:2
气动阀门怎么做阀门试压 浏览:754
关于更换管道阀门的申请 浏览:856
45度角用什么木工机械铣小型 浏览:404
石油化工工艺装置布置设计通则 浏览:593
圆形阀门井土方怎么计算 浏览:54
常州最大的五金市场在哪里 浏览:287
想代理电动工具 浏览:248
阀门中心距怎么测量 浏览:833
深圳五金件加工喷漆 浏览:982
轴承TN2什么意思 浏览:562