1. 硫回收工艺原理
硫磺回收装置硫磺回收指将含硫化氢等有毒含硫气体中的硫化物转变为单质硫,从而变废为宝,保护环境的化工过程。
硫磺回收通常采用一种叫做“克劳斯”的工艺来实现。含硫原料气通常称为酸气。首先将酸气与空气或氧气在一台称为燃烧炉的设备中燃烧。严格控制空气或氧气量,使燃烧产物中硫化氢与二氧化硫气体体积比为2:1。之后燃烧气体被冷却,气体中的硫磺冷凝回收。剩余气体经加热后进入一台克劳斯反应器进行反应。反应主要是硫化氢与二氧化硫生产硫磺和水。这一反应需使用催化剂才能实现。反应完后的气体同样需冷却回收硫磺。然后剩余气体在经二级、三级反应。通常硫磺回收装置的硫回收率可达95~98%。
如果需要进一步提高硫磺回收率,则需在装置后附加尾气处理装置。目前最好的SCOT类尾气处理装置可将硫回收率提高到99.9%。
Sulsim是Sulphur Experts公司全流程硫回收模拟软件。
Sulsim采用交互式的图形界面使我们能够对硫回收的全流程和改进的克劳斯过程常用的单元操作,包括焚烧炉和其他一些尾气处理单元,做出完整的设定。交互式的设定功能允许我们在软件所支持的过程中增加或删除操作单元,通常这些过程包括改进克劳斯过程、亚露点克劳斯过程、选择性氧化以及多种尾气处理过程。然后我们所确定的脱硫流程就能够以图形的方式显示在屏幕上。这种高度的灵活性使得我们能很好的模拟与气体处理厂和炼厂相关联的所有的硫回收过程。
在程序中克劳斯反应炉以及下游工艺的任何点都支持多股进料,同时程序也支持工艺气体的循环操作。这使得我们能够对多种进料进行处理,如酸水脱除气、胺厂再生气、燃气以及尾气循环物流。软件采用序贯计算法严格计算从反应炉到焚烧炉或尾气处理单元的物料衡算和热量衡算。
Sulsim支持在一个模拟文件中运行多个并行计算过程(最多4个)以模拟整个硫回收过程。Sulsim也支持全流程的某个局部以模拟过程中的一个单元或若干个单元的任意组合。
2. 硫磺回收装置紧急停电时对酸气进燃烧炉截断阀的处理是什么
硫磺回收装置紧急停电时对酸气进燃烧炉截断阀的处理是“关闭”
紧急停电,搅内拌,引风机、冷容却装置等,全都停止运行。如果继续进料,装置的冷却,物料的吸收等都会出现问题,最怕的是起火,爆炸等,那就麻烦了。
因此肯定是关闭截断阀,停止进料。
3. 硫磺回收装置应注意哪些安全问题
硫磺回收装置的主要作用是使原油中所含的硫元素以单质或某些化合物的状态加以回收利用,以减轻或避免其直接排放对环境造成的污染。与一般石油炼制装置的危险因素不同的是,硫磺回收装置的主要危险因素不是燃烧爆炸(当然也存在这种危险),而是有毒气体(硫化氢、氨)对人体的危害。由于硫化氢存在于硫磺回收装置的各个部分,因此是回收装置的主要危险因素。此外,回收装置存在的严重腐蚀问题也是影响其安全生产的重要因素之一,需要加以特别关注。
硫回收装置中的硫化氢分布及其安全管理
硫回收装置是以硫化氢作为原料生产硫磺,因此,在硫回收装置中硫化氢是潜在巨大危害的主要因素之一。这其中,酸性气管线是硫化氢浓度最高的地方,一旦发生泄漏,后果非常严重。对于整个装置来说,大部分管线均含有不同浓度的硫化氢或二氧化硫、硫化羰等物质,这些物质均具有足以置人于死地的危险,因此为保证硫回收装置安全生产,应采取以下一些基本的安全管理措施:
(1)按时检查设备,同时要严格遵守压力管道管理办法的规定,对所有管线进行检查,以尽量避免发生泄漏。
(2)科学合理地设置固定式硫化氢检测报警设备,并且保证其数量充足,以期一旦发生泄漏能在第一时间发现,尽可能地减小损失。
(3)配备完善的防护设备,这其中包括便携式报警设备,正压呼吸器,以及其他具有过滤性质的呼吸设备。
(4)当发生严重泄漏时,其处理步骤的基本原则是:一旦发现泄漏,应首先通知有关人员佩戴安全完整的防护设备,并及时切断泄漏源。严禁在没有安全防护设备的保护下进行切断泄漏源或进行抢救等活动。
开、停工及正常生产情况下的危险因素
(1)停工阶段。硫酸装置停工过程通常分为硫化氢吹扫、二氧化硫吹扫及催化剂烧焦。硫化氢吹扫的作用是避免催化剂失活;二氧化硫吹扫的目的是尽量携带出系统内部的硫;烧焦催化剂则是为了使催化剂表面的积炭燃烧,恢复催化剂的活性和为开工做好准备。在停工过程中,即使所有的吹扫过程进行完全,也不可能保证彻底带出了系统内的全部硫,因此在进行烧焦时就可能发生因硫在该过程中发生燃烧而放出大量的热量,从而造成反应器“飞温”,“飞温”现象一旦发生,轻则可能损坏催化剂,严重时甚至会损坏设备,影响正常生产。
(2)开工阶段。如果硫磺装置在停工过程中发生硫凝聚或催化剂积炭,阻塞气路,将在开工阶段造成流程阻塞。酸性气进入系统而导致燃烧炉防爆膜爆裂,造成有毒气体大量泄漏,严重威胁操作人员的生命安全,并可能造成对环境的严重污染。
其他危险因素分析
除此之外,装置中还存在着其他的一些危险因素,可能对系统的安全运行造成威胁,主要表现在系统内部物质在开、停工过程中可能发生的物质凝聚或其他原因引起系统阻塞,这是与一般装置的不同之处。其产生的主要因素如下:
(1)杂质因素。硫磺回收装置中的酸性气带烃(胺)、硫回收装置中的带液(液体主要是指水)或冷却器堵塞等,可能分别造成装置阻塞、燃烧炉内压力骤升、走管程的硫蒸气遇冷却水凝固而阻塞设备,引起系统压力升高,最终使防爆膜爆裂,致使有毒气体泄漏。
(2)配风不合格。配风比是硫回收装置的重要操作参数之一。只有合适的空气与酸性气配比,才能达到最大的硫回收率。配风量大,降低硫回收率,可能严重污染环境;配风量小,硫回收率降低,同时导致烃类物质的不完全燃烧,产生积炭,造成系统阻塞,严重威胁安全生产。
(3)酸性气流量和浓度的变化。在硫回收装置中,酸性气流量和浓度在生产过程中随机变化,如果发生超过允许范围的变化,将不利于正常操作,严重时会造成硫磺的阻塞。
(4)风机故障。在硫回收装置中常用风机向燃烧炉提供空气,在正常生产中一旦停风,会出现大量酸性气直接进入尾气系统,对其造成严重冲击。而且其中的烃遇高温还会发生不完全燃烧而积炭,阻塞系统或因操作偏差造成风机反转,使酸性气倒流。这些都将直接威胁到操作人员的生命安全。
(5)除氧水中断。为回收热能,Claus硫回收装置在燃烧炉后设置废热锅炉,用除氧水作为发生蒸气来回收能量。一旦发生除氧水中断事故,将造成锅炉缺水,可能发生因锅炉自烧而爆炸的严重事故。
(6)停瓦斯或瓦斯带液。硫回收装置的最后一级设有尾气焚烧炉,常以瓦斯为燃料对硫磺尾气进行高温灼烧。如果瓦斯突然中断,将影响正常生产;如果瓦斯带液,将造成燃烧炉内积炭,严重时还会在管线中发生燃烧,造成设备事故或气体泄漏,威胁安全生产。
(7)高温掺和阀故障。为控制转化器入口温度,高温掺和间通常设置在硫回收装置的转化器入口,以便提高转化率。一旦高温掺和阀卡死,气流温度将无法控制,硫磺转化率将显著下降。一旦引起系统阻塞,轻则影响正常生产,重则可能造成非正常停工,严重危害安全生产。
(8)烟囱阻塞。硫磺尾气中含有硫化氢和二氧化硫,它们能发生反应生成硫磺。一旦硫磺阻塞烟囱管线的现象发生,轻则造成系统阻塞,影响安全生产,严重时还会导致被迫停工的事故发生。
(9)尾气处理设施故障。尾气处理设施是为达到硫磺尾气排放标准而设置的,该设施广泛应用于SCOT加氢流程中,以达到提高硫磺转化率,减少污染的目的,其中二氧化硫的转化是控制尾气排放的关键因素。影响尾气排放的因素主要包括催化剂性能、反应温度、加氢量等,其中控制加氢量最为重要。加氢量过大,将加重尾气焚烧炉的负担,严重时造成焚烧炉飞温而致损坏;加氢量过小,汇合过程气中硫化氢反应生成硫磺阻塞设备,严重时会引起硫磺反应单元的事故。
(10)采样过程中的危险因素。硫回收装置是通过调节配风量实现Claus反应中硫的最佳转化率。要调节到最佳配风量,需要随时对过程气中的硫化氢和二氧化硫含量进行分析,以帮助操作人员作出正确的判断。国外装置基本上用在线色谱仪进行分析,国内因经费等因素的影响,多采用人工色谱分析法进行分析。分析人员每天必须与有毒气体直接接触进行采样,因而很容易发生中毒危险,直接威胁到分析人员的生命安全。因此在生产过程中,需要特别注意避免这类事故的发生。
硫回收装置的腐蚀问题
引起硫回收装置设备腐蚀的直接因素是系统中存在着大量的酸性物质,其中尤以二氧化硫的危害性最大。其原因在于装置中同时存在着二氧化硫和水,这两者一旦结合,将生成中强性的酸而腐蚀设备。轻则损坏设备,造成泄漏,污染环境,重则可能造成人身伤害的严重事故发。因此应充分认识这一问题的严重性。
此外,还有硫磺成型中的液硫脱气和避免成型库房因粉尘而可能造成爆炸的危险因素存在等,这些都是安全生产中不容忽视的问题。
自控系统在硫回收装置安全生产管理中的作用
影响硫回收装置安全生产的因素很多,为了保证安全生产,提高硫回收率,保护环境,在硫磺装置中,广泛应用于配风控制系统中的有自动连锁控制系统(如DCS控制系统)。它与在线检测系统和事故控制连锁系统联合,确保生产操作的稳定和安全。其主要作用是在事故发生时快速切断酸性气,因为系统的反应时间短,因此可以尽可能避免人工切断时对操作人员的危害,因而更加安全可靠。
4. 酸性气中水对硫磺反应的影响是什么,装置如何应对
1、酸性气中水对硫磺反应的影响是酸性气携带的液体主要是水、烃及醇胺类溶剂,会影响硫磺回收装置的生产及硫磺产品的质量。
2、装置继续投酸性气生产并加大处??,用过程气夹带催化剂上的碳黑,随硫磺流出,恢复催化剂活性。
5. 硫磺回收的简介
原油或煤中的硫化物在加工过程中转化为H2S,而H2S是剧毒物质,对人体和环境有极大的毒害作用,内必须进行无害化容处理,相应采用的最合适的工艺就是硫磺回收工艺。在以煤为原料的化工厂中,酸性气的加工流程主要是煤→煤化工→脱硫→H2S→硫磺回收→硫磺。
6. 硫黄回收装置转化器一般用什么催化剂啊它们都有什么区别
硫磺回收催化剂
转化器需装填硫磺回收(制硫)催化剂。目前国内有代表性的制硫催化剂有两回家。一是LS系列硫答磺回收催化剂
,为中国石化齐鲁分公司研究院的产品。其中,LS—300催化剂是一种大比表面积和高强度的克劳斯Al2O3系硫磺回收催化剂。该催化剂具有颗粒均匀、磨耗小、活性高和稳定性好等特点。LS-971为脱漏“氧”保护催化剂。LS—300和LS-971一般可配合使用;另一家为中国石油西南油气田公司天然气研究院的CT系列硫磺回收(制硫)催化剂。其中,CT6-4制硫催化剂,适用于克劳斯工艺制硫的抗硫酸盐化催化剂。
CT6-6系超级克劳斯催化剂,适用于超级克劳斯制硫工艺。
此外,说明一下,LS-951是以改性γ—Al2O3为载体,以钴、钼为活性金属组份的克劳斯尾气加氢专用催化剂,具有堆比轻、孔容和比表面大、活性组份分布均匀、加氢活性和有机硫水解活性高及活性稳定性好等特点;CT6-5系钴钼型加氢催化剂,适用于克劳斯尾气的加氢水解。
7. 我想知道天然气脱水工艺
含硫天然气中含有硫化氢、有机硫(硫醇类)、二氧化碳、饱和水以及其它杂质,因此需将其中的有害成分脱除,以满足工厂生产和民用商品气的使用要求。各国的商品天然气标准不尽相同,主要是需满足管道输送要求的烃露点和水露点,同时对天然气中硫化氢、硫醇、二氧化碳的最高含量和低燃烧值有要求。原料天然气组成和商品天然气的要求不同,所选择的天然气净化工艺技术方案也是不同的,本文将结合哈萨克斯坦国某油气处理厂处理的天然气的组成和需输往国际管道中的产品天然气的要求,提出含硫天然气脱硫脱水工艺技术方案的选择方法。
2 原料天然气条件
哈萨克斯坦国某油气处理厂处理的油田伴生天然气主要条件为:
1)处理量600×104m3/d (标准状态为0℃,101.325kPa,以下同);
2)压力为0.7MPa,为满足管输压力和净化工艺需要,经增压站升压后进装置压力为6.8MPa;
3)主要组成
组分
组成(mol%)
C1
75.17
C2
9.44
C3
7.21
C4
3.35
C5+
1.06
CO2
0.71
H2O
0.51
H2S
36g/m3
硫醇硫
500mg/m3 3 商品天然气技术指标
该厂商品天然气将输往国际管道,需满足ОСТ51.40-93标准的要求,应达到的主要技术指标为:
1)出厂压力6.3MPa;
2)水露点≤ -20℃;
3)烃露点≤ -10℃;
4)硫化氢(H2S)≤7mg/m3;
5)硫醇硫(以硫计)≤16mg/m3;
6)低燃烧热值≥32.5MJ/m3。
4 工艺路线初步选择
根据原料天然气条件和商品天然气技术指标,工厂总工艺流程框图见图1。
油田伴生天然气经增压站增压后,至天然气脱硫脱水装置进行处理,需脱除天然气中绝大部分的H2S和RSH,以满足产品天然气中硫化氢和硫醇硫含量的技术指标;同时需脱除天然气中绝大部分的水,以满足产品天然气水露点的技术指标,同时为回收更多的液化气和轻油产品,脱水深度还需满足后续的轻烃回收装置所需的水露点≤-35℃的要求。而原料气中CO2的含量较低,为0.71%(mol),商品天然气的低燃烧热值≥32.5MJ/m3,可不考虑脱除。
经天然气脱硫脱水装置处理的干净化天然气经轻烃回收装置回收天然气中的轻烃(C3以上),生产液化气和轻油产品,并使商品天然气满足烃露点≤ -10℃的技术指标。
脱硫装置脱除的酸性气体,主要由H2S、RSH、CO2、H2O等组成,输往硫磺回收装置回收硫磺,经硫磺成型设施生产硫磺产品,硫磺回收装置尾气经尾气处理装置处理后经燃烧后排放大气。
本文以下部分主要讨论脱硫脱水装置如何选择合理的工艺技术方案,以使脱硫脱水装置的产品气中硫化氢、硫醇含量合格,水露点能满足商品天然气和后续的轻烃回收装置的要求。
5 脱水工艺方案的初步选择
通常采用的脱水工艺方法有溶剂脱水法和固体干燥剂吸附法。溶剂吸收法具有设备投资和操作费用较低的优点,较适合大流量高压天然气的脱水,其中应用最广泛的为三甘醇溶液脱水方法,但其脱水深度有限,露点降一般不超过45℃。而固体干燥剂吸附法脱水后的干气,露点可低于-50℃。
由于本方案脱水装置产品天然气要求水露点≤-35℃,溶剂脱水法难以达到因此需采用固体干燥剂脱水工艺,如分子筛脱水工艺。
6 脱硫脱硫醇工艺方案的初步选择
本方案需处理的伴生天然气中H2S含量为36g/m3,硫醇含量为500mg/m3,而且天然气处理量达到600×104m3/d,规模较大,目前国内单套脱硫装置最大处理能力仅为400×104m3/d。
通常采用的脱硫脱硫醇的方法有液体脱硫法和固定床层脱硫法。
如果采用单一的固定床层脱硫法,如分子筛脱硫脱硫醇工艺,根据本方案需处理的天然气的流量和含硫量,按10天切换再生一次计算,10天内需脱除的硫化氢量为2.16×106kg,约需要DN3000的分子筛脱硫塔500座,这显然是不可行的。
目前国内较为成熟可行的液体脱硫工艺方法为醇胺法,因为含硫天然气中同时存在硫醇,所以可选择砜胺法来脱除硫化氢和硫醇。该工艺方法较为成熟,可把天然气中的硫化氢脱除至≤7mg/m3,同时对天然气中硫醇的平均脱除率为75%,则产品天然气中的硫醇硫含量为125mg/m3,尚不能达到硫醇硫≤16mg/m3的技术指标,此时可采用固定床层脱硫醇工艺,如分子筛脱硫醇工艺来脱除天然气中剩余的硫醇。
本方案还可以采用碱洗脱硫醇工艺来脱除天然气中的硫醇,为减少生产过程中碱的耗量和产生的废碱量,前面的醇胺法脱硫装置需采用一乙醇胺工艺,以脱除天然气中的大部分硫化氢和二氧化碳。
7 脱硫脱水工艺方案的比选
由5和6所述,脱硫脱水工艺方案有以下两个较为可行的方案:
1)方案一:砜胺法脱硫+分子筛脱水脱硫醇
该方案工艺框图见图2,经增压站升压的含硫天然气进入砜胺法脱硫装置脱除几乎全部的H2S和75%的硫醇,然后进入分子筛脱水脱硫醇装置脱除水分和剩余的硫醇,净化天然气经轻烃回收装置回收液化气和轻油产品。脱水脱硫醇装置的分子筛再生气需增压后再返回至砜胺法脱硫装置进行脱硫,是一个循环的流程。
2)方案二:一乙醇胺法脱硫+碱洗脱硫醇+分子筛脱水
该方案工艺框图见图3,经增压站增压的含硫天然气进入一乙醇胺法脱硫装置脱除几乎全部的H2S和CO2,然后进入碱洗脱硫醇装置脱除几乎全部的的硫醇,脱除硫化物后的天然气进入分子筛脱水装置脱水,净化天然气输往轻烃回收装置回收液化气和轻油产品。脱水装置分子筛再生气需增压后返回脱水装置脱水,是一个循环的流程。
7.1 方案一工艺特点
1)砜胺法脱硫装置,采用环丁砜和甲基二乙醇胺水溶液作脱硫剂,溶液的主要组成包括甲基二乙醇胺、环丁砜和水,其重量百分比为45:40:15,兼有化学吸收和物理吸收两种作用,而且还能部分地脱除有机硫化物(对硫醇的平均脱除率达到75%以上),溶液中甲基二乙醇胺对H2S的吸收有较好的选择性,减少对CO2的吸收,大大降低了溶液循环量,减小了再生系统的设备如再生塔、贫富液换热器、溶液过滤器、酸气空冷器等的规格尺寸,从而减少了投资,同时减少了再生所需的蒸汽量和溶液冷却所需的循环水量,节能效果更加显著。
2)分子筛脱水脱硫醇装置是利用分子筛的吸附特性,有选择性地脱除天然气中的水和硫醇。与传统的碱洗工艺不一样的是,分子筛工艺能有选择性地脱除硫化氢和硫醇,但不脱除CO2,这样可以使外输的天然气量比采用碱洗工艺时要增加2×104m3/d。
分子筛脱水和脱硫醇采用的分子筛是不同的,应用不同的两个分子筛床层,一般布置在同一座吸附塔内。
7.2 方案二工艺特点
1)—乙醇胺法脱硫,为典型的化学吸收过程,此法只能脱除微量有机硫,对H2S和CO2几乎无选择性吸收,在吸收H2S的同
8. 硫化氢气体回收硫磺的方法有哪些,请用化学反应方程式表示
用硫化亚铁与稀硫酸反应即可制得硫化氢气体. 化学方程式:FeS + H2SO4 = FeSO4 + H2S 因硫化亚铁是不溶性固体,该反应不需加热,可以用类似于氢气制取时用的装置. 如用硫化钠与稀硫酸反应,则因硫化钠易溶于水反应过于激烈而无法控制.因此不用