㈠ 化工厂是怎样处理污水中的硫化氢的
1、密闭收集处置法
可在硫化氢集中排放位置安装密闭收集装置,并通过引风机将硫化氢收集处理。但此方法对密闭装置要求严格,不能发生泄漏,且密闭装置内的设备无法进行正常的操作、维护和维修,对于我车间污水处理场来说需要对集水井、缓冲罐、平流隔油池和涡凹气浮池进行密闭收集硫化氢气体。如果这样,不但一次性投入过高,且无法对上述单元进行日常的操作,影响污水处理系统正常运行。
即便是可以进行密闭收集,收集到的硫化氢气体无外乎以下几种处理方式:一是选择空旷处直接排入大气,这样做不仅会对大气造成污染,同时还可能导致人员中毒;二是用碱液吸收,这样还需单独上马一套碱洗装置,且碱洗装置不可能100%吸收硫化氢气体,剩余的硫化氢气体还会排入大气;三是用重金属盐进行沉淀,但费用过高,同时又会产生重金属污染;四是上马硫磺回收装置,将硫化氢氧化成硫单质,但此项投资和维护费用均过高,不适宜小型装置使用。
综上,硫化氢密闭收集处置法不适宜我公司污水处理场解决硫化氢浓度过高的问题。
2、支撑气膜法
所用的技术为支撑气膜技术或称之为透膜解吸-化学吸收技术。调节pH保持或调至5以下95%以上的的H2S在水中会以游离态的形式存在,让废水通过一个聚丙烯疏水微孔中空纤维膜组件的管程,在壳程中逆流通过稀氢氧化钠水溶液(pH大于11),这样,硫化氢通过膜被不可逆地吸收。
如果废水的pH值至始至终保持在5,甚至4以下,95%甚至99%的硫化氢可以除掉并在吸收相得到富集(几十倍至几百倍)。含碱的硫化钠水溶液从各个分散的生产地集中到一处加酸后汽提得到高浓硫化氢后用克劳斯法生产单质硫,这样还需要上马汽提装置和硫磺回收装置,一次性投资至少150-200万元,且日常维护费用也较高。
3、汽提回收法
我污水处理场硫化氢来源主要是蒸馏装置生产废水,可在装置区进行汽提和碱洗处理。
含硫污水先经过污水汽提装置进行汽提,将硫化氢从污水中汽提出来进入碱洗系统,碱洗剩余硫化氢引入加热炉燃烧,因其流量很小不会对加热炉燃烧产生影响;污水中剩余硫化氢部分可排至污水处理场,这样即可使污水处理场硫化氢浓度大幅降低。流程如下:
蒸馏装置区现有碱洗系统一套,仅需增加一套汽提系统即可完成对硫化氢回收处理。建议采用此方案。
更多污水处理技术文章参考易净水网资料库http://www.ep360.cn/qita
㈡ 火焰探测器工作原理是什么
火焰探测器的工作原理是使用固体材料作为传感元件,如碳化硅或硝酸内铝,或使用充气管容作为传感元件,如盖革-米勒管,以感测火焰梳产生的0.185-0.260微米波长的紫外线辐射。
硫化铝传感器可用于火焰产生的2.5-3微米波长的红外辐射,而硒化铅或钽酸铝传感器可用于火焰产生的4.4-4.6微米波长的红外辐射。根据不同燃料的发射光谱,可以选择不同的传感器。三重红外(IR3)被广泛使用。
(2)硫磺回收装置火焰检测器维护扩展阅读:
火焰探测器的安装要点:
1、一般原理是将探测器安装在保护区内最高目标高度的两倍。在探测器的有效范围内,它不能被障碍物阻挡,包括透明材料,如玻璃和其他绝缘体。它可以覆盖所有需要保护的目标和区域,便于定期维护。
2、探测器安装后,向下倾斜30-45度,既可以向下看,又可以向前看,同时减少了镜面污染的可能性。保护区内所有可能发生的火灾应保持直线,以避免间接事故和反射。
3、为了避免检测盲区,通常在对面的角落安装另一个火焰探测器。同时,当其中一个火焰探测器发生故障时,它可以提供备份。
参考资料来源:网络—火焰探测器
㈢ 硫磺回收装置应注意哪些安全问题
硫磺回收装置的主要作用是使原油中所含的硫元素以单质或某些化合物的状态加以回收利用,以减轻或避免其直接排放对环境造成的污染。与一般石油炼制装置的危险因素不同的是,硫磺回收装置的主要危险因素不是燃烧爆炸(当然也存在这种危险),而是有毒气体(硫化氢、氨)对人体的危害。由于硫化氢存在于硫磺回收装置的各个部分,因此是回收装置的主要危险因素。此外,回收装置存在的严重腐蚀问题也是影响其安全生产的重要因素之一,需要加以特别关注。
硫回收装置中的硫化氢分布及其安全管理
硫回收装置是以硫化氢作为原料生产硫磺,因此,在硫回收装置中硫化氢是潜在巨大危害的主要因素之一。这其中,酸性气管线是硫化氢浓度最高的地方,一旦发生泄漏,后果非常严重。对于整个装置来说,大部分管线均含有不同浓度的硫化氢或二氧化硫、硫化羰等物质,这些物质均具有足以置人于死地的危险,因此为保证硫回收装置安全生产,应采取以下一些基本的安全管理措施:
(1)按时检查设备,同时要严格遵守压力管道管理办法的规定,对所有管线进行检查,以尽量避免发生泄漏。
(2)科学合理地设置固定式硫化氢检测报警设备,并且保证其数量充足,以期一旦发生泄漏能在第一时间发现,尽可能地减小损失。
(3)配备完善的防护设备,这其中包括便携式报警设备,正压呼吸器,以及其他具有过滤性质的呼吸设备。
(4)当发生严重泄漏时,其处理步骤的基本原则是:一旦发现泄漏,应首先通知有关人员佩戴安全完整的防护设备,并及时切断泄漏源。严禁在没有安全防护设备的保护下进行切断泄漏源或进行抢救等活动。
开、停工及正常生产情况下的危险因素
(1)停工阶段。硫酸装置停工过程通常分为硫化氢吹扫、二氧化硫吹扫及催化剂烧焦。硫化氢吹扫的作用是避免催化剂失活;二氧化硫吹扫的目的是尽量携带出系统内部的硫;烧焦催化剂则是为了使催化剂表面的积炭燃烧,恢复催化剂的活性和为开工做好准备。在停工过程中,即使所有的吹扫过程进行完全,也不可能保证彻底带出了系统内的全部硫,因此在进行烧焦时就可能发生因硫在该过程中发生燃烧而放出大量的热量,从而造成反应器“飞温”,“飞温”现象一旦发生,轻则可能损坏催化剂,严重时甚至会损坏设备,影响正常生产。
(2)开工阶段。如果硫磺装置在停工过程中发生硫凝聚或催化剂积炭,阻塞气路,将在开工阶段造成流程阻塞。酸性气进入系统而导致燃烧炉防爆膜爆裂,造成有毒气体大量泄漏,严重威胁操作人员的生命安全,并可能造成对环境的严重污染。
其他危险因素分析
除此之外,装置中还存在着其他的一些危险因素,可能对系统的安全运行造成威胁,主要表现在系统内部物质在开、停工过程中可能发生的物质凝聚或其他原因引起系统阻塞,这是与一般装置的不同之处。其产生的主要因素如下:
(1)杂质因素。硫磺回收装置中的酸性气带烃(胺)、硫回收装置中的带液(液体主要是指水)或冷却器堵塞等,可能分别造成装置阻塞、燃烧炉内压力骤升、走管程的硫蒸气遇冷却水凝固而阻塞设备,引起系统压力升高,最终使防爆膜爆裂,致使有毒气体泄漏。
(2)配风不合格。配风比是硫回收装置的重要操作参数之一。只有合适的空气与酸性气配比,才能达到最大的硫回收率。配风量大,降低硫回收率,可能严重污染环境;配风量小,硫回收率降低,同时导致烃类物质的不完全燃烧,产生积炭,造成系统阻塞,严重威胁安全生产。
(3)酸性气流量和浓度的变化。在硫回收装置中,酸性气流量和浓度在生产过程中随机变化,如果发生超过允许范围的变化,将不利于正常操作,严重时会造成硫磺的阻塞。
(4)风机故障。在硫回收装置中常用风机向燃烧炉提供空气,在正常生产中一旦停风,会出现大量酸性气直接进入尾气系统,对其造成严重冲击。而且其中的烃遇高温还会发生不完全燃烧而积炭,阻塞系统或因操作偏差造成风机反转,使酸性气倒流。这些都将直接威胁到操作人员的生命安全。
(5)除氧水中断。为回收热能,Claus硫回收装置在燃烧炉后设置废热锅炉,用除氧水作为发生蒸气来回收能量。一旦发生除氧水中断事故,将造成锅炉缺水,可能发生因锅炉自烧而爆炸的严重事故。
(6)停瓦斯或瓦斯带液。硫回收装置的最后一级设有尾气焚烧炉,常以瓦斯为燃料对硫磺尾气进行高温灼烧。如果瓦斯突然中断,将影响正常生产;如果瓦斯带液,将造成燃烧炉内积炭,严重时还会在管线中发生燃烧,造成设备事故或气体泄漏,威胁安全生产。
(7)高温掺和阀故障。为控制转化器入口温度,高温掺和间通常设置在硫回收装置的转化器入口,以便提高转化率。一旦高温掺和阀卡死,气流温度将无法控制,硫磺转化率将显著下降。一旦引起系统阻塞,轻则影响正常生产,重则可能造成非正常停工,严重危害安全生产。
(8)烟囱阻塞。硫磺尾气中含有硫化氢和二氧化硫,它们能发生反应生成硫磺。一旦硫磺阻塞烟囱管线的现象发生,轻则造成系统阻塞,影响安全生产,严重时还会导致被迫停工的事故发生。
(9)尾气处理设施故障。尾气处理设施是为达到硫磺尾气排放标准而设置的,该设施广泛应用于SCOT加氢流程中,以达到提高硫磺转化率,减少污染的目的,其中二氧化硫的转化是控制尾气排放的关键因素。影响尾气排放的因素主要包括催化剂性能、反应温度、加氢量等,其中控制加氢量最为重要。加氢量过大,将加重尾气焚烧炉的负担,严重时造成焚烧炉飞温而致损坏;加氢量过小,汇合过程气中硫化氢反应生成硫磺阻塞设备,严重时会引起硫磺反应单元的事故。
(10)采样过程中的危险因素。硫回收装置是通过调节配风量实现Claus反应中硫的最佳转化率。要调节到最佳配风量,需要随时对过程气中的硫化氢和二氧化硫含量进行分析,以帮助操作人员作出正确的判断。国外装置基本上用在线色谱仪进行分析,国内因经费等因素的影响,多采用人工色谱分析法进行分析。分析人员每天必须与有毒气体直接接触进行采样,因而很容易发生中毒危险,直接威胁到分析人员的生命安全。因此在生产过程中,需要特别注意避免这类事故的发生。
硫回收装置的腐蚀问题
引起硫回收装置设备腐蚀的直接因素是系统中存在着大量的酸性物质,其中尤以二氧化硫的危害性最大。其原因在于装置中同时存在着二氧化硫和水,这两者一旦结合,将生成中强性的酸而腐蚀设备。轻则损坏设备,造成泄漏,污染环境,重则可能造成人身伤害的严重事故发。因此应充分认识这一问题的严重性。
此外,还有硫磺成型中的液硫脱气和避免成型库房因粉尘而可能造成爆炸的危险因素存在等,这些都是安全生产中不容忽视的问题。
自控系统在硫回收装置安全生产管理中的作用
影响硫回收装置安全生产的因素很多,为了保证安全生产,提高硫回收率,保护环境,在硫磺装置中,广泛应用于配风控制系统中的有自动连锁控制系统(如DCS控制系统)。它与在线检测系统和事故控制连锁系统联合,确保生产操作的稳定和安全。其主要作用是在事故发生时快速切断酸性气,因为系统的反应时间短,因此可以尽可能避免人工切断时对操作人员的危害,因而更加安全可靠。
㈣ 硫回收工艺原理
硫磺回收装置硫磺回收指将含硫化氢等有毒含硫气体中的硫化物转变为单质硫,从而变废为宝,保护环境的化工过程。
硫磺回收通常采用一种叫做“克劳斯”的工艺来实现。含硫原料气通常称为酸气。首先将酸气与空气或氧气在一台称为燃烧炉的设备中燃烧。严格控制空气或氧气量,使燃烧产物中硫化氢与二氧化硫气体体积比为2:1。之后燃烧气体被冷却,气体中的硫磺冷凝回收。剩余气体经加热后进入一台克劳斯反应器进行反应。反应主要是硫化氢与二氧化硫生产硫磺和水。这一反应需使用催化剂才能实现。反应完后的气体同样需冷却回收硫磺。然后剩余气体在经二级、三级反应。通常硫磺回收装置的硫回收率可达95~98%。
如果需要进一步提高硫磺回收率,则需在装置后附加尾气处理装置。目前最好的SCOT类尾气处理装置可将硫回收率提高到99.9%。
Sulsim是Sulphur Experts公司全流程硫回收模拟软件。
Sulsim采用交互式的图形界面使我们能够对硫回收的全流程和改进的克劳斯过程常用的单元操作,包括焚烧炉和其他一些尾气处理单元,做出完整的设定。交互式的设定功能允许我们在软件所支持的过程中增加或删除操作单元,通常这些过程包括改进克劳斯过程、亚露点克劳斯过程、选择性氧化以及多种尾气处理过程。然后我们所确定的脱硫流程就能够以图形的方式显示在屏幕上。这种高度的灵活性使得我们能很好的模拟与气体处理厂和炼厂相关联的所有的硫回收过程。
在程序中克劳斯反应炉以及下游工艺的任何点都支持多股进料,同时程序也支持工艺气体的循环操作。这使得我们能够对多种进料进行处理,如酸水脱除气、胺厂再生气、燃气以及尾气循环物流。软件采用序贯计算法严格计算从反应炉到焚烧炉或尾气处理单元的物料衡算和热量衡算。
Sulsim支持在一个模拟文件中运行多个并行计算过程(最多4个)以模拟整个硫回收过程。Sulsim也支持全流程的某个局部以模拟过程中的一个单元或若干个单元的任意组合。
㈤ 硫磺回收装置紧急停电时对酸气进燃烧炉截断阀的处理是什么
硫磺回收装置紧急停电时对酸气进燃烧炉截断阀的处理是“关闭”
紧急停电,搅内拌,引风机、冷容却装置等,全都停止运行。如果继续进料,装置的冷却,物料的吸收等都会出现问题,最怕的是起火,爆炸等,那就麻烦了。
因此肯定是关闭截断阀,停止进料。
㈥ 酸性气中水对硫磺反应的影响是什么,装置如何应对
1、酸性气中水对硫磺反应的影响是酸性气携带的液体主要是水、烃及醇胺类溶剂,会影响硫磺回收装置的生产及硫磺产品的质量。
2、装置继续投酸性气生产并加大处??,用过程气夹带催化剂上的碳黑,随硫磺流出,恢复催化剂活性。
㈦ 跪求 硫磺粉生产工艺 流程图 最好全部资料
一种是 采用专用粉碎机制取。主要由原料料斗(1)、三级粉碎主机(2)、选专料器(3)、成品出属料器(4)、风机(5)、散风装置(6)组成。其中三级粉碎主机(2)与选料器(3)相连接,选料器(3)与成品出料器(4)相连接,成品出料器(4)与风机(5)相连接,再与散风装置(6)连接。在本硫磺专用粉碎机有关部件内部布置安装了由铜棒(37)、(47)和铜线(38)、(48)、(64)组成的静电排放系统装置。
一种是加热硫磺到沸腾,然后冷却硫蒸气得到很细的硫磺粉。
㈧ 硫磺回收的简介
原油或煤中的硫化物在加工过程中转化为H2S,而H2S是剧毒物质,对人体和环境有极大的毒害作用,内必须进行无害化容处理,相应采用的最合适的工艺就是硫磺回收工艺。在以煤为原料的化工厂中,酸性气的加工流程主要是煤→煤化工→脱硫→H2S→硫磺回收→硫磺。
㈨ 硫黄回收装置转化器一般用什么催化剂啊它们都有什么区别
硫磺回收催化剂
转化器需装填硫磺回收(制硫)催化剂。目前国内有代表性的制硫催化剂有两回家。一是LS系列硫答磺回收催化剂
,为中国石化齐鲁分公司研究院的产品。其中,LS—300催化剂是一种大比表面积和高强度的克劳斯Al2O3系硫磺回收催化剂。该催化剂具有颗粒均匀、磨耗小、活性高和稳定性好等特点。LS-971为脱漏“氧”保护催化剂。LS—300和LS-971一般可配合使用;另一家为中国石油西南油气田公司天然气研究院的CT系列硫磺回收(制硫)催化剂。其中,CT6-4制硫催化剂,适用于克劳斯工艺制硫的抗硫酸盐化催化剂。
CT6-6系超级克劳斯催化剂,适用于超级克劳斯制硫工艺。
此外,说明一下,LS-951是以改性γ—Al2O3为载体,以钴、钼为活性金属组份的克劳斯尾气加氢专用催化剂,具有堆比轻、孔容和比表面大、活性组份分布均匀、加氢活性和有机硫水解活性高及活性稳定性好等特点;CT6-5系钴钼型加氢催化剂,适用于克劳斯尾气的加氢水解。
㈩ 硫化氢危害
您好,我就为大家解答关于硫化氢危害相信很多小伙伴还不知道,现在让我们一起来看看吧!1、健康危害 侵入途径:吸入 硫化氢气体 健康危害...
您好,我就为大家解答关于硫化氢危害相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、健康危害 侵入途径:吸入 硫化氢气体 健康危害:本品是强烈的神经毒素,对粘膜有强烈刺激作用。
2、毒理学资料及环境行为 急性毒性:LC50618毫克/立方米(大鼠吸入) 亚急性和慢性毒性:家兔吸入0.01mg/L,2小时/天,3个月,引起中枢神经系统的机能改变,气管、支气管粘膜刺激症状,大脑皮层出现病理改变。
3、小鼠长期接触低浓度硫化氢,有小气道损害。
4、 污染源:硫化氢很少用于工业生产中,多为化工过程的副产品。
5、一般作为某些化学反应和蛋白质自然分解过程的产物以及某些天然物的成分和杂质,而经常存在于多种生产过程中以及自然界中。
6、如采矿和有色金属冶炼。
7、煤的低温焦化,含硫石油开采、提炼,橡胶、制革、染料、制糖等工业中都有硫化氢产生。
8、开挖和整治沼泽地、沟渠、印染、下水道、隧道以及清除垃圾、粪便等作业。
9、另外天然气、火山喷气、矿泉中也常伴有硫化氢存在。
10、 危险特性:易燃,与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。
11、与浓硝酸、发烟硫酸或其它强氧化剂剧烈反应,发生爆炸。
12、气体比空气重,能在较低处扩散到相当远的地方,遇明火会引起回燃。
13、 燃烧(分解)产物:二氧化硫。
14、 燃烧的化学方程式:2H2S+3O2=点燃=2H2O+2SO2(O2过量) 2H2S+O2=点燃=2H2O+2S(O2不足) 氧化还原反应(归中反应) 方程式: 2H2S+SO2=2H2O+3S现场应急监测方法 ①便携式气体检测仪器:硫化氢库仑检测仪、硫化氢气敏电极检测仪; ②常用快速化学分析方法:醋酸铅检测管法、醋酸铅指示纸法《突发性环境污染事故应急监测与处理处置技术》万本太主编 ③用快速气体检测管(气体速测管)中毒临床表现 急性硫化氢中毒一般发病迅速,出现以脑和(或)呼吸系统损害为主的临床表现,亦可伴有心脏等器官功能障碍。
15、临床表现可因接触硫化氢的浓度等因素不同而有明显差异。
16、中枢神经系统损害最为常见 (1)接触较高浓度硫化氢后可出现头痛、头晕、乏力、共济失调,可发生轻度意识障碍。
17、常先出现眼和上呼吸道刺激症状。
18、 (2)接触高浓度硫化氢后以脑病表现为显蓍,出现头痛、头晕、易激动、步态蹒跚、烦躁、意识模糊、谵妄、癫痫样抽搐可呈全身性强直一阵挛发作等;可突然发生昏迷;也可发生呼吸困难或呼吸停止后心跳停止。
19、眼底检查可见个别病例有视神经乳头水肿。
20、部分病例可同时伴有肺水肿。
21、 脑病症状常较呼吸道症状的出现为早。
22、可能因发生粘膜刺激作用需要一定时间。
23、 (3)接触极高浓度硫化氢后可发生电击样死亡,即在接触后数秒或数分钟内呼吸骤停,数分钟后可发生心跳停止;也可立即或数分钟内昏迷,并呼吸骤停而死亡。
24、死亡可在无警觉的情况下发生,当察觉到硫化氢气味时可立即嗅觉丧失,少数病例在昏迷前瞬间可嗅到令人作呕的甜味。
25、死亡前一般无先兆症状,可先出现呼吸深而快,随之呼吸聚停。
26、 急性中毒时多在事故现场发生昏迷,其程度因接触硫化氢的浓度和时间而异,偶可伴有或无呼吸衰竭。
27、部分病例在脱离事故现场或转送医院途中即可复苏。
28、到达医院时仍维持生命体征的患者,如无缺氧性脑病,多恢复较快。
29、昏迷时间较长者在复苏后可有头痛、头晕、视力或听力减退、定向障碍、共济失调或癫痫样抽搐等,绝大部分病例可完全恢复。
30、曾有报道2例发生迟发性脑病,均在深昏迷2天后复苏,分别于1.5天和3天后再次昏迷,又分别于2周和1月后复苏。
31、 中枢神经症状极严重,而粘膜刺激症状不明显,可能因接触时间短,尚未发生刺激症状;或因全身症状严重而易引起注意之故。
32、 急性中毒早期或仅有脑功能障碍而无形态学改变者,对脑电图和脑解剖结构成像术如电子计算机断层扫描(CT)和磁共振成像(MRI)的敏感性较差,而单光子发射电子计算机脑扫描(SPECT)/正电子发射扫描(PET)异常与临床表现和神经电生理检查的相关性好。
33、如1例中毒深昏迷后呈去皮质状态,CT示双侧苍白球部位有密度减低灶。
34、另1例中毒昏迷患者的头颅CT和MRI无异常;于事故后3年检查PET示双侧颞叶、顶叶下、左侧丘脑、纹状体代谢异常;半年后SPECT示双侧豆状核流量减少,大脑皮质无异常。
35、患者有嗅觉减退、锥体外系体征、记忆缺陷等表现。
36、 国外报道15例有反复急性硫化氢中毒史者后遗疲乏、嗜睡、头痛、激动、焦虑、记忆减退等症状。
37、呼吸系统损害 可出现化学性支气管炎、肺炎、肺水肿、急性呼吸窘迫综合征等。
38、少数中毒病例可以肺水肿的临床表现为主,而神经系统症状较轻。
39、可伴有眼结膜炎。
40、角膜炎。
41、心肌损害 在中毒病程中,部分病例可发生心悸、气急、胸闷或心绞痛样症状;少数病例在昏迷恢复、中毒症状好转1周后发生心肌梗死样表现。
42、心电图呈急性心肌死样图形,但可很快消失。
43、其病情较轻,病程较短,预后良好,诊疗方法与冠状动脉样硬化性心脏病所致的心肌梗死不同,故考虑为弥漫性中毒性心肌损害。
44、心肌酶谱检查可有不同程度异常。
45、急性硫化氢中毒诊断主要依据 有明确的硫化氢接触史患者的衣着和呼气有臭蛋气味可作为接触指标。
46、事故现场可产生或测得硫化氢。
47、患者在发病前闻到臭蛋气味可作参考。
48、 2、临床特点:出现上述脑和(或)呼吸系统损害为主的临床表现。
49、 3、实验室检查:目前尚无特异性实验室检查指标。
50、 (1)血液中硫化氢或硫化物含量增高可作为吸收指标,但与中毒严重程度不一致,且其半衰期短,故需在停止接触后短时间内采血。
51、 (2)尿硫代硫酸盐含量可增高,但可受测定时间及饮食中含硫量等因素干扰。
52、 (3)血液中硫血红蛋白(Sulfhemoglobin, SHb)不能作为诊断指标,因硫化氢不与正常血红蛋白结合形成硫血红蛋白,后者与中毒机制无关;许多研究表明硫化氢致死的人和动物血液中均无显著的硫血红蛋白浓度。
53、 (4)尸体血液和组织中含硫量可受尸体腐化等因素干扰,影响其参考价值。
54、 4、鉴别诊断:事故现场发生电击样死亡应与其他化学物如一氧化碳或氰化物等急性中毒、急性脑血管疾病、心肌梗死等相鉴别,也需与进入含高浓度甲烷或氮气等化学物造成空气缺氧的环境而致窒息相鉴别。
55、其他症状亦应与其他病因所致的类似疾病或昏迷后跌倒所致的外伤相鉴别。
56、救援人员在发生硫化氢中毒 1.现场抢救极为重要,因空气中含极高硫化氢浓度时常在现场引起多人电击样死亡,如能及时抢救可降低死亡率,减少转院人数减轻病情。
57、应立即使患者脱离现场至空气新鲜处。
58、有条件时立即给予吸氧。
59、现场抢救人员应有自救互救知识,以防抢救者进入现场后自身中毒。
60、 硫化氢中毒 2.维持生命体征。
61、对呼吸或心脏聚停者应立即施行心肺脑复苏术。
62、对在事故现场发生呼吸骤停者如能及时施行人工呼吸,则可避免随之而发生心脏骤停。
63、在施行口对口人工呼吸时施行者应防止吸入患者的呼出气或衣服内逸出的硫化氢,以免发生二次中毒。
64、 3.以对症、支持治疗为主。
65、高压氧治疗对加速昏迷的复苏和防治脑水肿有重要作用,凡昏迷患者,不论是否已复苏,均应尽快给予高压氧治疗,但需配合综合治疗。
66、对中毒症状明者需早期、足量、短程给予肾上腺糖皮质激素,有利于防治脑水肿、肺水肿和心肌损害。
67、控制抽搐及防治脑水肿和肺水肿,参见和。
68、较重患者需进行心电监护及心肌酶谱测定,以便及时发现病情变化,及时处理。
69、对有眼刺激症状者,立即用清水冲洗,对症处理。
70、 4.关于应用高铁血红蛋白形成剂的指征和方法等尚无统一意见。
71、从理论上讲高铁血红蛋白形成剂适用于治疗硫化氢造成的细胞内窒息,而对神经系统反射性抑制呼吸作用则无效。
72、适量应用亚硝酸异戊酯、亚硝酸钠或4-二甲基氨基苯酚(4-DMAP)等,使血液中血红蛋白氧化成高铁血红蛋白,后者可与游离的硫氢基结合形成硫高铁血红蛋白(Sulfmethemoglobin, SMHb)而解毒;并可夺取与细胞色素氧化酶结合的硫氢基,使酶复能,以改善缺氧。
73、但目前尚无简单可行的判断细胞内窒息的各项指标,且硫化物在体内很快氧化而失活,使用上述药物反而加重组织缺氧。
74、亚甲蓝(美蓝)不宜使用,因其大剂量时才可使高铁血红蛋白形成,剂量过大则有严重副作用。
75、目前使用此类药物只能由医师临床经验来决定。
76、编辑本段煤矿瓦斯中硫化氢的成因危害与防治 硫化氢极毒,人吸入浓度为1g/m?;的H2S在数秒钟内即可死亡。
77、此外,硫化氢的化学活动性极大,电化学失重腐蚀、“氢脆”和硫化物应力腐蚀、破裂等对金属管线的腐蚀作用强烈。
78、 煤炭资源生产过程中瓦斯内的硫化氢气体异常(瓦斯中H2S气体的浓度0.01%)也时有显现。
79、在煤巷掘进过程中,因巷道开拓的煤量有限,且热化学分解、硫酸盐热化学还原作用导致煤矿瓦斯中H2S气体异常的浓度一般小于1%,当闻到强烈的臭鸡蛋气味时,掘进面、H2S气体异常工作面封闭,目前暂不开采。
80、因此,煤矿生产中未出现重大伤亡事故。
81、但若存在岩浆成因带来的无机H2S气体,将会对煤矿安全生产构成极大危害。
82、 硫化氢毒性极大,但硫化氢比空气重(相对密度为1.17),且极易溶于水而形成氢硫酸。
83、故地势低处危险性比高处大;下风向硫化氢浓度大,上风向则浓度低等;在突发事故中用湿毛巾等捂嘴鼻、向高处避毒、向上风向撤离等,均可避免或减轻伤亡。
84、 目前在天然气工业中普遍应用的在井口引出H2S用火燃烧,使极毒H2S迅速转化为有慢性污染的SO2,此种方法在矿井下无法实施,井下H2S危害的防治方法有: (1)建立独立的通风系统。
85、对于H2S气体异常浓度不超过1%掘进面或工作面,改变通风方式,增加异常区的供风量,掘进回风石门与总回风下山沟通,使乏风直接进入总回风系统不影响其它工作面。
86、与此同时调节通风系统,采用对旋风机,使H2S异常区供风量增加以稀释H2S,使其浓度达到安全生产的要求。
87、 (2)改变采煤方法。
88、改走向长壁采煤法为倾向短壁采煤法,从而形成全负压通风系统,使乏风直接进入采空区。
89、有条件的矿井改炮采为水力采煤,炮采或机采时增加喷水量,使H2S气体溶于水,降低其浓度。
90、 (3)设专职瓦斯检测员,配备便携式H2S检测仪、便携式CO检测仪以及CH4鉴定器,确保经常检查三种气体浓度,严禁在任何时间、任何有害气体情况下超限作业。
91、 (4)安装风电沼气闭锁装置,实现沼气自动检测报警。
92、 (5)放炮时、必须用湿泥填满炮眼及工作面端头有可能储气的洞穴,严禁局部瓦斯聚积。
93、放炮后,用大量水冲刷煤壁.尽量稀释溶解H2S,降低其浓度。
94、硫化氢安全防护七大注意事项危险区域 极度危险区域 硫化氢在空气中的最高容许浓度是10mg/m3。
95、 当浓度≥760mg/m3(502ppm)时,人会很快出现急性中毒,呼吸麻痹而死亡,此区域属于极度危险区域,可能出现在以下装置附近: 硫磺回收装置,污水汽提装置,火炬装置,酸性气管线沿途区域,气体、气分脱硫火炬罐,一、二气分脱硫部分。
96、 进入上述区域要得到车间许可,并须有监护人员陪同,佩戴正压自给式空气呼吸器,使用便携式硫化氢检测报警仪。
97、 2、高度危险区域 当硫化氢浓度介于300~760mg/m3(198~502ppm)时,可引发肺水肿、支气管炎及肺炎、头痛、头昏、恶心、呕吐、排尿困难。
98、此区域属于高度危险区域,可能出现在以下装置附近: 蒸馏装置蒸、常顶、减顶切水及轻烃回收回流罐切水,脱硫罐切液,轻烃回收脱丁烷塔顶酸性水,轻烃回收单元干气管线,火炬线沿途区域,瓦斯罐,瓦斯管网沿途2米之内,催化、加氢酸性水罐,催化分馏部分、稳定部分、脱硫部分、压缩机,64642废汽油罐等。
99、 进入上述区域要得到车间许可,并须有监护人员陪同,佩戴正压自给式空气呼吸器,使用便携式硫化氢检测报警仪。
100、 3、中度危险区域 当硫化氢浓度10mg/m3~300mg/m3(6.6~198ppm)时,可出现眼急性刺激症状,稍长时间接触引起肺水肿。
101、此区域属于高度危险区域,可能出现在以下装置附近: 硫磺联合装置的液硫储存及成型单元,污水场,蒸馏装置电脱盐切水、污水池。
102、 进入上述区域要得到车间许可,并须有监护人员陪同,佩戴正压自给式空气呼吸器,使用便携式硫化氢检测报警仪。
103、中毒症状 1.轻度中毒:表现为畏光、流泪、眼刺痛、异物感、流涕、鼻及咽喉灼热感等症状,并伴有头昏、头痛、乏力。
104、 硫化氢中毒症状2.中度中毒:立即出现头昏、头痛、乏力、恶心、呕吐、走路不稳、咳嗽、呼吸困难、喉部发痒、胸部压迫惑、意识障碍等症状,眼刺激症状强烈,有流泪、畏光、眼刺痛。
105、 3.重度中毒:表现为头晕、心悸、呼吸困难、行动迟钝,继而出现烦躁、意识模糊、呕吐、腹泻、腹痛和抽搐,迅速进入昏迷状态,并发肺水肿、脑水肿,最后可因呼吸麻痹而死亡。
106、 4.极重度中毒:吸入1~2口即突然倒地,瞬时呼吸停止,即“电击样”死亡。
107、中毒急救 当硫化氢中毒事故或泄漏事故发生时,污染区的人员应迅速撤离至上风侧,并应立即呼叫或报告,不能个人贸然去处理。
108、 硫化氢中毒急救有人中毒昏迷时,抢救人员必须做到: 1.戴好防毒面具或空气呼吸器,穿好防毒衣,有两个以上的人监护,从上风处进入现场,切断泄漏源。
109、 2.进入塔、封闭容器、地窖、下水道等事故现场,还需携带好安全带。
110、有问题应按联络信号立即撤离现场。
111、 3.合理通风,加速扩散,喷雾状水稀释、溶解硫化氢。
112、 4.尽快将伤员转移到上风向空气新鲜处,清除污染衣物,保持呼吸道畅通,立即给氧。
113、 5.观察伤员的呼吸和意识状态,如有心跳呼吸停止,应尽快争取在4分钟内进行心肺复苏救护(勿用口对口呼吸)。
114、 6.在到达医院开始抢救前,心肺复苏不能中断。
115、预防措施 1.产生硫化氢的生产设备应尽量密闭,并设置自动报警装置。
116、 2.对含有硫化氢的废水、废气、废渣,要进行净化处理,达到排放标准后方可排放。
117、 3.进入可能存在硫化氢的密闭容器、坑、窑、地沟等工作场所,应首先测定该场所空气中的硫化氢浓度,采取通风排毒措施,确认安全后方可操作。
118、 4.硫化氢作业环境空气中硫化氢浓度要定期测定。
119、 5.操作时做好个人防护措施,戴好防毒面具,作业工人腰间缚以救护带或绳子。
120、做好互保,要2人以上人员在场,发生异常情况立即救出中毒人员。
121、 6.患有肝炎、肾病、气管炎的人员不得从事接触硫化氢作业。
122、 7.加强对职工有关专业知识的培训,提高自我防护意识。
123、各行业注意事项 采样作业注意事项 (1)检查采样器是否完好; (2)佩戴适用的防毒面具,站在上风向,并有专人监护; (3)采样过程中手阀应慢慢打开,不要用扳手敲打阀门。
124、 2、切水作业注意事项 (1)佩戴适用的防毒面具,有专人监护,站在上风向; (2)脱水伐与脱水口应有一定距离; (3)脱出的酸性气要用氢氧化钙或氢氧化钠溶液中和,并有隔离措施,防止过路行人中毒; (4)脱水过程中人不能离开现场,防止脱出大量的酸性气。
125、 3、设备内检修作业 需进入设备、容器进行检修,一般都经过吹扫、置换、加盲板、采样分析合格、办理进设备容器安全作业票后,才能进入作业。
126、但有些设备容器在检修前,需进人排除残余的油泥、余渣,清理过程中会散发出硫化氢和油气等有毒有害气体,必须做好安全措施。
127、以下七项为设备内检修作业步骤: (1)制定施工方案; (2)作业人员经过安全技术培训; (3)佩戴适用的防毒面具,携带好安全带(绳); (4)进设备容器作业前,必须作好采样分析; (5)作业时间不宜过长,一般不超过30min; (6)办理安全作业票; (7)施工过程须有专人监护,必要时应有医务人员在场。
128、 4、进入下水道(井)、地沟作业 (1)执行进入有限空间作业安全防护规定; (2)控制各种物料的脱水排凝进入下水道; (3)采用强制通风或自然通风,保证氧含量大于20%; (4)配带防毒面具; (5)携带好安全带(绳); (6)办理安全作业票; (7)进入下水道内作业井下要设专人监护,并与地面保持密切联系。
129、 5、油池清污作业 (1)下油池清理前,必须用泵把污油、污水抽干净,用高压水冲洗置换; (2)采样分析,根据测定结果确定施工方案格安全措施; (3)佩戴适用的防毒面具,有专人监护,必要时要携好安全带(绳); (4)办理好有限空间作业票。
130、 6、堵漏、拆卸或安装作业 设备、容器、管线存有硫化氢物料的堵漏、拆卸或安装作业时,必须做到: (1)严格控制带压作业,应把与其设备容器相通的阀门关死,撤掉余压; (2)佩戴适用的防毒面具,有专人监护; (3)拆卸法兰螺丝时,在松动之前,不要把螺丝全部拆开,严防有毒气体大量冲出。
131、 7、检查生产装置的注意事项 (1)平稳操作,严防跑、冒、滴、漏; (2)装置内安装固定式硫化氢报警仪; (3)加强机泵设备的维护管理,减少泄漏; (4)有泄漏的地方加强通风; (5)存有硫化氢物料的容器、管线、阀门等要定期检查更换; (6)发现硫化氢浓度高,要先报告,采取一定的防护措施,才能进入现场检查和处理。
132、 8、油罐的检查作业 (1)严禁在进、出油及调合过程中进行人工检尺、测温及拆装安全附件等作业; (2)必要的检查、脱水,操作人员应站在上风向,并有专人监护; (3)准备好适合的防毒面具,以便急用。
133、过滤式防毒面具的使用要求 当作业场所空气中氧含量大于等于20%,且硫化氢浓度小于10mg/m3时,可选用灰色罐的过滤式防毒面具。
134、使用过滤式防毒面具注意事项: 过滤式防毒面具(1)使用前要进行气密性检查:使用者戴好面具后,用手堵住进气口,同时用力吸气,若感到闭塞不透气时,说明面具是基本气密的。
135、 (2)正确佩戴:选择合适的规格,使罩体边缘与脸部贴紧。
136、使用前应先将导气管与头罩的螺丝旋紧,另一端与滤毒罐的螺丝连接,保证各部分连接密合,保持气流畅通无阻,使用时必须记住,事先拔去滤毒罐底部进气孔的胶塞,否则易发生窒息事故。
137、使用时滤毒罐底部的通气孔和头罩呼气阀注意防止外来物料的堵塞。
138、 (3)紧急佩戴:如发生意外,一时无法脱离现场时,使用者应即屏住气,迅速取出头罩戴上。
139、当确认头罩边缘与头部密合,接着猛呼出体内余气,再作简易气密性试验后,方可投入使用。
140、空气呼吸器的使用要求 当作业场所空气中氧含量小于20%,或硫化氢浓度大于或等于10mg/m3时,须选用隔离式防毒面具,目前常用的为自给式(空气呼吸器。
141、 空气呼吸器使用的注意事项: 空气呼吸器1.使用前先进行压力测试:打开气瓶阀,沿逆时针方向旋开气瓶手轮,至少2圈。
142、同时观察压力表读数,气瓶压力应不小于28Mpa,否则应换上充满压缩空气的气瓶。
143、 2.佩戴装具:扣紧和调节肩带、腰带,使呼吸器的位置紧贴身体后背。
144、压力表固定在空气呼吸器的肩带处,随时可以观察压力表示值来判断气瓶内的剩余空气。
145、 3.佩戴面罩:确定口罩上已装了吸气阀。
146、拉开头罩戴在头上,带子平置于头部和颈部,没有缠绕。
147、单手把头罩拉至头后部,确保下巴位于面罩的下巴罩内。
148、 4.检查面罩密封:把颈带(下方两根带子)末端朝头后方拉动,扣紧颈带。
149、用手掌心捂住面罩接口处,通过吸气直到产生负压,检验在面罩与脸部密封是否良好。
150、若发现有空气泄漏进面罩,移去面罩,重复佩戴。
151、如果调节面罩后,还不能与脸部保持密封,更换一个新的面罩。
152、 注意:面罩的密封圈与皮肤紧密贴合是面罩密封的保证,必须保证橡胶密封面与皮肤之间无头发或胡须等。
153、 5.当气瓶内消耗空气至5.5MPa±0.5MPa时,报警器会发出报警声,以提醒使用者气瓶内最多还有16%的空气。
154、一旦听到报警声,应准备结束在危险区工作,并尽快离开危险区。