导航:首页 > 装置知识 > 实验室聚合装置图

实验室聚合装置图

发布时间:2023-03-04 02:01:18

1. 肉桂酸的制备装置图

肉桂酸的制备实验

一、实验原理


利用珀金(Perkin)反应制备肉桂酸。一般认为脂肪酸钾盐或钠盐为催化剂,提供CH3COO-
负离子,从而使脂肪酸酐生成负碳离子,然后负碳离子和醛或羧酸衍生物(酐和酯)分子中的羰基发生亲核加成,形成中间体。

在珀金反应中,是碳酸钾夺取乙酐分子中的α-H, 形成乙酸酐负碳离子。实验所用的仪器必须是干燥的。

主反应:




副反应:





在本实验中,由于乙酸酐易水解,无水醋酸钾易吸潮,反应器必须干燥。提高反应温度可以加快反应速度,但反应温度太高,易引起脱羧和聚合等副反应,所以反应温度控制在150~170℃左右。未反应的苯甲醛通过水蒸气蒸馏法分离。


五、实验装置






(1)合成装置图

六、思考题

1、本实验利用碳酸钾代替perkin反应中的醋酸钾,使反应时间缩短,那么具有何种结构的醛能进行perkin反应?

答:醛基与苯环直接相连的芳香醛能发生Perkin反应。

2、用水蒸气蒸馏能除去什么?能不能不用水蒸气蒸馏?如何判断蒸馏终点?

答:①除去未反应的苯甲醛;


②不行,必须用水蒸气蒸馏,因为混合物中含有大量的焦油状物质,通常的蒸馏、过滤、萃取等方法都不适用;


③当流出液澄清透明不再含有有机物质的油滴时,即可断定水蒸汽蒸馏结束(也可用盛有少量清水的锥形瓶或烧杯来检查是否有油珠存在)。

3、在perkin反应中,醛和具有R2CHCOOCOCHR2结构的酸酐相互作用,能得到不饱和酸吗?为什么?

答:不能。因为具有(R2CHCO)2O结构的酸酐分子只有一个α-H原子。

4、苯甲醛和丙酸酐在无水丙酸钾存在下,相互作用得到什么产物?

答:得到α-甲基肉桂酸(即:α-甲基-β-苯基丙烯酸)。

5、制备肉桂酸时,往往出现焦油,它是怎样产生的?又是如何除去的?


答:产生焦油的原因是:在高温时生成的肉桂酸脱羧生成苯乙烯,苯乙烯在此温度下聚合所致,焦油中可溶解其它物质。产生的焦油可用活性炭与反应混合物碱溶液一起加热煮沸,焦油被吸附在活性炭上,经过滤除去。

6、在肉桂酸制备实验中,为什么要缓慢加入固体碳酸钠来调解pH值?


答:对于酸碱中和反应,若加入碳酸钠的速度过快,易产生大量CO2的气泡,而且不利于准确调节pH值。

7、久置的苯甲醛中有何杂质?如何除去?为什么要除去苯甲醛中的杂质?


答:久置的苯甲醛中含有较多的苯甲酸杂质;采用蒸馏的方法除去;若不先除去,则混在肉桂酸产品中,由于结构相似,不易除去。

8、制备肉桂酸时为何采用水蒸汽蒸馏?


答:因为在反应混合物中含有未反应的苯甲醛油状物,它在常压下蒸馏时易氧化分解,故采用水蒸汽蒸馏,以除去未反应的苯甲醛。

9、在肉桂酸制备实验中,能否在水蒸汽蒸馏前用氢氧化钠代替碳酸钠来中和水溶液?

答:不能。因为苯甲醛在强碱存在下可发生Cannizzaro反应。

10、用水蒸气蒸馏的物质应具备什么条件?

答:(1)随水蒸气蒸出的物质应不溶或难溶于水;

(2)在沸腾下与水长时间共存而不起化学变化;

(3)在一定大气压下,要有一定的蒸汽压。

11、什么情况下需要采用水蒸汽蒸馏?

答:下列情况需要采用水蒸气蒸馏:


(1)混合物中含有大量的固体,通常的蒸馏、过滤、萃取等方法都不适用。


(2)混合物中含有焦油状物质,采用通常的蒸馏、萃取等方法都不适用。


(3)在常压下蒸馏会发生分解的高沸点有机物质。

12、怎样正确进行水蒸汽蒸馏操作?

答:(1)在进行水蒸气蒸馏之前,应认真检查水蒸气蒸馏装置是否严密。


(2)开始蒸馏时,应将T形管的止水夹打开,当水蒸气发生器里的水沸腾,有大量水蒸气溢出时再旋紧夹子,使水蒸气进入三颈烧瓶中,并调整加热速度,以馏出速度2—3滴/秒为宜。


(3)操作中要随时注意安全管中的水柱是否有异常现象发生,若有,应立即打开夹子,停止加热,找出原因,排除故障后方可继续加热。


附: 1、肉桂酸制备合成方法综述:

http://wenku..com/view/dc409efa700abb68a982fb4c.html


2、视频:
肉桂酸的制备

http://v.youku.com/v_show/id_XMTgzMzkwMTE2.html

2. 聚合酶链式反应的原理

聚合酶链式反应之所以灵敏度比较高,就是因为聚合酶链式反应原理,目前聚合酶链式反应可以检测DNA的情况,对于生物学领域来说,聚合酶链式反应有很大的帮助,接下来我们来具体了解一下聚合酶链式反应的原理有哪些吧。

聚合酶链式反应的原理及功能

聚合酶链式反应已经相对成熟了,那么聚合酶链式反应的原理及功能是什么呢?

聚合酶链式反应是在试管中进行DNA复制反应,基本原理与体内相似,不同之处是耐热的Taq酶取代DNA聚合酶,用合成的DNA引物替代RNA引物,用加热(变性)、冷却(退火、保温(延伸)等改变温度的办法使DNA得以复制,反复进行变性、退火、延伸循环,就可使DNA无限扩增。

聚合酶链式反应能快速特异扩增任何已知目的基因或DNA片段,并能轻易在皮克(pg)水平起始DNA混合物中的目的基因扩增达到纳克、微克、毫克级的特异性DNA片段。因此,聚合酶链式反应技术一经问世就被迅速而广泛地用于分子生物学的各个领域。通常需要检查的人群为疑似某种特定的疾病病人,进行分子特异性检查。

聚合酶链式反应的原理和过程

聚合酶链式反应一般要在实验室进行,那么聚合酶链式反应的原理和过程什么呢?

聚合酶链式反应就是将聚合酶链式反应反应体系升温至95℃左右,双链的DNA模板就解开成两条单链,此过程为变性。然后将温度降至引物的Km值以下,3端与5端的引物各自与两条单链DNA模板的互补区域结合,此过程称为退火。当将反应体系的温度升至70℃左右时,耐热的Taq DNA聚合酶催化四种脱氧核糖核苷酸按照模板DNA的核苷酸序列的互补方式依次加至引物的3端,形成新生的DNA链。每一次循环使反应体系中的DNA分子数增加约一倍。

聚合酶链式反应理论上循环几次,就增加为2^n倍。当经30次循环后,DNA产量达2^30拷贝,约为10^9个拷贝。聚合酶链式反应扩增过程见图8-1。由于实际上扩增效率达不到2倍,因而应为(1+R)^n,R为扩增效率。

聚合酶链式反应的原理及技术

聚合酶链式反应这项技术已经相对完善,那么聚合酶链式反应的原理及技术怎么样呢?

聚合酶链式反应的原理就是DNA的半保留复制。聚合酶链式反应反应中变性这一步很重要,若不能使模板DNA和聚合酶链式反应产物完全变性,聚合酶链式反应反应就不能成功,DNA分子中G+C含量愈多,要求的变性温度愈高。太高的变性温度和时间又会影响Taq酶的活性,通常的变性温度和时间分别为95℃、30s,有时用97℃、15s。

虽然DNA链在变性温度时两链分离只需几秒钟,但反应管内部达到所需温度还需要一定的时间,团此要适当延长时间。为了保证模板DNA能彻底变性.最好为7-10min,然后在以后的循环中,将变性步骤设为95℃/min。

聚合酶链式反应的原理是什么

聚合酶链式反应灵敏度是比较高的,那么聚合酶链式反应的原理是什么呢?

聚合酶链式反应的原理是双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。耐热DNA聚合酶-Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。

聚合酶链式反应的延伸温度一般为72℃左右,此时Taq酶活性为每秒钟掺入核苷酸35-100个,2kb的片段用1min已足够,若DNA片段较长,扩增时间可适当延长。聚合酶链式反应延伸时间过长又可引起非特异性扩增。

3. 求实验室减压蒸馏装置图

实验室减压蒸馏装置图如下图所示:

实验原理

1.减压蒸馏适用对象

在常压蒸馏时未达沸点即已受热分解、氧化或聚合的物质

2、减压下的沸点

(1)通常液体的沸点是指其表面的蒸气压等于外界大气压时的温度;

(2)液体沸腾时温度是与外界的压力相关的,即外界压力降低沸点也降低;

(3)利用外界压力和液体沸点之间的关系,将液体置于一可减压的装置中,随体系压力的减小,液体沸腾的温度即可降低,这种在较低压力下进行蒸馏的操作被称为减压蒸馏。

(3)实验室聚合装置图扩展阅读

注意事项

1.真空油泵的好坏决定于其机械结构和真空泵油的质量,如果是蒸馏挥发性较大的有机溶剂,其蒸气被油吸收后,会增加油的蒸气压,影响泵的抽真空效果;如果是酸性的蒸气,还会腐蚀泵的机件;

另外,由于水蒸气凝结后会与油形成浓稠的乳浊液,破坏了油泵的正常工作。因此,在真空油泵的使用中,应安装必要的保护装置。

2.测压计的作用是指示减压蒸馏系统内部的压力,通常采用水银测压计,一般可分为封闭式和开口式两种。使用时必须注意勿使水或脏物侵入测压计内。水银柱中也不得有小气泡存在。否则,将影响测定压力的准确性。

4. 高中化学会考

高中物理合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中物理优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

5. 苯乙烯聚合聚苯乙烯的实验室制法

密封小瓶,装1/2苯乙烯
140度,24小时
聚合完成

6. 实验装置图呢(乙酰水杨酸的制备)

乙酰水杨酸俗称阿司匹林,为重要的医药.具有退热、镇痛、抗风湿等作用.
二、基本原理:
乙酰水杨酸是水杨酸(邻羟基苯甲酸)和乙酰酐,在少量浓硫酸(或干燥的氯化氢,有机强酸等)催化下,脱水而制得的.
主反应:
副反应:
在生成乙酰水杨酸的同时,水杨酸分子间可发生缩合反应,生成少量的聚合物.
乙酰水杨酸能与碳酸氢钠反应生成水溶性钠盐,而其副产物聚合物不能溶于碳酸氢钠溶液.利用这种性质上的差别,可纯化阿司匹林.
注意:
反应温度不宜过高,否则将增加副产物的生成:
1.为了促使反应向右进行,通常采用增加酸或醇的浓度,或连续的移去产物酯和水(通常是借形成共沸混合物来进行)的方式来达到.至于是否醇过量和酸过量,则取决于原料来源的难易及操作上是否方便等因素.在实验过程中,常常是两者兼用来提高产率.
2.由于水杨酸中的羟基和羧基能形成分子内氢键,反应必须加热到150℃~160℃.不过,加入少量的浓硫酸或浓磷酸过氧酸等来破坏氢键,反应温度也可降到60℃~80℃,而且副产物也会有所减少.
3.乙酰水杨酸易受热分解,因此熔点不是很明显.它的熔点为136℃ ,分解温度为128℃ 135℃ .在测定熔点时,可先将载热体加热至120℃左右,然后放入样品测定.
三、实验操作:
1.在100ml锥形瓶中放置干燥的水杨酸6.5g及乙酰酐10ml,充分摇动后,滴加10滴浓硫酸(足量).(注意:如不充分振摇,水杨酸在浓硫酸的作用下,将生成付产物水杨酸水杨酯.)
2.水浴上加热,水杨酸立即溶解.如不全溶解,则需补加浓硫酸和乙酰酐.保持锥形瓶内温度在70℃左右.(注意:用水浴温度控制反应温度.水浴温度控制在80℃-85℃即可.)维持反应20分钟.
3.稍微冷却后,在不断搅拌下将其倒入100ml 冷水中.冷却析出结晶(只要瓶内温度和冷却水温度一致即可,不一定需要15分钟).抽滤粗品,每次用10ml水洗涤两次,其作用是洗去反应生成的乙酸及反应中的硫酸.
4.粗品重结晶纯化,用95%乙醇和水1:1的混合液约25ml左右,加冷凝管加热回流,以免乙醇挥发和着火,固体溶解即可.(重结晶时无须加活性炭,加活性炭的作用是除去有色杂质,因粗产品没有颜色,加热煮沸即可)
5.趁热过滤,冷却,抽滤,干燥,称重.
四、实验产率的计算:
从反应方程式中各物材料的摩尔比,可看出乙酰酐是过量的,故理论产量应根据水杨酸来计算.0.045mol水杨酸理论上应产生0.045mol乙酰水杨酸.乙酰水杨酸的相对分子质量为180g/mol,则其理论产量为:
0.045(mol)×180(g/mol)=8.1g

7. 聚乙烯怎么合成 实验条件以及试剂

聚乙烯如果在中等压力(15-30大气压)有机化合物催化条件下进行Ziegler-Natta聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压力(100-300MPa),高温(190–210C),过氧化物催化条件下自由基聚合,生产出的则是低密度聚乙烯(LDPE),它是支链化合结构的。

8. 微管反应器原理

微化工系统是以带有微结构元件的化工装备为核心的化工系统,它的突出特点是在微时空尺度上控制流动、传递和反应过程,为实现高效、安全的物质转化提供了基础。微化工系统相关研究起源于20世纪90年代[1],多年来的研究结果表明:微化工设备内流动状态高度可控,液滴和气泡的分散尺度一般在数微米至数百微米之间;具有丰富的多相流型,一些流型中的液滴和气泡结构与尺寸高度均一;由于微尺度下传递距离短、浓度/温度梯度高以及体系巨大的比表面积,微反应器内传热/传质系数较传统化工设备大1-3个数量级[2]。
国内开展微反应器研究已经有十余年时间,在微反应器的设计制造、微混合原理的探索、气相反应、液相反应、纳米颗粒制备等领域得到迅速发展,取得了显著成果[3]。目前从事微反应器相关研究的主要有中国科学院大连物理化学研究所、清华大学、华东理工大学和山东豪迈化工技术有限公司等科研院校和科研单位。
聚合反应对反应器的传热和混合有很高的要求,传统的釜式反应器在这方面的缺陷成为获得高性能聚合产物的瓶颈之一。近年来,微反应器已能够成功应用于多种机理的聚合反应并表现出对传统釜式反应器的显著优势。从当前的发展趋势来看,微反应器在聚合反应中的应用将成为化工和高分子领域的研究热点之一。本文综述了微反应器在不同的聚合反应体系中的应用。
1
自由基聚合
聚合温度对自由基聚合所得产物的分子量和分子量分布有很大影响。因此,对反应体系温度的控制是控制产品质量的关键因素。大部分自由基聚合是较强的放热反应,且反应速度较快。在传统的釜式反应器中,反应器传热和传质能力的不足往往导致反应体系内温度分布不均,从而影响产物的分子量分布。在放热较强的自由基聚合中,使用传热能力强的微反应器可以显著改善反应结果。
Iwasaki等[4]用T形微混合器和内径分别为250μm和500μm的微管式反应器组成微反应器系统(图一),进行了一系列丙烯酸酯单体的自由基聚合。釜式反应器中丙烯酸丁酯的聚合反应产物分子量分布指数(PDI)高达10以上,而相同的反应时间和产率下微混合器中反应产物的PDI可控制在3.5以下,证明微反应器可以有效地控制自由基聚合产物的分子量分布。

图一 丙烯酸酯自由基聚合微反应器装置图
Okubo等[5]在微反应器中进行了苯乙烯的悬浮聚合,反应物和水通过K-M型微混合器形成悬浮液,再经过管式反应器进行聚合[图2(a)]。经过降温可直接在管内得到聚合物颗粒,通过改变流量可以调节聚合物颗粒大小。
微通道中的液滴聚合是一种新兴的聚合方式,其基本原理为在管内利用不良溶剂将反应体系分隔成小液滴,每个小液滴均可看做一个微型反应器。在较小的微通道尺寸下,液滴聚合的混沌混合特性进一步强化了传质效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反应装置见图二(b)。通过调节停留时问和控制两相间溶剂扩散的方法可以实现对聚合产物分子量的控制;与釜式反应器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布较窄,经过微反应器沉淀得到的聚合物粒子分布也较均一。

图二 苯乙烯自由基聚合实验装置示意图
Wu等[6}在自制的双输入微通道(500μm*600μm)反应器中进行了甲基丙烯酸羟丙酯(HPMA)的ATRP聚合。单体和催化剂从一个通道进入,引发剂从另一入口通入,通过对流量调节可以实现对产物分子量和分子量分布的调控。Wu等[7}随后又设计了结构相似的三输入微反应器,实现了环氧乙烷与HPMA的ATRP共聚合。通过调节反应时间和引发剂相对浓度两种方法均可实现对聚合产物中HPMA含量的调节。Chastek等[8]在微反应器中进行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通过特定溶剂使产物胶束化,并用动态光散射法对胶束进行了测定,反应装置见图三。

图三 ATRP共聚、胶束化和DLS检测集成装置示意图
2
阴离子聚合
Honda等[9}在由微混合器和微管反应器(内径250μm)组成的微反应器装置中进行了氨基酸-N-羧基-环内酸酐的阴离子聚合。所得产物的分子量分布窄于釜式反应器的聚合产物,并可以通过调节流速来控制产物分子量和分子量分布。如图四所示,流速降低时,反应物停留时问增长,反应程度提高,产物的分子量变大,分子量分布变窄。

图四 不同流速下的GPC流出曲线
3
阳离子聚合
Nagaki等[10]将微反应器与“阳离子池”引发技术结合,进行了一系列乙烯基醚单体的阳离子聚合(图五)。阳离子池的高效引发结合微反应器的快速混合使反应在0.5 s内即可完成,并能很好地控制产物的分子量分布,产物的PDI从釜式反应器的2.25降至1.14。

阅读全文

与实验室聚合装置图相关的资料

热点内容
cg工具箱更新 浏览:406
盘车装置自动啮合原理 浏览:492
5306轴承用在什么地方 浏览:252
工业电动工具设备有哪些 浏览:486
电网反孤岛装置作用 浏览:2
流动性检测装置 浏览:970
吉博力阀门怎么开 浏览:149
仪表盘cruise亮什么意思 浏览:908
轴承中的g是什么意思 浏览:429
奔驰仪表上显示什么 浏览:649
矿用潜水泵自动排水控制装置 浏览:102
起重机械司机可以开什么车 浏览:749
廊坊开发区都有什么设备厂 浏览:656
实验蒸馏水装置 浏览:250
夏天制冷多少度最好 浏览:617
手持电动工具绝缘安全标准 浏览:989
crv胎压监测设备在哪里 浏览:762
自动装置试题道客巴巴 浏览:45
捉升机制动装置的分类与作用 浏览:371
盐城阀门厂招聘 浏览:126