导航:首页 > 装置知识 > 空气与水的实验装置如图所示

空气与水的实验装置如图所示

发布时间:2023-02-23 14:13:12

A. 排水法怎么收集氧气

先将集气瓶装满水,用玻璃片盖住瓶口,然后倒立在水槽中。当导管口有气泡连续、均匀地放出时,再把导管口伸入盛满水的集气瓶里,当看到有气泡从集气瓶口外沿冒出,集气瓶内的液面下降至瓶口处后(即收集满一瓶气体)。

在水里用玻璃片盖住瓶口,把集气瓶移出水面,正放或倒放在桌面上: 当收集的气体的密度比空气大时,正放在桌面上;当收集的气体的密度比空气小时,倒放在桌面上。

(1)空气与水的实验装置如图所示扩展阅读

一、排水法优点

1、得到的气体较排空气法更为纯净。

2、如果要将两种气体按一定体积混合时,通过观察集气瓶中水的量可以大致控制收集气体的体积。如将氢气与氧气按1:4混合,可先收集一些氢气,当瓶中的水还剩大约3/4时,取出,接着收集氧气直到集气瓶装满。

二、排水法缺点:

集得的气体较潮湿。

B. 设计一个实验来测定空气中氧气含量

1、实验原理

利用某些物质与空气中氧气反应(不生成气体),使容器内压强减小,让水进入容器。测定进入容器内水的体积,即为空气中氧气的体积。

2、实验装置和方法

按如图所示的装置实验,以水槽中水水面为基准线,将钟罩水面以上容积分为5等份。在燃烧匙内盛过量红磷,用酒精灯点燃后,立即插入钟罩内,同时塞紧橡皮塞,观察红磷燃烧和水面变化的情况。

3、实验现象

(1)钟罩内充满白烟;(2)片刻后白烟消失,钟罩内水面上升了约占钟罩体积的1/5。

4、实验结论

红磷燃烧消耗的是空气中的氧气,氧气约占空气体积的1/5。

5、实验注意事项

(1)可用来反应的物质必须是易与氧气反应且没有气体生成的物质(如红磷),木炭、硫不能用作测定氧气含量的反应物。

(2)若所用液体不是水,而是碱溶液(如NaOH溶液),用碳、硫作反应物在理论上是可行的,因为生成的气体CO2、SO2能与NaOH溶液反应而被吸收。

(3)所用来反应的物质必须足量或过量。

(4)容器的气密性必须良好。

(5)应冷却到室温时才测定进入容器内的水的体积,否则钟罩内水面上升的体积小于钟罩容积的1/5。

1、空气中氧气含量的测定:实验现象:①红磷(不能用木炭、硫磺、铁丝等代替)燃烧时有大量白烟生成,②同时钟罩内水面逐渐上升,冷却后,水面上升约1/5体积。

若测得水面上升小于1/5体积的原因可能是:①红磷不足,氧气没有全部消耗完②装置漏气③没有冷却到室温就打开弹簧夹。

C. 空气是人类赖以生存的自然资源.测定空气中氧气体积分数的实验装置如图所示.在集气瓶内加入少量的水,并

(1)红磷燃烧的现象:红磷燃烧,冒出大量的白烟;
(2)红磷燃烧生成五氧化二磷,反应的符号表达式:4P+5O2

点燃
.

D. 测定空气中氧气含量的实验装置如图所示,实验步骤如下:①在集气瓶内加入水量,并做好标记,将标记以上的

(1)红磷在空气中燃烧发黄光、冒白烟;反应的文字表达式为:磷+氧气

点燃

E. 如何进行米勒实验

试验本身不难,但是要合理就可以,它是生化进化方面的很著名的试验。试验设备就是一个蒸馏,循环,冷却的设备,连续进行加热7天,要求有放电设备,电极,玻璃导管,烧瓶或者蒸馏烧瓶,冷凝管,加热装置,

中学生完全可以做,但是球形的有电极的玻璃球是一个缓冲和反应装置,所以不能太大(那样反应体积小),也不能太小(蒸汽在冷凝之前的体积要考虑好),图示和原理都简单,但是还要动脑实践,多实践,多改进,注意安全,用电小心。

祝你成功!

goodluck!

实验步骤和结果实验装置如图所示。将水注入左下方的500毫升烧瓶内。先将玻璃仪器中的空气抽去。然后打开左方的活塞,泵入CH4、NH3和H2的混合气体(模拟还原性大气)。再将500毫升烧瓶内的水煮沸,使水蒸汽(H2O)和混合气体同在密闭的玻璃管道内不断循环,并在另一容量为5升的大烧瓶中,经受火花放电(模拟雷鸣闪电)一周,最后生成的有机物,经过冷却后,积聚在仪器底部的溶液内(图中以黑色表示)(模拟原始大气中生成的有机物被雨水冲淋到原始海洋中)。此实验结果共生成20种有机物(如表1所示)。其中11种氨基酸中有4种(即甘氨酸、丙氨酸、天冬氨酸和谷氨酸)是生物的蛋白质所含有的。以后,米勒认为,设想原始地球还原性大气的成分是CH4、N2、微量的NH3和H2O的混合气体更为合理,因为NH3不可能在大气中大量存在,它会溶于海水中。他和他的合作者于1972年在上述混合气体中进行火花放电,结果得到35种有机物,其中有10种组成蛋白质的氨基酸,即甘氨酸(440微克分子,以下均同此单位)、丙氨酸(790)、缬氨酸(19.5)、亮氨酸(11.3)、异亮氨酸(4.8)、脯氨酸(1.5)、天冬氨酸(34)、谷氨酸(7.7)、丝氨酸(5.0)和苏氨酸(~0.8)。若在分析之前进行水解,还可生成天冬酰胺和谷氨酰胺。若增加H2S,则可生成甲硫氨酸。在CH4、NH3、H2O和H2S混合气体中进行光解作用,可以找到半胱氨酸。对CH4及其它碳氢化合物在高温下进行热解,可以得到苯丙氨酸、酪氨酸和色氨酸。到目前为止,用米勒模拟实验和其它类似实验,已能合成出20种天然氨基酸中的17种;其余三种(赖氨酸、精氨酸和组氨酸)相信在改进技术之后,不久亦能合成。

氨基酸生成的可能机理米勒在火花放电的头125小时内,不断打开“U”形管的活塞抽样,进行分析,发现首先合成了大量的氰化物和醛类;以后它们的合成速度逐渐下降,而在整个实验期间,均以近乎恒定的速度合成氨基酸,其反应过程大致如下:

就是说,首先甲烷与氨作用生成氰,甲烷与水作用生成醛类;然后氰、醛类与氨作用生成氨基腈(aminoni-trile);氨基腈水解就生成氨基酸。

F. 米勒的实验说明了() A.原始大气成分能够转变为有机小分子 B.有机小分子能够转变为有机大分



米勒的实验装置如图所示:米勒将水注入左下方的烧瓶内,先将玻璃仪器中的空气抽去.然后打开左方的活塞,泵入甲烷、氨和氢气的混合气体(模拟还原性大气).再将烧瓶内的水煮沸,使水蒸汽和混合气体同在密闭的玻璃管道内不断循环,并在另一容量为5升的大烧瓶中,经受火花放电(模拟雷鸣闪电)一周,最后生成的有机物,经过冷却后,积聚在仪器底部的溶液内(图中以黑色表示)(模拟原始大气中生成的有机物被雨水冲淋到原始海洋中).此实验结果共生成20种有机物.其中11种氨基酸中有4种(即甘氨酸、丙氨酸、天冬氨酸和谷氨酸)是生物的蛋白质所含有的.米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的.
故选:A

G. 如图所示装置可用于测定空气中氧气的含量,实验前在集气瓶内加入少量水,并做上记号.下列说法中正确的是


A、该实验测得的是氧气约占空气体积的五分之一,不是质量的五分之一,故此选项错误.
B、红磷的量不足会不能彻底的消耗掉氧气,所以会使测量的氧气体积偏小,故此选项错误.
C、集气瓶中水的放入,有利于容器内温度的降低,节约了实验的时间,故此选项正确.
D、反应结束后进入集气瓶中的水的体积等于氧气的体积,故此选项正确.
故选CD

H. 初三化学 空气中氧气含量实验 为什么未等冷却室温打开夹子会倒吸小于五分之一它气体受热膨胀,会

当气体受热澎涨时气体的体积增大,这个是关键点。在没有打开夹子时里面的压强大,而相比于冷却时容器可倒吸的就少。没错那五分之四一定会排出,不然不会倒吸,但这只是倒吸的前提,而你比较的是未冷却与冷却的关系,未冷却气压大,(比冷却),所以可再容性就小了,供参考。

I. 米勒的实验证明了什么

证明了:在原始地球的环境下,合成氨基酸是可能的

米勒模拟实验(Miller’s simulated experiment)一种模拟在原始地球还原性大气中进行雷鸣闪电能产生有机物(特别是氨基酸),以论证生命起源的化学进化过程的实验。1953年由美国芝加哥大学研究生米勒(S.L.Miller)在其导师尤利(H.C.Urey)指导下完成,故名。

指导思想(1)现在远离太阳、历史上可能变化较小的巨行星(如木星和土星),它们的大气都是没有游离氧(O2)的还原性大气,其主要成分是氢(H2)、氦(He)、甲烷(CH4)和氨(NH3);由此推测原始地球的大气,大概也是这样的还原性大气。(2) 据测定,现在能作用于地球大气层的能源,主要是太阳辐射中的紫外线、雷电和宇宙射线等。其中宇宙射线不足以合成有机物,还原性气体仅吸收短波紫外线,但短波紫外线(波长<1500埃)在太阳辐射紫外线中仅占极微量,可作有机合成能源的量极少;而每年雷电次数较多,可作有机合成的能量较大,又在靠近海洋表面处释放,这样在原始地球还原性大气中合成的产物就很容易溶于原始海洋之中。基于上述考虑,米勒在实验室内进行了模拟原始地球还原性大气中雷鸣闪电的实验,看看能否合成有机物,特别是氨基酸、核糖、嘧啶、嘌呤等组成蛋白质和核酸的生物小分子。

实验步骤和结果 实验装置如图所示。将水注入左下方的500毫升烧瓶内。先将玻璃仪器中的空气抽去。然后打开左方的活塞,泵入CH4、NH3和H2的混合气体(模拟还原性大气)。再将500毫升烧瓶内的水煮沸,使水蒸汽(H2O)和混合气体同在密闭的玻璃管道内不断循环,并在另一容量为5升的大烧瓶中,经受火花放电(模拟雷鸣闪电)一周,最后生成的有机物,经过冷却后,积聚在仪器底部的溶液内(图中以黑色表示)(模拟原始大气中生成的有机物被雨水冲淋到原始海洋中)。此实验结果共生成20种有机物(如表1所示)。其中11种氨基酸中有4种(即甘氨酸、丙氨酸、天冬氨酸和谷氨酸)是生物的蛋白质所含有的。以后,米勒认为,设想原始地球还原性大气的成分是CH4、N2、微量的NH3和H2O的混合气体更为合理,因为NH3不可能在大气中大量存在,它会溶于海水中。他和他的合作者于1972年在上述混合气体中进行火花放电,结果得到35种有机物,其中有10种组成蛋白质的氨基酸,即甘氨酸(440微克分子,以下均同此单位)、丙氨酸(790)、缬氨酸(19.5)、亮氨酸(11.3)、异亮氨酸(4.8)、脯氨酸(1.5)、天冬氨酸(34)、谷氨酸(7.7)、丝氨酸(5.0)和苏氨酸(~0.8)。若在分析之前进行水解,还可生成天冬酰胺和谷氨酰胺。若增加H2S,则可生成甲硫氨酸。在CH4、NH3、H2O和H2S混合气体中进行光解作用,可以找到半胱氨酸。对CH4及其它碳氢化合物在高温下进行热解,可以得到苯丙氨酸、酪氨酸和色氨酸。到目前为止,用米勒模拟实验和其它类似实验,已能合成出20种天然氨基酸中的17种;其余三种(赖氨酸、精氨酸和组氨酸)相信在改进技术之后,不久亦能合成。

氨基酸生成的可能机理 米勒在火花放电的头125小时内,不断打开“U”形管的活塞抽样,进行分析,发现首先合成了大量的氰化物和醛类;以后它们的合成速度逐渐下降,而在整个实验期间,均以近乎恒定的速度合成氨基酸,其反应过程大致如下:

就是说,首先甲烷与氨作用生成氰,甲烷与水作用生成醛类;然后氰、醛类与氨作用生成氨基腈(aminoni- trile);氨基腈水解就生成氨基酸。

星际分子和陨石资料的佐证 上述过程现今在宇宙和其他天体还在发生,星际分子和陨石中有机物的发现可以证明。据我国天文工作者统计,到1985年为止,已发现星际分子66种,其中除氨、氰等十几种无机分子外,大都是含C的有机化合物如甲醛、甲醇、甲酸、乙醇、丙炔腈(N≡C-C≡CH)等。星际分子中甲醛和氰的量很大,与米勒放电实验中最初的中间产物相同。当它们与氨反应再经水解就能生成氨基酸。1969年9月28日,一颗碳质球粒陨石(carbonaceous chon- drite)堕落在澳大利亚的麦启逊(Murchison)镇,经克文沃尔登(K.A.Kvenvolden)等化验,发现含有18种氨基酸,其中有6种(甘、丙、缬、脯、谷、天冬)是生物所含有的,其种类与含量同米勒放电实验生成的颇为相似(见表2)。此外,1971年沃森(G.Wat-son)用紫外线照射含有NH3、CH2OH和HCHO的混合气体25天,结果获得了甘氨酸、谷氨酸与少量的天冬氨酸、苏氨酸、丝氨酸、脯氨酸、亮氨酸和异亮氨酸。这个实验没有水,原料都是已知的星际分子。以上种种事实表明,原始大气由无机物生成生物小分子不但是可能的,而且这种过程现在宇宙间仍在发生。

科学意义 生命起源是一个极其复杂而又难以研究的问题。虽然19世纪70年代恩格斯在《反杜林论》中就指出:“生命的起源必然是通过化学的途径实现的”;20世纪20年代奥巴林和霍尔丹也相继提出生

命起源的化学进化观点,即认为在原始地球的条件下,无机物可以转变为有机物,有机物可以发展为生物大分子和多分子体系,直到演变出原始的生命体;但这些都只是理论的推测,还缺乏令人信服的实验证据。米勒首次在实验室内模拟原始地球还原性大气中的雷鸣闪电,结果从无机物合成出有机物,特别是多种组成蛋白质的氨基酸,这是生命起源研究的一次重大突破。后来,科学家们仿效米勒的模拟实验,已合成出大量

表2麦启逊陨石中检测到的与模拟放电

实验中生成的氨基酸之比较

对甘氨酸的克分子(=100)之比:*0.05~5;**0.5~5;***5~50;****>50

与生命有关的有机分子。例如,有人用紫外线或γ射线照射稀释的甲醛(HCHO)溶液获得了核糖和脱氧核糖(1966);用紫外线照射HCN获得了腺嘌呤和鸟嘌呤;用丙炔腈(N≡C-C≡CH)、KCN和H2O,在100℃下加热一天得到了胞嘧啶(1966);将NH3、CH4、H2O与聚磷酸加热到100~140℃获得了尿嘧啶(1961);将腺嘌呤和核糖的稀溶液与磷酸或乙基偏磷酸盐(ethyl- metaphosphate)放在一起,用紫外线照射,可生成腺苷(1977);将腺苷、乙基偏磷酸盐封入石英玻璃管中用紫外线照射,可产生腺苷酸(A)(1966)。此外,长链脂肪酸也可通过在高压下用γ射线照射乙烯和CO2而获得。可以说,几乎全部的生物小分子,现在都可以通过模拟原始地球的条件,在实验室内合成了。

J. 初中化学氧气的制取知识点

本节包括氧气的实验室制法、氧气的工业制法、氧气的检验方法三个知识点。知识的特点是较强的操作性和一些需要记忆的知识,学习本知识时要结合实验操作来记忆、

1.氧气的实验室制法:

(1)反应原理:用分解过氧化氢溶液或加热氯酸钾(白色固体)或加热高锰酸钾(紫黑色固体)的方法制取氧气。使用过氧化氢或者氯酸钾时常常需要加入催化剂——二氧化锰(黑色粉末)。

(2)实验装置如图所示:

(3)收集方法:排水法、向上排空气法。

验满方法:排水法:当有气泡从集气瓶口冒出来,说明已满。向上排空气法:把带火星的木条靠近集气瓶口,如果木条复燃,说明已满,否则未满,继续收集。

(4)操作步骤:(以加热高锰酸钾制取氧气为例)

①查:检查装置的气密性;②装:把药品装入试管内,使之平铺在试管底部;③定:把试管固定在铁架台上;④点:点燃酒精灯加热;⑤收:收集气体(用向上排空气法或排水法);⑥离:把导气管撤离水槽;⑦熄:熄灭酒精灯。

2.氧气的工业制法:

工业上多采用分离液态空气法制取氧气。具体做法是:在低温条件下加压,使空气转变为液态空气,然后蒸发。由于液态氮的沸点比液态氧的沸点低,因此氮气首先从液态空气中蒸发出来,剩下的主要就是液态氧。近年来膜分离技术得到迅速发展。利用这种技术,在一定压力下,让空气通过具有富集氧气功能的薄膜,可得到含氧较高的富氧空气。利用这种膜进行多级分离,可以得到含氧90%以上的'富氧空气。

3.氧气的检验方法:

将带火星的木条伸入集气瓶内,如果木条复燃,说明该瓶内气体是氧气。

常见考法

本知识点考查的重点是氧气的实验室制法,在此要掌握实验的基本操作,熟悉不同的方法采用的仪器装置,并能对仪器进行改进!

误区提醒

实验操作中的注意事项:

①药品要平铺在试管底部,使其均匀受热;

②铁夹要在距离试管口1/3处;

③导管不宜伸入试管过长,不利于气体导出;

④试管口应略向下倾斜,防止冷凝水倒流,炸裂试管;

⑤如果实验所用药品为高锰酸钾,通常要在试管口塞上一团棉花,以防止加热时高锰酸钾随氧气进入导气管;

⑥排水法集气时,当气泡连续且均匀从导管口放出时再收集,否则收集的气体混有空气。制备出的氧气收集后,集气瓶应正立放置在桌面上;

⑦实验结束,应先移导气管,后移酒精灯,以防止水倒流造成试管炸裂。

【典型例题】

例析:实验室制取氧气的主要步骤有:①装药品,②检查气密性,③固定装置,④加热,⑤收集气体,⑥将导管拿出水面,⑦熄灭酒精灯。其正确的操作顺序是( )

A.①②③④⑤⑥⑦ B.③①②④⑤⑥⑦ C.②①③④⑤⑥⑦ D.①②③④⑤⑦⑥

解析:

实验室制取氧气的步骤可以利用“查装定点收离熄”,这句话来记。

答案:C

与空气与水的实验装置如图所示相关的资料

热点内容
跟水流指示器在一起的阀门是什么 浏览:447
汽车仪表台避光垫什么材质高档 浏览:882
超声波意思是什么呢 浏览:548
丁蜀镇五金装潢市场 浏览:994
笔记本机械硬盘一般多少钱 浏览:563
氨吸收塔比其他设备有什么优势 浏览:604
一般冰箱不制冷是什么原因导致的 浏览:460
巧开水表三角阀门没有怎么开水 浏览:228
商场中央空调每平方制冷量多少 浏览:727
雷电防护装置设计审核和竣工验收 浏览:199
广州连锁电动工具 浏览:971
仪表总成多少钱 浏览:579
尼尔机械纪元有哪些语音 浏览:345
仪表盘上有个小扳手标志是什么意思 浏览:253
自动重合闸装置设计开题报告 浏览:844
铝件超声波清洗为什么变黑 浏览:905
深圳顺景五金制品有限公司 浏览:70
减速器机械效率是多少 浏览:698
高压氧气阀门常见 浏览:673
原油电脱盐实验室装置 浏览:980
© Arrange www.fbslhl.com 2009-2021
温馨提示:资料来源于互联网,仅供参考