① 循环流化床的作用
流化床(fluidized bed)是一种工业技术,它把一堆固体颗粒用空气等流体介质悬浮起来,使这堆固体具有流体的一些特性。这样,就提供了理想的传热传质和化学反应条件。这是一种先进的化工技术。它的用途非常广泛:化工、冶金、生物化工、食品,甚至用它炒花生也比一般的炉子炒得香,是万金油技术。
② 什么是流化流化床
流化是固体颗粒在流体作用下表现出类似流体状态的现象。
流化床是指将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有流体的某些表观特征。这种流固接触状态称为固体流态化,即流化床。
流化床是锅炉的一部分,其上面分布这无数个风嘴,煤在上面,风从下面吹入,使得料层流化燃烧,更加充分。在一个超微气流粉碎设备中,将颗粒物料堆放好,当气体由设备下部通入床层,随着气流速度加大到某种程度,固体颗粒在床层内就会产生沸腾状态。
(2)流化床气体分装置的作用扩展阅读:
充分流态化的床层表现出类似于液体的性质。密度比床层平均密度小的流体可以悬浮在床面上;床面保持水平;床层服从流体静力学关系 ;颗粒具有与液体类似的流动性,可以从器壁的小孔喷出;两个联通的流化床能自行调整床层上表面使之在同一水平面上。
此性质使得流化床内颗粒物料的加工可以像流体一样连续进出料,并且由于颗粒充分混合,床层温度、浓度均匀使床层具有独特的优点得以广泛的应用。
③ 流化床反应器工作原理
流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。
流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。
原理及应用:
流体(气体或液体)以较高的流速通过床层,带动床内的固体颗粒运动,使之悬浮在流动的主体流中进行反应,并具有类似流体流动的一些特性的装置,称为流化床反应器。
流化床反应器是一种有固体颗粒参与的反应器,这些颗粒系处于运动状态,且其运动方向多种多样,这是与固定床反应器的不同之处。流化床反应器内流体与固体颗粒所构成的床层犹如沸腾的液体,故又称沸腾床反应器。这种床层具有与液体相类似的性质,又叫假液化层。
流化床吸附器多用于固体与气体、液体与液体的反应,特点是气体与固体接触相当充分,气流速度比固定床的气速大三四倍以上,所以该工艺强化了生产能力,对于连续性、气量较大的反应过程非常适合。流化床反应器可用于气固、液固以及气液固催化或非催化反应,是工业生产中较广泛使用的反应器。典型的例子是催化裂化反应装置,还有一些气固相催化反应,如萘氧化、丙烯氨氧化和丁烯氧化脱氢等也采用此种反应器。流化床反应器也用于固相加工,如黄铁矿和闪锌矿的焙烧、石灰石的煅烧等。
④ 流化床反应器的气体分布装置对流化床的直接作用范围有几米
所谓流固相是指由一种流体与固体组成的体系,如果流体是气体那么这就是气固体系,流体是液体自然就是液固体系。
流固相过程实际上在化工生产中存在是非常广泛的,尤其是在精细化工中,涉及到固体物料与产品的情况远多于大宗化学品合成,因此具有较为重大的意义。在化工过程中涉及气固过程中的有:气固催化反应,固体干燥,固体燃烧等。涉及液固的过程有:固体溶解,液固反应等。
外扩散与内扩散对传质过程的影响
流固相的传递过程主要包含两个方面:气体中的热量与物质扩散到固体表面,固体的热量或物质脱离固体表面进入气体中。很自然地,流固相过程强化的原理实际上与气液过程类似。其思路也是类似的,那就是我们要尽可能增大流体与固体的接触面积,同时尽可能地增大固体与流体间的比表面积。这里我们举一个固体干燥的例子,当固体与气流接触的时候,固体颗粒越小干燥速率越快。气流经过固体的速度越高,固体干燥的速度同样能够加快。
那么在工业中我们如何实现这两点呢,可以说对于流固相过程进行强化的思路比较有限,这主要是减小固体颗粒尺寸这一点在实际操作中不容易实现。破碎固体往往需要较高的能量与复杂的机械,这往往是在流固相接触设备之外完成的,在设备本体中进行固体破碎的可行性不大。因此我们唯一可以做的就是尽可能加大气固界面间的扰动。而在这方面实际上工业界已经在做了,那就是流化床。
流态化的原理非常简单,那就是固体颗粒在气流中会呈现悬浮状态,这就是所谓流态化,大家可以稍微一计算一下,为了让颗粒呈现流态化,那么气流的速度就会非常快,同时固体颗粒之间会剧烈地进行撞击。这样一来就加大的气固界面之间的扰动,新成了气固过程强化的作用。同时由于固体呈现流态化,固体颗粒之间的间距较大,变相增大了气体与固体的接触面积。因此以干燥为例,流化床干燥的时间会明显比回转窑甚至普通窑炉内的干燥时间短。
此外流态化还有一个优点,那就是气体有一定热量携带能力,虽然气体热容较低,但是流化床中气量是非常大的,这样一来就可以及时移除系统的热量。这一点在化学反应中用途非常大,比较经典的例子就是丙烯腈的合成,这个合成反应固体做催化剂,是一个强放热的反应。如果采用固定床反应,即使在有冷却介质的条件下,系统温度也难以控制会发生飞温,最后导致催化剂烧坏。因此这种情况下丙烯腈的合成采用的都是流化床反应器。
常用流化床反应器结构形式,主要有反应器本体,气体分布板,旋风分离器组成,实际操作过程中可以有多种类型衍生,比如说旋风分离器外置等变形。
当然流化床的应用还是有局限性的,首先流化床的设计比较困难,目前除了几个经典工艺以外,流化床的设计还是比较粗糙的,需要大量的设计经验,有些又需要在调试中渐渐摸索。因此一般的中小型供应商由于经验不足,经常导致设备无法形成流化,无法开机,这在很大程度上导致业主为避免技术风险宁可采用传统的回转窑等接触设备。
另外现在流化床在一些特定领域中存在政策风险,流化床的特点就在于气量大,这在一般干燥过程中没有问题,但是如果你干燥的物料中含有挥发性的有机物,那么流化床出口的气体就是工业废气,需要严格处理,这样一来就导致了额外的环境处理成本。
另外就是流化床的能耗,首先为了维持反应器内有一定温度,就必须进行加热,由于气体的通过具有冷却效应导致要对气体的加热消耗的热量远大于其他窑炉类型。
振动流化床干燥机,用机械振动辅助流化,优点是设备高度可以降低,操作也比流化床灵活,现在已经是非常常见的设备了。
所以流化床现在的应用情况主要有几点,强换热的气固催化反应,需要气体带走热量。此外还可以进行流化床冷却。有些反应过程产生的是高温的粉体,这时候可以通过直接吹气将粉体冷却下来,这种情况反而有了一定的用途。在燃烧器方面也有用途,因为燃烧器往往对设备体积有要求,要求设备尽可能小所以在流化床上有点前途。但是在干燥方面就非常尴尬了,干燥在很多化工过程中属于可以凑合的流程,设备打一点,效率低一些对厂家来说影响不大,但是废气处理成本以及能耗往往厂家比较关心。因此目前从干燥角度来说,流化床要代替回转窑等设备难度还是比较大的。
⑤ 循环流化床锅炉各辅助设备的作用是什么
锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周由膜式水冷壁组成。自下而上,依次为一次风室、密相区、稀相区,尾部烟道自上而下依次为高温过热器、低温过热器及省煤器、空气预热器。尾部竖井采用支撑结构,两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敷管炉墙,外置金属护板,尾部竖井用轻型炉墙,由八根钢柱承受锅炉全部重量。
锅炉采用床下点火(油或煤气),分级燃烧,一次风比率占50-60%,飞灰循环为低倍率,中温分离灰渣排放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流床,使得流化速度在3.5-4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使锅炉燃烧用不同燃料时,燃烧效率也可保持在98-99%以上。
高温分离器入口烟温在800℃左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅砖)。其使用寿命较长。循环倍率为10-20左右。
循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。
床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床温850-950℃间的某一恒定值,这个值是最佳的脱硫温度。当自动控制不投入时,靠手动也能维持恒定的床温。保护环境,节约能源是各个国家长期发展首要考虑的问题,循环流化床锅炉正是基于这一点而发展起来,其高可靠性,高稳定性,高可利用率,最佳的环保特性以及广泛的燃料适应性,特别是对劣质燃料的适应性,越来越受到广泛关注,完全适合我国国情及发展优势。
⑥ 流化床主要用途是什么啊
利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。
优点:传热效能高,而且床内温度易于维持均匀。大量固体颗粒可方便地往来输送。由于颗粒细,可以消除内扩散阻力,能充分发挥催化剂的效能。
缺点:操作弹性低,对特定固体颗粒,液体或气体向上流动的速度只能在较窄的范围内变化,否则,固体不是被吹跑,就是吹不起来。
固体损耗大,颗粒在反应器内上限翻滚,颗粒之间,颗粒和反应器内壁,颗粒和流动介质之间不断碰撞摩擦产生粉末被吹走,引起较大的同体损失。因此,如果固体颗粒强度不高,或者固体颗粒比较贵重,流化床反应器可能不是最佳选择。
与固定床相比,在同样的生产能力下,流化床体积较大,可达10倍之多。这是因为固体沸腾起来需要较大的空间,加上扩展段,增加的体积很可观。所以,流化床反应器比固定床占据更多的空间,制作成本也较高。
流化床的控制比固定床复杂,因为操作弹性低,操作条件不能有太大的变化,对控制系统提出了更高的要求。
特征
若将气固流化床比拟为沸腾中的液层,则处于流化状态的颗粒群便相当于沸腾中的液体本身,而穿过床层上升的气泡便相当与于沸腾液中的蒸汽泡,因此,此种流化床存在着一个特殊两相物系。处于流化状态的颗粒群是连续的,为连续相,又称密相。
气泡是分散的,称为分散相,又称稀相。只要床层有明显的上界面,便有稀密两相共存,但一般称此状态的流化床为密相流化床。若气速加大则床层上界面不存在,则称此状态的流化床为稀相流化床。在正常的气固相流化床密相中气体流动很慢,几乎为层流。
气泡与密相接触的界面上则发生颗粒的猛烈冲击,使泡内、外的气体都发生很大的湍动,因而加强了气固间的接触,有利于热量与质量传递。这是气泡带来的好处,但气泡也会造成两种不利的情况,即沟流和腾涌现象。
以上内容参考:网络-流化床技术、网络-流态化床
⑦ 什么是流化床
流化床
当流体通过床层的速度逐渐提高到某值时,颗粒出现松动,颗粒间空隙增大,床层体积出现膨胀。如果再进一步提高流体速度,床层将不能维持固定状态。此时,颗粒全部悬浮与流体中,显示出相当不规则的运动。随着流速的提高,颗粒的运动愈加剧烈,床层的膨胀也随之增大,但是颗粒仍逗留在床层内而不被流体带出。床层的这种状态和液体相似成为硫化床。其中,流化床的种类有:最小流化床,鼓泡流化床,腾涌流化床。
循环流化床燃烧技术
循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。 循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石受热分解为氧化钙和二氧化碳。气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。钙硫比达到2~2.5左右时,脱硫率可达90%以上。 流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NOx排放可减少50%;2.燃料适应性强,特别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。负荷调节范围30%~100%。
[编辑本段]流化床超微气流粉碎技术
流化床超微气流粉碎是将待粉碎物料放置在设备容器中,从设备容器下方通入空气,进行粉碎。而循环流化床,则是将设备容器下方送入空气的速度提高,使容器里的物料颗粒被吹起呈沸腾状态悬浮粉碎。同时在容器的上部出口,通过高速分级装置将超微粉收集。 循环超微气流粉碎流化床技术是一项近几年发展起来的环保粉碎技术。它具有粉碎适应性广、粉碎效率高、粗颗粒夹带少、低成本、负荷调节比大和负荷调节快等突出优点。循环流化床低成本实现了严格的超微粉碎指标,同时针对各种非金属物料,在负荷适应性和超微粉综合利用等方面具有综合优势,为超微气流粉碎机的节能环保改造提供了一条有效的途径。
流化床反应器
一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。 流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。
按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应过程,称为流体相加工过程。 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。
与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在粉明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经脸操作。 近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就很高了。(见流态化、流态化设备)