导航:首页 > 装置知识 > 一般设计液压传动装置时

一般设计液压传动装置时

发布时间:2023-03-06 00:27:31

① 一般的液压传动系统由哪几部分组成,基本工作原理是什么

液压传动系统由液压动力元件(液压油泵)、液压控制元件(各种液压阀)、液压执行元件(液压缸和液压马达等)、液压辅件(管道和蓄能器等)和液压油组成。

基本工作原理:

电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向和阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。

1、液压泵是将原动机的机械能转换为液体的压力动能(表现为压力、流量),为液压系统提供压力油,是系统的动力来源。

2、液压缸或液压马达将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可实现回转运动。

3、各种液压阀可以控制和调节液压系统中液体的压力、流量和方向等,保证执行元件能按照要求进行工作。

4、液压辅件提供必要的条件使系统正常工作并便于监测控制。

5、液压油,液压系统就是通过液压油实现运动和动力传递的,液压油还可以对液压元件中相互运动的零件起润滑作用。

(1)一般设计液压传动装置时扩展阅读:

液压传动系统的优点

1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动。

2、液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。

3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。

4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。

5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。

6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。

7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。

② 液压传动技术有哪些优缺点

一、液压传动的优点

1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。

2、液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。

3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。

4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。

5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。

6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。

7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。

二、液压传动的缺点

1、油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。

2、对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。

3、能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。

4、系统出现故障时,不易查找原因。综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。

拓展资料

液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。

我国的液压工业开始于20世纪50年代,其产品最初只用于机床和锻压设备,后来才用到拖拉机和工程机械上。自从1964年从国外引进一些液压元件生产技术,并自行设计液压产品以来,我国的液压件已在各种机械设备上得到了广泛的使用。20世纪80年代起更加速了对先进液压产品和技术的有计划引进、消化、吸收和国产化工作,以确保我国的液压技术能在产品质量、经济效益、研究开发等各个方面全方位地赶上世界水平。

当前,液压技术在实现高压、高速、大功率、高效率、低噪声、经久耐用、高度集成化等各项要求方面都取得了重大的进展,在完善比例控制、伺服控制、数字控制等技术上也有许多新成就。此外,在液压元件和液压系统的计算机辅助设计、计算机仿真和优化以及微机控制等开发性工作方面,日益显示出显著的优势。

液压传动主要应用如下:

(1)一般工业用液压系统塑料加工机械(注塑机)、压力机械(锻压机)、重型机械(废钢压块机)、机床(全自动六角车床、平面磨床)等;

(2)行走机械用液压系统工程机械(挖掘机)、起重机械(汽车吊)、建筑机械(打桩机)、农业机械(联合收割机)、汽车(转向器、减振器)等;

(3)钢铁工业用液压系统冶金机械(轧钢机)、提升装置(升降机)、轧辊调整装置等;

(4)土木工程用液压系统防洪闸门及堤坝装置(浪潮防护挡板)、河床升降装置、桥梁操纵机构和矿山机械(凿岩机)等;

(5)发电厂用液压系统涡轮机(调速装置)等;

(6)特殊技术用液压系统巨型天线控制装置、测量浮标、飞机起落架的收放装置及方向舵控制装置、升降旋转舞台等;

(7)船舶用液压系统甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;

(8)军事工业用液压系统火炮操纵装置、舰船减摇装置、飞行器仿真等。

③ 液压式制动传动装置

液压制动传动装置类似于离合器液压控制装置。它以专用油为介质,将驾驶员施加在制动踏板上的踏板力放大后传递给车轮制动器,再将液压转化为制动蹄片开口的机械推力,使车轮制动器产生制动效果。它具有结构简单、制动滞后时间短、无摩擦部件、制动稳定性好、对各种车轮制动器适应性强等优点,因此被广泛应用于中小型汽车。

液压传动装置的主要部件如下

1.制动主缸

主缸可以将制动踏板输入的机械力转化为液压。大部分制动缸由铸铁或合金制成,其中一些与储油室成一体,形成一个整体的主缸,另一些相互分离,然后通过油管连接,这是一个分离的主缸。分体式总泵的储油室多采用透明塑料成型,部分配有防溅浮子或低液位报警灯开关。根据工作室的数量,主缸可以分为单室和双腔。单线液压制动传动装置采用单室主缸,现已淘汰。双腔制动总泵应用广泛。下面简单介绍一下双腔制动总泵。

1)结构组成

双腔制动总泵一般是串联的,如图17.5所示。主要由主缸、前活塞及回位弹簧、前活塞弹簧座、前活塞杯、限位螺栓、后活塞及杯等组成。主缸体中的工作面精度高、光滑。缸体上有进油孔和补偿孔,有两个活塞。后活塞9为主活塞,右端凹槽与推杆之间有一定间隙。前活塞6位于气缸中部,将主缸内腔分为前腔B和后腔A两个工作腔,两个工作腔分别与前后液压管路连接,前腔B产生的液压通过出油口11和管路与后轮制动器连接,后腔A产生的液压通过出油口10和管路与前轮制动器连接。

2)工作条件

当踩下制动踏板时,推杆推动主活塞9向左移动,直到杯8盖住补偿孔,后腔A内的液压上升,建立起一定的液压。一方面,机油通过后机油出口流入前制动管路,另一方面,机油推动前活塞6向左移动。在后腔A中的液压和弹簧的作用下,前活塞向左移动,前腔B中的压力也随之增加。油通过空腔内的出油口进入后制动管路,这样两条制动管路制动汽车车轮制动器。

当持续踩下制动踏板时,前腔B和后腔A中的液压会继续增大,从而加强前后轮制动器的制动。

当制动器松开时,活塞在弹簧的作用下复位,高压油从制动管路流回制动总泵。如果活塞复位过快,工作室的容积会迅速增加,油压会迅速下降。由于管路阻力的影响,制动管路中的油将无法充分回流到工作腔,从而在工作腔内形成一定的真空度,这样储液腔内的油将通过进油口和活塞上的轴向孔将垫片和杯体推入工作腔内。当活塞完全复位时,补偿孔打开,制动管路中回流到工作室的多余油通过I补偿孔流回储液室。

如果连接到前室B的制动管路损坏漏油,踩下制动踏板时,只有后室A能积聚一定的液压,但前室B中没有液压,此时,在液压压差的作用下,前活塞6迅速被推向底部,直到接触到油缸的顶部。前活塞被推到底部后,后室A的液压可能会上升到制动所需的值。

如果连接到后室A的制动管路损坏漏油,当踩下制动踏板时,起初只有主活塞9向前移动,但前活塞6不能被推动,因此后室A中的液压无法建立。然而,当主活塞的顶部接触前活塞6时,推杆的力可以推动前活塞,从而可以在前室中建立液压。

可以看出,在双管路液压系统中,当任何一条管路损坏漏油时,另一条仍能工作,只是增加了所需的管路。

上海 桑塔纳 ( 查成交价 | 车型详解 )使用的制动总泵也是串联双腔制动总泵。主缸用两个螺母连接在真空助力器前面,主缸上有两个橡胶头与储液罐连接。制动液通过进油孔供应至前后工作室。主缸前后有两个对称的M10 X1 出油螺孔,相互成100度角,通过制动管路与四轮制动器的轮缸交叉布置连接。

当踏板松开时,活塞和推杆分别在回位弹簧的作用下回到初始位置。由于回程速度快,在制动管路中很容易生成 tru e空。因此,前活塞和后活塞的头部有三个l.4毫米的小孔,相互间隔120度,制动液可以通过小孔流回两个工作室,从而减少负压。

为了保证主缸活塞完全回位,推杆与制动主缸活塞之间有一定的间隙,这种间隙体现在制动踏板的行程上,称为制动踏板自由行程。

制动踏板的自由行程对制动效果和行车安全有很大影响。如果自由行程过大,制动踏板有效行程减小,制动过晚,导致制动不良或失效。如果自由行程过小或过小,刹车不能及时完全释放,造成刹车拖滞,加速刹车磨损,影响动力传递效率,增加汽车油耗。

制动踏板的自由行程可以通过推杆的长度来调节。

2.制动轮缸

制动轮缸将来自主缸的液压转换成机械推力,以打开制动蹄。由于车轮制动器的结构不同,轮缸的数量和结构也不同,通常分为双活塞制动轮缸和单活塞制动轮缸。

1)双活塞制动轮缸

双活塞制动轮缸的结构如图17所示。6.缸体用螺栓固定在制动底板上。气缸里有两个塞子。具有相对切削刃的密封杯分别被弹簧压靠在两个活塞上,以保持杯之间的进油孔畅通。防护罩用于防止灰尘和湿气进入气缸。2)单活塞制动轮缸

单活塞制动轮缸的结构如图17所示。7.顶块压在单活塞制动轮缸活塞外端凸台孔内的制动蹄上端。排气阀安装在缸体上方,用于排出气体。为了减小轴向尺寸,安装在活塞导向面上的橡胶圈用于密封液腔,进油间隙由活塞端面的凸台保持。

单活塞制动轮缸多用于单向助力平衡轮制动器,目前趋于淘汰。

单活塞制动轮缸的活塞直径大于主缸的直径,并且与前后轴上的实际负载分布成比例。这样,作用在前制动器和后轮轴制动器上的制动力应该是踏板力和制动踏板杠杆与活塞直径之比。3.制动管路

制动管路用于输送和承受一定压力的制动液。制动管路有两种:金属管和橡胶管。由于主缸和轮缸的相对位置经常变化,除了金属管外,有些制动管有相对运动的截面,用高强度橡胶管连接。

4.制动液

要求制动液具有冰点低、高温老化低、流动性好的特点。制动液对普通金属和橡胶有腐蚀性,制动系统中所有与制动液接触的零件都由耐腐蚀材料制成。因此,为了保证可靠的制动性能,在修理和更换相关零件时,必须使用原装零件或认证零件。桑塔纳用的制动液是D0T4。 @2019

④ 液压传动的特点是什么

1液压传动的优点
液压传动与机械传动、电气传动、气压传动等相比较,具有以下优点:
(1)在同等功率的情况下,液压传动装置的体积小、重量轻、结构紧凑,如液压马达的重量只有同等功率电动机重量的10%~20%。当液压传动采用高压时,则更容易获得很大的力或力矩。
(2)液压系统执行机构的运动比较平稳,能在低速下稳定运动。当负载变化时,其运动速度也较稳定。同时因其惯性小、反应快,所以易于实现快速运动、制动和频繁地换向。在往复回转运动时换向可达每分钟500次,往复直线运动时换向可达每分钟1000次。
(3)液压传动可在大范围内实现无级调速,调速比一般可达100以上,最大可达2000以上,并且可在液压装置运行的过程中进行调速。
(4)液压传动容易实现自动化,因为它是对液体的压力、流量和流动方向进行控制或调节,操纵很方便。当液压控制和电气控制或气动控制结合使用时,能实现较复杂的顺序动作和远程控制。
(5)液压装置易于实现过载保护且液压件能自行润滑,因此使用寿命较长。
(6)由于液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。
2液压传动的缺点
(1)液压传动不能保证严格的传动比,原因是由液压油的可压缩性和泄漏等因素所造成的。
(2)液压传动在工作过程中常有较多的能量损失(摩擦损失、泄漏损失等)。
(3)液压传动对油温的变化比较敏感,它的工作稳定性容易受到温度变化的影响,因此不宜在温度变化很大的环境中工作。
(4)为了减少泄漏,液压元件在制造精度上的要求比较高,因此其造价较高,且对油液的污染比较敏感。
(5)液压传动出现故障的原因较复杂,而且查找困难。

⑤ 液压传动知识

(一)液压传动概述

液压传动是以液体为工作介质来传递动力和运动的一种传动方式。液压泵将外界所输入的机械能转变为工作液体的压力能,经过管道及各种液压控制元件输送到执行机构→油缸或油马达,再将其转变为机械能输出,使执行机构能完成各种需要的运动。

(二)液压传动的工作原理及特点

1.液压传动基本原理

如图2-62所示为一简化的液压传动系统,其工作原理如下:

液压泵由电动机驱动旋转,从油箱经过过滤器吸油。当控制阀的阀心处于图示位置时,压力油经溢流阀、控制阀和管道(图2-62之9)进入液压缸的左腔,推动活塞向右运动。液压缸右腔的油液经管道(图2-62之6)、控制阀和管道(图2-62之10)流回油箱。改变控制阀的阀心的位置,使之处于左端时,液压缸活塞将反向运动。

改变流量控制阀的开口,可以改变进入液压缸的流量,从而控制液压缸活塞的运动速度。液压泵排出的多余油液经限压阀和管道(图2-62之12)流回油箱。液压缸的工作压力取决于负载。液压泵的最大工作压力由溢流阀调定,其调定值应为液压缸的最大工作压力及系统中油液经阀和管道的压力损失之总和。因此,系统的工作压力不会超过溢流阀的调定值,溢流阀对系统还起着过载保护作用。

在图2-62所示液压系统中,各元件以结构符号表示。所构成的系统原理图直观性强,容易理解;但图形复杂,绘制困难。

工程实际中,均采用元件的标准职能符号绘制液压系统原理图。职能符号仅表示元件的功能,而不表示元件的具体结构及参数。

图2-63所示即为采用标准职能符号绘制的液压系统工作原理图,简称液压系统图。

图2-62 液压传动系统结构原理图

1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀

图2-63 液压传动系统工作原理图

1—油箱;2—过滤器;3—液压泵;4—溢流阀;5—控制阀;6,9,10,12—液压管道;7—液压缸;8—工作台;11—限压阀

2.液压传动的特点

(1)液压传动的主要优点

1)能够方便地实现无级调速,调速范围大。

2)与机械传动和电气传动相比,在相同功率情况下,液压传动系统的体积较小,质量较轻。

3)工作平稳,换向冲击小,便于实现频繁换向。

4)便于实现过载保护,而且工作油液能使传动零件实现自润滑,因此使用寿命较长。

5)操纵简单,便于实现自动化,特别是与电气控制联合使用时,易于实现复杂的自动工作循环。

6)液压元件实现了系列化、标准化和通用化,易于设计、制造和推广应用。

(2)液压传动的主要缺点

1)液压传动中不可避免地会出现泄漏,液体也不可能绝对不可压缩,故无法保证严格的传动比。

2)液压传动有较多的能量损失(泄漏损失、摩擦损失等),故传动效率不高,不宜作远距离传动。

3)液压传动对油温的变化比较敏感,不宜在很高和很低的温度下工作。

4)液压传动出现故障时不易找出原因。

(三)液压传动系统的组成及图形符号

1.液压传动系统的组成

由上述例子可以看出,液压传动系统除了工作介质外,主要由四大部分组成:

1)动力元件——液压泵。它将机械能转换成压力能,给系统提供压力油。

2)执行元件——液压缸或液压马达。它将压力能转换成机械能,推动负载做功。

3)控制元件——液压阀(流量、压力、方向控制阀等)。它们对系统中油液的压力、流量和流动方向进行控制和调节。

4)辅助元件——系统中除上述三部分以外的其他元件,如油箱、管路、过滤器、蓄能器、管接头、压力表开关等。由这些元件把系统连接起来,以支持系统的正常工作。

液压系统各组成部分及作用如表2-6所示。

表2-6 液压系统组成部分的作用

2.液压元件的图形符号

图2-64是液压千斤顶的结构原理示意图。它直观性强,易于理解,但难于绘制。特别是当液压系统中元件较多时更是如此。

图2-64 液压千斤顶的结构原理图

1—杠杆;2—泵体;3,11—活塞;4,10—油腔;5,7—单向阀;6—油箱;8—放油阀;9—油管;12—缸体

为了简化原理图的绘制,液压系统中的元件可采用符号来表示,并代表元件的职能。使用这些图形符号可使系统图即简单明了又便于绘制,如果有些液压元件职能无法用这些符号表达时,仍可采用它的结构示意图形式。如表27为液压泵的图形符号;表2-8为常用控制方式的图形符号。欲了解更多液压元件的图形符号,可参阅相关书籍。

表2-7 液压泵的图形符号

表2-8 常用控制方式图形符号

(四)液压传动的主要元件

1.液压泵

是一种能量转换装置。它将机械能转换为液压能,为液压系统提供一定流量的压力油液,是系统的动力元件。

液压泵的结构类型有齿轮式、叶片式和柱塞式等。目前钻探设备的液压系统中主要采用前两种形式。

(1)齿轮泵

齿轮泵分为外啮合和内啮合两种形式。外啮合式齿轮泵由于结构简单,价格低廉,体积小质量轻,自吸性能好,工作可靠且对油液污染不敏感,所以应用比较广泛。

1)齿轮泵的工作原理。齿轮泵由泵壳体,两侧端盖及由各齿间形成密封的工作空间组成。齿轮的啮合线把容腔分隔为两个互不相通的吸油腔和排油腔。当齿轮按图示方向旋转时吸油一侧的轮齿逐渐分离,工作空间的容腔逐步增大,形成局部真空。此时油箱中的油液在外界大气压的作用下进入吸油容腔,随着齿轮的旋转,齿间的油液带到排油一侧。由于此侧的轮齿是逐步啮合,工作空间的容腔缩小,油液受挤压获得能量排出油口并输入液压系统。

2)齿轮泵的结构。YBC-45/80齿轮泵是钻探设备常用的一种液压泵,额定流量45L/min,额定泵压8MPa(图2-65)。该泵主要由泵体、泵盖、主动齿轮、被动齿轮及几个轴套等组成。齿轮与轴呈一体,以4只铝合金轴套支撑于泵体内,泵盖与泵体用螺栓紧固,端面及泵轴处均以密封圈密封,两个轴套(图2-65之7与19)在压力油的作用下有一定的轴向游动量,油泵运转时与齿轮端面贴紧,减少轴向间隙同时在轴套和泵盖之间有封严板等,将吸排油腔严格分开,防止窜通以提高泵的容积效率。在轴套靠近齿轮啮合处开有卸荷槽。泵主轴伸出端以半圆键与传动装置连接,接受动力。

图2-65 YBC—45/80齿轮泵

1—卡圈;2—油封;3—螺栓;4—泵盖;5,13,20—O型密封圈;6—封严板;7,10,17,19—轴套;8—润滑油槽;9—主动齿轮;11—进油口;12—泵体;14—油槽;15—排油口;16—定位钢丝;18—被动齿轮;21—油孔;22—压力油腔

3)齿轮泵的流量。齿轮泵的流量可看作是两个齿轮的齿槽容积之和。若齿轮齿数为z,模数为m,节圆直径为D(D=z·m),有效齿高h=2m,齿宽为b时,泵的流量Q为

Q=πDhb=2πzm2b

考虑齿间槽比轮齿的体积稍大一些,通常取π为3.33加以修正,还应考虑泵的容积效率ηv,则齿轮泵每分钟的流量为

地勘钻探工:基础知识

(2)叶片泵

叶片泵与齿轮泵相比较具有结构紧凑,外形尺寸小,流量均匀,工作平稳噪音小,输出压力较高等优点,但结构较复杂,自吸性能差,对油液污染较敏感。在液压钻机中也有采用。

叶片泵分为单作用和双作用两种。前者可作为变量泵,后者只能作定量泵。

2.液压马达

液压马达是将液压能转换为机械能的装置,是液压系统的执行元件。其结构与液压泵基本相同,但由于功能和工作条件不同,一般液压泵和液压马达不具有可逆性。

液压马达按结构特点分为齿轮式、叶片式和柱塞式三类。钻探设备中常用柱塞式液压马达。

如图2-66所示,当压力油经配油盘进入缸体的柱塞时,柱塞受油的作用向外伸出,并紧紧抵在斜盘上,这时斜盘对柱塞产生一法向反作用力F。由于斜盘中心线与缸体轴线倾斜角为δM,所以F可分解为两个分力,其中水平分力Fx与柱塞推力相平衡,而垂直分力Fg则对缸体产生转矩,驱动缸体及马达轴旋转。若从配油盘的另一侧输入压力油,则液压马达朝反方向旋转。

图2-66 轴向柱塞式液压马达工作原理

1—斜盘;2—缸体;3—柱塞;4—配油盘;5—主盘

若液压马达的排量为Q,输入液压马达的液压力为P,机械效率为ηm,则液压马达的输出转矩M为:M=PQηm/2π。

3.液压缸

液压缸是液压系统的执行元件。它的作用是将液压能转变为机械能,使运动部件实现往复直线运动或摆动。液压缸结构简单,使用方便,运动平稳,工作可靠,在钻探设备中应用十分广泛。液压缸的种类很多,按结构类型可分为活塞式、柱塞式和摆动式三种。其中活塞式液压缸最常用。活塞或液压缸可分为单出杆式和双出杆式两种。其固定方式可以是缸体固定或活塞杆固定。

(1)单出杆活塞式液压缸

如图2-67所示为液压式钻机给进油缸的结构。它由活塞、活塞杆、缸筒、上盖、下盖、密封圈和压紧螺母等组成。活塞杆与活塞以螺纹连接成一体。活塞环槽中配装的活塞环及上盖处的密封圈等用以保证缸内具有良好的密封性。在液缸的上下盖上设有输油口,压力油经输油口进入液缸的上、下腔,即推动活塞移动,并通过活塞杆顶端的连接螺母带动立轴上行或下行。由图示结构可知,单出杆液压缸活塞两侧容腔的有效工作面积是不相等的,因此当向两腔分别输入压力和流量相等的油液时,活塞在两个方向的推力和运行速度是不相等的。

图2-67 钻机给进油缸的结构

(2)双活塞杆式液压缸

双活塞杆式液压缸结构,组成件与单活塞杆液压缸基本相同,所不同的是活塞左右两端都有活塞杆伸出,可以连接工作部件,实现往复运动。由图示结构可知,

两侧活塞杆直径相同,当两腔的供油压力和流量都相等时,两个方向的推力和运行速度也相等。

4.液压控制阀

液压控制阀是液压系统中的控制元件,用于控制系统的油液流动方向及压力和流量的大小,以保证各执行机构工作的可靠、协调和安全性。

液压控制阀按其用途和工作特点不同,通常可分为方向控制阀(如单向阀和换向阀等)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这3种阀可根据需要互相组合成为集成式控制阀,如液压式钻机或其他工程机械就是将一个或多个换向阀、调压溢流阀和流量阀等组装在一起成为集中手柄控制的液压操纵阀。

(五)液压传动系统的基本回路简介

1.压力控制回路

主要是利用压力控制阀来控制系统压力,实现增压、减压、卸荷、顺序动作等,以满足工作机构对力或力矩的要求。如图2-68所示为一减压回路,由于油缸G往返时所需的压力比主系统低,所以在支路上设置减压阀,实现分支油路减压。

图2-68 减压回路

2.速度控制回路

主要有定量泵的节流调速、变量泵和节流阀的调速、容积调速等回路,可以实现执行机构不同运动速度(或转速)的要求。在定量泵的节流调速回路中,采用节流阀,调速阀或溢流调速阀来调节进入液压缸(或液压马达)的流量。根据阀在回路中的安装位置,分为进口节流、出口节流和旁路节流3种。

3.换向控制回路

换向控制回路是利用各种换向阀或单向阀组成的控制执行元件的启动、停止或换向的回路。常见的有换向回路、闭锁回路、时间制动的换向回路和行程制动的换向回路等。

如图2-69所示是简化的工作台作往复直线运动的液压系统图。为了控制工作台的往复运动,在这个系统中设置了一个手动换向阀,用来改变液流进入液压缸的方向。当手动换向阀的阀心在最右端时(图2-69a),压力油由P—A,进入液压缸左腔。此时,右腔中的油液由B—O流回油箱,因而推动了活塞连同工作台一起向右运动。

若把手动换向阀的阀心扳到中间位置(图2-69b),压力油的进油口P与回油口O都被阀心封闭,工作台停止运动。

如果把阀心扳到最左端,压力油从P—B进入液压缸右腔(图2-69c),左腔中的油液由A—O回油箱,从而推动活塞连同工作台向左运动,完成换向动作。

图2-69 换向工作原理图

4.同步回路

当液压设备上有两个或两个以上的液压油缸,在运动时要求能保持相同的位移和速度,或要求以一定的速度比运动时,可采用同步回路。

5.顺序动作回路

当用一个液压泵驱动几个要求按照一定顺序依次动作的工作机构时,可采用顺序动作回路。实现顺序动作可以采用压力控制、行程控制和时间控制等方法。

⑥ 液压系统设计工作

设计液压传动系统的内容
1、明确对液压传动系统的工作要求,是设计液压传动系统的依据,由使用部门以技术任务书的形式提出。

2、拟定液压传动系统图。(1)根据工作部件的运动形式,合理地选择液压执行元件;(2)根据工作部件的性能要求和动作顺序,列出可能实现的各种基本回路。此时应注意选择合适的调速方案、速度换接方案,确定安全措施和卸荷措施,保证自动工作循环的完成和顺序动作和可靠。

液压传动方案拟定后,应按国家标准规定的图形符号绘制正式原理图。图中应标注出各液压元件的型号规格,还应有执行元件的动作循环图和电气元件的动作循环表,同时要列出标准(或通用)参数。
3、计算液压系统的主要参数和选择液压元件。(1)计算液压缸的主要参数;(2)计算液压缸所需的流量并选用液压泵;(3)选用油管;(4)选取元件规格;(5)计算系统实际工作压力;(6)计算功率,选用电动机;(7)发热和油箱容积计算;

4、进行必要的液压系统验算。

5、液压装置的结构设计。

6、绘制液压系统工作图,编制技术文件。

常用的软件有:
CAD/SMC公司内部用的设计软件。

⑦ 液压制动传动装置的布置形式有

液压制动执行器有两种布置方式:单线液压制动执行器和双线液压制动执行器。单线液压传动装置单线液压传动装置利用一个制动总泵,通过一组相互连接的管路来控制整车的车轮制动器,如图17.1所示。该装置由制动踏板、推杆、制动总泵、储液室、制动轮缸、油管等组成。如果单线液压制动传动装置的任何部分漏油,整个系统都会失效。由于可靠性差,很少用于汽车。
双管路液压传动装置双管路液压传动装置是利用两个彼此独立的液压系统,当一个液压系统发生故障时,另一个液压系统仍然照常工作。双管路的布置型式应力求当一套管路发生故障时,只能引起制动效能的降低,其前后桥制动力分配比例值最好不变,以提高附着力的利用率,保证汽车良好的操纵性和稳定性。

常见的双线液压制动装置有两种:

①两套管路,如国产 桑塔纳 ( 查成交价 | 车型详解 )和部分进口 丰田 汽车,采用串联双腔制动总泵控制。

②采用单腔制动总泵,配安全缸或隔离器,控制两套管路,如国产NJ1 041等。

双管路液压传动装置通常以前后独立方式和交叉方式布置。

1.双管前后独立模式

前后管路独立的液压传动装置由车轴控制,即两轴各有一套控制管路,如图17所示。2.该装置由制动踏板、推杆、双腔制动总泵、储液室、制动轮缸、油管等组成。主要用于后置发动机对后轮制动依赖性较大的后轮驱动车辆。制动时,踩下制动踏板,双腔制动总泵的推杆推动总泵的前后活塞,增加总泵前后腔内的油压,制动液分别流向前后轮制动缸,在油压的作用下,迫使轮缸的活塞向外移动,推动制动蹄片打开,产生制动。当松开制动踏板时,制动蹄和轮缸活塞在回位弹簧的作用下回到原位,使制动液返回制动总泵,汽车脱离制动。每个制动缸的管路分为控制轴上的车轮制动器和后轮轴。如果其中一条管路发生故障,另一条管路仍有一定的制动效率,但前后轴制动力分配比被破坏,导致附着利用率下降,制动效率低于5 0%。

2.双管道穿越模式

双管路交叉液压制动传动装置分别通过两套管路控制前、后轮轴制动器的一个制动轮缸,如图17所示。3、主要用于发动机高度依赖前轮制动力的前轮驱动车辆,上海桑塔纳汽车采用双管路穿越方式。制动时,如果其中一条管路发生故障,剩余的总制动力仍能保持正常值的5±0%,即使正常工作管路中的车轮制动器锁死打滑,故障管路也不制动。

动轮仍能传递侧向力,前后轮制动力分配达到3.36 = 1。汽车高速刹车时,可以保证后轮不抱死,或者前轮先于后轮抱死,避免刹车时后轮失去横向附着力,导致汽车失控,如图17所示。4. @2019

⑧ 液压提升装置 原理

利用液体压力传递的性质,根据液面平衡、压强相等原理,衡量得出质量的大小。液压原理在一定的机械、电子系统内,依靠液体介质的静压力,完成能量的积压、传递、放大,实现机械功能的轻巧化、科学化、最大化。利用液压原理,可以构建液压传动系统,也可以构建液压控制系统。液压回路的基本机能在于以液体压力能的形式进行容易控制的能量传递。
元件分类
正确地使用和维护液压系统,有赖于对流体特性和机械元件功能的透彻理解。要想操作和维护好一个液压系统,从事该领域工作的人们必须具备一些流体动力的基础知识,同时也需要熟悉组成液压系统的七类基本元件。
许多液压系统看似极其复杂,但实际上,它们的基本设计原理相当简单。不管一个液压系统的复杂程度如何,每个系统都无外乎由七类基本元件组成:
1、存储油液的油箱;
2、用来传递流体动力的管路;
3、将输入动力转化为流体动力的液压泵;
4、调节压力的压力控制阀;
5、控制流体流动方向的方向控制阀;
6、调节速度或流量的流量控制装置;
7、将液压能转化为机械能的执行元件。
特点
从能量传递方面看:液压技术大致处于机械式能量传递和电气式能量传递之中间位置。
从传动特性方面看:机械传动和液力传动装置可以说有固定的特性,与此相反,液压传动装置和电气传动装置相同,具有无级变速装置的特性,除了恒功率外,还容易实现恒速和恒转矩等特性。
液压技术的这种特点,一般可以归纳如下:
(1)容易进行无级变速,变速范围广,即能在很宽的范围内很容易地调节力与转矩;
(2)控制性能好,即力、速度、位置等能以很高的响应速度正确地进行控制。另外,对于电气,机械等其它的控制方式具有很好地适应性,特别是和电气信号处理相结合,可得到优良的响应特性;
(3)动作可靠,操作性能好;
(4)结构和特性上具有适度的柔性;
(5)可以用标准元件构成实现任意复杂机能的回路。形成这些特点的原因:在于用容积式元件作能力转换器即液压泵和液压执行器,用富有润滑性的油(液压油)作为工作介质。液压技术的一般缺点也与液压油有关。

阅读全文

与一般设计液压传动装置时相关的资料

热点内容
商超除了空调还有什么制冷好 浏览:847
永嘉县瓯北上能阀门厂 浏览:814
石油终端安全工具箱连不上其他网络 浏览:554
什么办法除阀门铁锈 浏览:179
70度的冰柜用的是什么制冷剂 浏览:424
安全设施设备是什么意思 浏览:222
昆山力盟机械工业公司怎么样 浏览:480
智能传送装置课程设计 浏览:72
环球网校如何更改设备 浏览:12
西安远博机电设备有限公司怎么样 浏览:735
手持式电动工具原理 浏览:725
如图所示为探究感应电流产生条件的实验装置 浏览:143
阀门手柄断了要怎么更换 浏览:50
阀门上密封未做是指什么 浏览:657
现代途胜仪表盘灯怎么关 浏览:368
设备使用目的是什么 浏览:693
临沂电工五金市场 浏览:185
美国市场各类五金电镀颜色分类 浏览:101
潍坊美博会美容仪器怎么走 浏览:889
阀门的公称压力怎么确认 浏览:187