导航:首页 > 装置知识 > 井口自动化装置

井口自动化装置

发布时间:2023-02-12 04:13:02

① 有没有介绍石化工业的

一、我国石油和石油化工装备制造业已具有坚实基础 石油、石油化工工业是我国的支柱产业之一,在国民经济中占有重要地位,2001年,全国生产原油1.65亿吨;原油加工量2.10亿吨;生产乙烯480.67万吨;生产化肥3396.52万吨;生产合成材料1203.84万吨,主要经济指标居全国工业各行业之首。石油、石油化工工业的发展带动了为其提供装备的石油、石油化工设备制造业的发展。建国五十多年以来,特别是改革开放20多年来,通过研制、开发、合作生产、引进技术,使我国石油、石油化工设备制造业,从无到有、从小到大,建立起一个比较完整的制造体系。据统计,2001年行业中的石油和石油化工专用设备405家规模以上企业,工业总产值(现价)达134亿元,利润总额2.9亿元,从业人员12.8万人。 (1)石油钻采设备制造体系已经形成 石油钻采设备制造业是为陆地、沙漠、浅滩和海上石油、天然气的勘探、开发提供装备。建国初期,石油基本依赖进口,而石油和石油化工设备制造业更谈不上,全国只有几家小厂生产一些石油设备零配件。经过五十年来的努力,已建成几个比较集中的制造基地:以宝鸡、兰州、南阳等为主的钻井设备基地;以上海、江苏为主的石油工具基地;以江汉、四川为主的石油钻头基地;以西安为主的地球物理勘探设备基地;以济南为主的石油钻机专用柴油机制造基地。采油设备的制造分散在全国各地,东北地区较为集中。 全世界具有生产成套石油钻机能力的国家不多,只有英国、俄罗斯、罗马尼亚、英国、挪威等国家。我国是发展中国家唯一能生产成套石油钻机的国家,且已具备年生产1000-9000米系列成套钻机120套左右能力。目前,生产成套石油钻机企业已发展到八家。其中,国企四家:宝鸡石油机械厂、南阳石油机械厂、江汉第四石油机械厂、胜利油田动力机厂;中外合资企业二家:兰石国民油井石油工程有限公司、上海三高石油设备有限公司;民营企业二家:成都瑜宏石化工程有限责任公司、川油广汉机械有限公司。2001年共生产销售石油钻机106台,无论在数量和质量上均是历来最好水平。 采油采气井口装置已是我国的成熟产品,单油管采油井口装置最高压力可达105mpa,双油管采油井口装置最高压力可达70mpa;机械采油设备已达到国际水平;生产适用于井筒直径51/2〃-7〃,温度为50℃-150℃,压力为10mpa及以上各种规格成套电动潜油泵;钩载60-120吨、修井深度为3600-7200米修井机;江汉石油钻头股份有限公司是亚洲最大的石油钻头生产企业,其能力为年产108个品种、23万只钻头。 国内制造的油气集输设备规格齐全、质量过硬,如流量为750-3000米3/时、扬程90-550米的ks型离心输油泵,pcl长输管线压缩机,800-1100mm口径、4-10mpa球阀,直径325-1420mm、壁厚6-16mm油气集输钢管生产能力达上百万吨,以及生产制造海洋油气集输单点系泊系统、浮式生产贮油船、穿梭油轮海底管道输送系统和加压设备等。 (2)石油化工设备制造业有了历史性突破 五十年来,我国石油炼制工业一直走自主发展的道路,因而,带动了炼油技术装备的发展。目前,已可以制造500万吨/年以上炼油厂成套设备、800万吨/年常减压蒸馏装置、200万吨/年以上重油催化裂化装置、150万吨/年加氢裂化装置、200万吨/年渣油加氢脱硫装置、100万吨/年延迟焦化装置等。一些高难度设备,如加氢裂化和加氢精制装置用的加氢反应器、高压换热器、高压空冷器;加氢和重整装置用的离心式循环氢压缩机、50及80吨活塞力的往复式新氢压缩机;催化裂化和延迟焦化装置用的主风机、富氧压缩机、高效旋风分离器、外取热器、烟机以及重要的流程泵等都能制造。 曾几何时,我国制造的小型化肥、中型化肥设备遍布全国各地,解决了当时对化肥的急需。这些化肥设备,由于其技术经济指标已落后,逐渐被大型化肥设备淘汰。以30万吨/年合成氨、52万吨/年尿素为代表的大型化肥装置的设备,包括关键设备:直径2.8米的快活素合成塔、co2汽提塔、原料气压缩机、氨压缩机、合成气压缩机、co2压缩机等都已研制成功。 因此,我国的石油和石油化工装备行业从满足国内市场为主,到走出国门、融入国际市场,进入发展新阶段的条件已经成熟,一定会大有可为。

② 哪些东西是利用"空气能被压缩"的性质做成

1.利用压缩空气作为动力传动
通常我们把以压缩空气为传递力能介质的机械称为风动机械,风动机械的类别很多,由于它们的工作环境和对象不同,所需用的压缩空气的也各有不同,现将我们在生产、生活中常用的一些(器具)及其所需的压力介绍如下。
①传统的风动工具,如凿岩机、风镐、气动扳手、气动喷砂等,压力一般在0.6一1.5MPa,
②仪表控制及自动化装置,如加工中心的刀具更换等,压力一般为0.6MPa,
③车辆制动,门窗启闭装置,压力一般为0.2 --0.6MPa,
④喷气织机中用压缩空气吹送纬纱以代替梭子,压力一般为0. 1 -0.2MPa,
⑤食品、制药工业,利用压缩空气搅拌浆液,压力一般为0.2一0.6MPa,
⑥大型船用柴油机的启动,压力一般为2.5一6.OMPa,
⑦风洞实验、地下通道换气、金属冶炼,压力一般为6.0-1OMPa
2.利用压缩空气体来制冷或制热
当今世界,人们在生活中已离不开空调设备,热了需要空调制冷降温,冷了需要空调制热升温,许多食品则需要在低温下制造和储存,这些温度的变化完全是靠压缩空气的变换来获得的,简单地说就是通过制冷剂在蒸发器(室内机)的蒸发吸收室内热量,在冷凝器(室外机)液化散热,这样就形成了循环制冷。制热的过程就是室内与室外。反过来,实际上,制冷与制热的原理是一样的,都是靠气体的压缩和膨胀而实现的,我们常用的氨和氟利昂压缩机的压力一般为0.8一1.2MPa。
3.利用压缩空气来实现气体的分离与合成
的气体分离技术目前已在工业生产‘I,得到广泛的应用,与我们的生活息息相关的氧气就是从空气中分离出来的,其分离方法主要有低温分离法和分子筛吸附分离法。这两种方法的生产过程都是靠压缩空气的变化而实现的,例如,分子筛吸附分离法的原理是利用氮气与氧气在不同压强、在同一吸附剂上被吸收的能力的不同,从而将氮气与氧气进行分离。同时,利用气体压力的变化,还可以实现某些气体的合成,例如,制备氢气合成气体的方法就是将液相甲醇和水放在一起,加悬浮催化剂后利用压力和温度的变化发生化学反应而获得的。在化学工业中,气体压缩至高压,常常利于合成及聚合,如氮氢合成氨、氢与二氧化碳合成甲醇、二氧化碳与氨合成尿素等。在石油行业中,可用人工方法把
氢加热、加压后与油反应,实现加氢精制。
4.利用压缩空气实现矿山并下通风
压缩空气在矿山井下的使用极其广泛,如采掘工作面的风镐、凿岩机、风动装岩机、混凝土喷射机,井口、井底使用的气动操车设备,地面使用的锻钎机、空气锤等,都是以压缩空气为动力源的。更重要的是矿井离地面较深,空气稀薄,再加上存有一定数量的煤气和瓦斯气,随时可能危害井下工作人员的生命,为此,矿井必须设置压风系统,向井下风动机具和工作面供给压缩空气。因此,在矿山作业中,压缩空气不仅是风动机械设备的动力源,更是保障作业人员安全的生命之源。
5.利用压缩空气实现管道运输
管道运输是物资在管道内借助高压气泵的压力,往目的地输送物资的运输方式。具有经济环保、安全方便和维护费用低的特点。其原理相当于自来水管道将水输送到各家各户。管道运输工具本身就是管道,是固定不动的,只是物资本身在管道内受压力的作用发生位移。

③ 井口采油采气装置生产厂家哪个更好(采油树、采气树)

江苏金石机械集团(金石集团)是中国最大的石油井口设备研发制造企业,是中国石油天然气集团公司、中国石油化工集团公司和中国海洋石油总公司供应网络单位,中国石油技术开发公司战略联盟合作伙伴,中国石油、石油化工设备工业协会十强企业。旗下有8家企业,总资产10亿元。

金石集团产品覆盖全国各大油田,市场占有率在全国同行业中保持领先地位。其中,在国内的高端市场占有率达50%以上,并出口欧洲、美洲、亚洲、非洲、澳洲5大洲等30多个国家,出口额占销售总额70%以上。

金石集团以科研、生产、销售为一体,建立了油气井口装备技术研发中心,主要生产井口采气树、节流压井管汇、泥浆气体分离器、系列平板阀、大口径球阀、防喷器等主导产品,均执行API标准。获5项国家级新产品和20多项国家专利,荣获国家高新技术企业。

金石集团主要生产高压油气井口装置、节流压井管汇、系列平板阀、大口径球阀、防喷器等系列井口装备,产品均执行API标准。“JMP”商标被认定为中国驰名商标,其产品覆盖全国各大油田,市场占有率在全国同行业中保持领先地位。其中,在国内的高端市场占有率达50%以上,并出口欧洲、美洲、亚洲、非洲、澳洲5大洲等30多个国家,出口额占销售总额70%以上。“JMP”牌井口装置及采油树设备连续多年被评为中国石油化工装备名牌产品、江苏省名牌产品和江苏省重点培育的出口名牌产品。

金石集团始终坚持质量是企业的生命,建立健全质量管理和质量保证体系,荣获中国石油石化名牌产品,获美国石油学会API Spec 6A、API Spec 16C、API Spec 6D、API Spec 5CT产品认证证书和ISO9001质量体系认证证书。

江苏金石机械集团 电话:(0517)86882911(办公室)/86893650(销售)
传真:(0517)86882912/86882903(销售)
电子邮箱:[email protected]

④ 井口装置的组成包括

气井井口装置是由套管头、油管头、采气树组成。
套管头的作用是悬挂套管上部的部分重量和把几层套管相互隔开;油管头的作用是用来悬挂井内的油管和密封油、套管之间的环形空间。采气树的作用是控制气井的开关,调节压力、流量以及用于气井压井、压裂、酸化等作业。

⑤ 石油钻井方法有哪些

目前,世界上广泛采用钻井方法来取得地下的石油和天然气。随着石油工业的不断发展,钻井深度不断增加,油气井的建设速度也随之加快,促使钻井方法、技术和工艺得到很大改进。从已钻成的千百万口油气井的资科中可以看到变化过程:顿钻逐渐被旋转钻代替,井身结构从复杂到简单,井眼直径日趋缩小等等。

一、钻井工艺发展概况和趋势石油钻井是油田勘探和开发的重要手段。一个国家石油工业的发展速度,常与它的钻井工作量及科学技术水平紧密相关。近20年来,世界石油产量和储量剧增,钻井工作量相应地大幅度增加,钻井科学技术水平也得到了飞速发展。在此期间钻井技术发展的特点是从经验钻井进展到科学化钻井。钻井深度、斜度、区域和地区也有长足的发展。从钻浅井、中深井发展到钻深井和超深井;从钻直井和一般斜井发展到钻大斜度井和丛式井;从陆上钻井发展到近海和深海钻井;从地面条件好的地区钻井发展到条件恶劣的地区(如沙漠、沼泽和寒冷地区)钻井。在钻井技术发展的同时,设备、工具和测量仪表也得到了相应的发展。

美国钻井工作者曾将旋转钻井技术的发展进程分为四个时期:

(1)概念时期(1900—1920年)。这个时期开始把钻井和洗井两个过程结合在一起,开始使用牙轮钻头并用水泥封固套管。

(2)发展时期(1920—1948年)。这个时期牙轮钻头有所改进,提高了进尺和使用寿命。固井工艺和钻井液有了进一步的发展,同时出现了大功率的钻机。

(3)科学化钻井时期(1948—1968年)。这个时期大力开展钻井科学研究工作,钻井技术飞速发展。该时期的主要技术成就有:发展和推广了喷射钻井技术;发展了镶齿、滑动、密封轴承钻头;应用低固相、无固相不分散体系钻井液;发展了地层压力检测技术、井控技术和固控技术,提出了平衡钻井的理论及方法。

(4)自动化钻井时期(1968年至今)。这个时期发展了自动化钻机和井口自动化工具。钻井参数自动测量和计算机在钻井工程中得到广泛应用,最优化钻井和全盘计划钻井也初具规模。

目前,钻井人员一般把钻井技术发展的前两个时期称为经验钻井阶段,把后两个时期称为科学化钻井阶段。时期的划分直观地描述了钻井技术发展的过程,揭示了其发展规律。

任何一门科学和技术都有其自身的发展规律和要达到的主要目标。钻井工作是为油田勘探和开发服务的重要手段。钻井技术的发展首先要保证钻井质量,即所钻油气井要满足油气田勘探和开发的要求,要在此基础上来提高钻井速度、缩短钻井周期、降低钻井成本。

近20年来的实践证明,现代钻井工艺技术将围绕以下三个方面发展:

(1)提高钻井速度,降低生产成本;(2)保护生产层,减少油气层的污染和损害;(3)改善固井、完井技术,适应采油要求,延长油气井寿命。

新中国成立以来,我国钻井技术发展较快。特别是1978年推广喷射钻井、低固相优质钻井液、四合一牙轮钻头等新技术后,我国的钻井技术水平又有显著提高,进入了科学化的钻井阶段,但与国外先进水平相比,还存在一定的差距。为了使我国的钻井水平能满足勘探开发的需要,努力赶上世界先进水平,必须要向钻井技术进步要速度、要质量、要经济效益,为加速勘探开发步伐、不断增加油气产量作出贡献。

二、冲击钻井方法冲击钻井是一种古老的钻井方法,也是旋转钻井方法出现以前唯一的钻油气井的方法。它是将破碎岩石的工具(钢质尖头钻头)提至一定高度,借钻头本身的重力冲向井底,击碎岩石。然后捞取被击碎的岩屑,以便继续钻进。因此,冲击钻井方法又被称为顿钻。

由于冲击钻井时,破碎岩屑与清除岩屑必须间断地进行,因此钻井速度很慢,不能满足石油生产发展的需要。冲击钻井现在已基本上被旋转钻井所代替,仅在一些埋藏浅、压力低的油田还能见到。

三、旋转钻井方法提高钻速的根本途径是改变钻井方法,这正是旋转钻井法产生的原因。旋转钻井法的实质是:钻头在压力作用下吃入岩石,同时在转动力矩的作用下连续不断地破碎岩石;被破碎的岩屑由地面输入的钻井液(泥浆、水、空气等)及时带走,钻井液可以连续不断地清除岩屑。这样,一只钻头可以在井底连续钻进十几米、几十米甚至数百米后才起至地面进行更换。由于使用了钻井液,可长时间稳定井眼、控制复杂地层。旋转钻井的钻井速度高,能适应多种复杂情况,目前世界上大多使用这种方法钻油气井。旋转钻井通常也称为转盘钻。

利用钻杆和钻铤(厚壁钢管)的重力对钻头加压,钻压要使钻头能够吃入岩石。破碎岩石所需的能量是从地面通过沉重的钢性钻柱传给钻头的。起、下钻的过程比较繁琐,必须将钻柱拆卸成许多立柱,才能起出钻头;而下钻时又必须逐根接上。为了连续洗井,钻井液从转动的空心钻柱里流向井底,再带着岩屑从钻柱外部与井壁形成的环形空间返回地面。钻头钻进、清洗井底以及起、下钻所需的动力全部由安装在地面上的相应设备提供,这些机器设备总称为钻机。

现代旋转钻井的工艺过程表现为四个环节,即钻进、获取地质资料、完井和安装。

钻进环节由一系列按严格的顺序重复的工序组成:把钻柱下入井里;旋转和送进钻头使其在井底破碎岩石,同时循环钻井液;随着井筒的加深而接长钻柱;起、下钻柱以更换被磨损的钻头;洗井,净化或配制钻井液,处理复杂情况和事故等辅助作业。

为了获得全面准确的地质资料,钻井过程中不仅需要进行岩屑、钻时、钻井液录井工作,而且还要进行钻取岩心、测井等工作。通过各种地球物理测井方法,可以获得井径、井斜、方位、岩性等基本数据,掌握和了解井眼质量以及地层和油气层的某些特性。

在钻穿油气层以后,需要下入油层套管,并注入水泥以隔离油气层与其他地层,使油气顺利地流到地面上来。根据油气井生产的要求做好井底完成工作是很重要的一道工序。

从确定井位开始,就需要平整井场、挖基础坑、泥浆池、圆井等土方工程;为运输机器设备而修筑公路;铺设油、水、气管线,架设电线,以输送油、水、气和电力;打好地基以安装设备、井架等。基础工作完成后,要进行大量的井架、设备等搬运和安装工作,还需做好开钻前的一切准备工作,如检查机器设备、试车、固定导管、钻鼠洞、调配钻井液、接好钻具等。

旋转钻井过程中,驱动钻柱旋转、克服钻柱与井壁的摩擦消耗了部分能量。为了减少这些无益的能量损失,1940年前后出现了井下动力钻井方法。井下动力钻井所用设备与旋转钻井基本相同,只是钻头不再由转盘带动旋转,而是由井下动力钻具直接驱动。典型的井下动力钻具是涡轮钻具,因此井下动力钻井又常称为涡轮钻井。目前,井下动力钻井在定向钻井技术中得到了广泛的应用。

近年来,一些工业发达国家还竞相开展了热力钻井、高压冲蚀钻井、等离子射流钻井和激光钻井等新型钻井方法的研究。随着科学技术的进步,新的钻井方法还将不断涌现,钻井工程也必将进入一个全新的科学化时期。

四、井身结构井身结构是油气井全部基本数据的总称。它包括以下数据:从开钻到完钻所用的钻头、钻柱尺寸和钻柱长度;套管的层次、直径;各层套管的下入深度、钢级和壁厚;各层套管注水泥的数据。由此可见,井身结构是全部钻井过程计划和施工的重要依据。图5-1为井身结构的示意图。

图5-1井身结构

首先下入长度约4~6m的短套管,也称导管,用于加固地表以免被钻井液冲毁,保护井口完整。同时将循环的钻井液导入泥浆净化系统内。

第二次下入的套管叫表层套管,用于封隔地表不稳定的疏松地层或水层、安装井口防喷器。一般深度为40~60m,有时可达500~600m。

当裸眼(未被套管隔离的井眼)长度超过2000~3000m或者地层剖面中存在高、低压油层、气层、水层和极不稳定的地层时,钻进过程中为避免发生工程事故需要下入中间套管,又叫技术套管。目的是封隔复杂地层,防止喷、漏、卡、塌等恶性事故发生,保证安全钻井。技术套管的层次和下入的深度根据地质和钻井条件确定。

最后下入的套管叫油层套管,用于采油、采气或者向生产层注水、注气,封隔油层、气层和水层,保证油气井正常生产。油层套管的下入深度取决于井底的完成方法。油层套管一般从井口下到生产层底部或者只从生产层顶部下到底部。实际工作中对部分下入的油层套管,根据作用取不同的名称,如尾管、筛管、滤管以及衬管等。

井身结构是由钻井方法、钻井目的、地质条件与钻井技术水平决定的。周密考虑各种影响因素,制定合理的井身结构,是保证高速度钻井与油气井投产后正常产出的关键。

综上所述,现代石油钻井工程是一项复杂的系统工程。由多工序、多工种联合作业,需要各种先进的科学技术和生产组织管理水平。

⑥ 井口控制盘工作原理是什么

MAXIMATOR井口控制盘在陆地沙漠高压、高产、高危油气井及海上平台油气井的安全生产上发挥着重要的作用,可有效的防止或减少油气井事故,防止或减少碳氢化合物对大气或周围环境的排放。无论是按照政府规定还是按照国内、外各油田安全生产的规章要求,油田井口安全控制系统是油田安全生产、运输不可缺少的主要控制系统之一。

井口控制盘由液压部分、机械部分、电气部分组成。液压部分为井口安全阀提供压力源,电气部分为整个系统提供动力源。井口安全控制系统共控制2个安全阀,分别为地面安全阀(SSV)和井下安全阀(SCSSV)。地面安全阀触动器控制压力为5,000psi,井下安全阀触动器控制压力为10,000psi,而且还能定制,模式比较灵活。

功能

1、具有打开、关闭安全阀的功能;(打开或关闭)

2、具有井口火灾紧急关井保护功能;(易熔塞防火)

3、具有本地ESD关断保护功能;(本地ESD功能)

4、具有生产管线压力异常,压力超高、超低自动关井保护功能;(机械式高低压传感器或电子式压力变送器、压力开关)

5、具有远程ESD功能;主控室DCS系统紧急关井保护(远程ESD,RTU远程检测和控制功能);

6、现场天然气浓度危险超标,自动报警并紧急关井保护。

7、井口高含沙保护;

8、井口腐蚀与检测系统。

⑦ 井口装置和采油树的设计参数是多少

其实,井口装置包括了采油树。参数主要是工作压力。这要根据井口的压力来确定。一回般常用的有150型井口装置答、250型井口装置、350型井口装置。如果油井搞压裂、酸化等大型措施,还需要安装千型井口装置。井口配备的所有附件应和井口装置的工作压力相匹配。

⑧ 回灌井回灌系统装置

完善配套的地面设施、合理的工艺设备可有效防止各种堵塞,确保回灌的正常操作运行。由于储层性质和流体特点,不同热储层应采取相应的地面水质处理配套设施。应根据水质的化验结果而优化制定,选择对预处理水质最有针对性的方法:既要保证回灌水质符合要求,又要防止过度处理以增加不必要的投资。为防止物理堵塞,在回灌系统中应设置三级过滤装置(一级旋流式除砂器、二级粗效过滤和三级精密过滤)、反冲洗系统、排气装置、加压装置及氮气保护装置等装备。在连接方式上,主要考虑各自的功能以串接为最佳方式,具体工艺过程见图4-31。

图4-31 典型地热回灌过滤系统工艺流程图

1.回灌井过滤系统

地热供暖系统长年运行,管道不可能经常更换,由于管路内的老化、锈蚀,会使流经的地热流体质量受到不同程度的影响,因此需对回灌水进行净化过滤处理,去除掉回灌水源中的悬浮固相物质和滋生的细菌,降低水源质量不佳对回灌效果的不良影响。

基岩储层稳定性较好,岩石致密坚硬,流体水质较好,回灌效果普遍好于孔隙型储层。基岩回灌地面工艺配套设施重点在于除砂过滤。为不增加额外投资,可根据地热流体质量的具体情况,在回灌水源经除砂处理后,在地面净化措施上可考虑增设精度不大于50μm的管道过滤或其他过滤装置,达到能将管道及系统中残留的相对直径较大的颗粒过滤掉的目的。粗过滤器一般选择采用袋式或棒式滤料,虽然过滤效果较烧结式要差,但安装方便,又可反复清洗重复使用,使用寿命长,价格也相对较低。

孔隙型热储层由于渗透率小、岩石粒径细,滤水管网容易被细微颗粒或细菌堵塞,因此要求同时安装精、粗两级过滤装置。粗效过滤器精度应在50~80μm之间,承担过滤管道及系统中残留的相对直径较大的颗粒任务,并在一定程度上减轻精密过滤器的工作负担,降低反冲洗次数,延长滤料使用寿命;精密过滤器精度应达到3~5μm,采用精度较高过滤效果更好的第三代缠绕棒式滤芯,不仅要滤掉大部分悬浮颗粒,有效防止回灌时井内的物理堵塞,还可以有效地拦截或吸附一部分微生物,防止细菌堵塞。

地热回灌系统过滤装置由单个或数个过滤罐组成,通常是多组滤棒组装在一起,能增加过滤量,以保证过滤效果。精度相同的多个过滤罐一般采用并联方式连接,并有并联备用过滤罐,便于其中某个过滤器的反冲洗或维修。单体罐过滤量大小依所需过滤的回灌水量而确定。每个过滤罐应配有精确度等级达到1.0级的差压变送器或在罐体进、出水两端分别配备精度为0.01MPa的表盘式压力监测仪表,可根据罐体两端压力的变化情况来辨别过滤器的工作状态,并决定更换或清洗滤料的时间,以保证过滤效果。如果压差增大,表明有微小颗粒滞留在滤料上,使得滤料的缝隙变小,应及时通过反冲恢复初始工作压力。选择滤芯材料应满足系统所需精度及效果,同时要考虑耐温和耐压。如地热流体经板式换热器后,回水温度在50℃左右,为保证滤料使用寿命,要求滤料耐温应在60℃左右,如果循环水温度较高,滤料耐温范围也要相应增大,要求滤芯材料耐温性能高于地热流体最高温度;其次是耐压,由于在回灌运行时系统通常要承受一定的压力,因此要求过滤器外壳承受压力应高于系统最大工作压力。

2.反冲洗系统

由于过滤系统在长时间工作中,管道及设备中的矿物沉渣、微生物等随流体经过过滤器时将会驻留在过滤袋或过滤棒中。为保证过滤质量和降低泵耗,需要定期、定时对过滤系统进行反冲洗。用于判断是否需要反冲洗的方法通常是监测过滤器两端的压力变化,通常两端压差在0.2~0.3mH2O,或当压力超出近0.5mH2O时,应该考虑启动反冲洗程序。反冲洗系统设计方案通常有两种:

其一是单独建立反冲洗系统,即需要配置反冲洗水箱、反冲泵及相关阀门和管道。优点是系统和操作简单,当配置两台过滤器时,可不影响回灌的正常运行。但是由于需要单独配置反冲洗水箱,需要增加设备投资和在机房的占地面积,定期监测和清洗储水装置同样增加了设备维护的工作量。

第二种方法是设计自循环反冲洗系统。该系统优点是可随时利用某一过滤器过滤后的清洁水为另一过滤器进行反冲洗,避免单独配置反冲洗水箱设备、对储水装置水质的监测,节约设备投资和部分设备间的空间。同时,反冲洗系统还可以采用自动控制系统,利用电磁阀常开和常闭的特点,通过监测过滤器两端的压力变化,控制电磁阀的开启和关闭,冲洗过滤装置。该方法提高过滤效果,降低能耗,节约了人工,可以保证过滤装置始终工作在过滤的最佳状态。不足之处是反冲洗系统是自循环系统,首先不适宜采用单台过滤器,当回灌量较小时,增加过滤装置的台数,反而加大设备的投资;其次,多台过滤器运行,也会增加压力损失,加大运行成本;另外,在循环系统中需要设计独立的反冲洗管路和控制阀门等。

比较以上两种设计方法,地热回灌中采用第二种方法更为普遍。主要原因是节省设备间的空间,避免对反冲洗水质的监测和水箱的定期清洗。只要在设计和施工上保证系统运行可靠,操作方便,该系统可靠性和反冲洗效果均较好。

3.地热回灌系统排气装置

地热流体本身挟带大量气泡,换热后的循环尾水流经管道并经过过滤后,流速、压力、温度、化学特性等均会发生一系列变化,可能会有一部分地热流体中的原始气体或经由某种反应(如硝化反应)新产生的气体释放出来,或者残留一部分不饱和气体如甲烷、二氧化碳等,这些释放出来的气体、气泡团会随回灌流体一同注入。当地热流体在管道内流动时,由于管径阻力和流动状态的变化,水动力流场状态会发生变化,不饱和气体会从流体中析出并生成气泡,当驻留和堆积在岩石空隙中会产生气堵。当循环尾水进入过滤器罐体,管径的变化使其流速迅速降低,压力下降,气泡内的压力和罐内压力形成压差,并使得气泡爆裂,将气体释放出来。同时在注入初期,回灌流体会将泵管、井管内或泵管与井管的环状间隙内的气体压入储层,在回灌通道转折边缘停滞,挤占流体通道形成气体堵塞造成灌量衰减。因此在采、灌系统中要增设排气装置,便于释放回灌过程中因温度、压力变化产生的气体和流体中的不凝气团,防止流体性质发生变化后生成的气泡随回灌水源进入回灌系统,产生气相阻塞,影响回灌效果。为了确保气体的有效释放,排气装置应安装在过滤器之后、加压泵和回灌井口之前,用以在回灌流体进入回灌井之前排除流体中的多余气体。

具体是否有必要安装排气罐和该设备的规模、容量,应根据该回灌流体中气体样分析检测报告中气体所含具体组分和含量的多少而确定。在考虑安装排气设施时需要注意两点,其一是应在罐体顶部要设置自动排气阀,排气点处的高度应高于系统主管道及其他设备装置的最高点,利于系统中气体浓度聚集到一定程度时,自动将气体及时释放到罐体外,降低罐体内的压力,保证安全;其二注意如果地热流体中含气体容量较高时,要采用连接排气风道方式将已释放出的气体排出设备间,以防中毒和引发火灾。

4.地热回灌加压装置

天津市多处地热回灌系统在实际运行中,均出现了回灌井内压力过高、水位迅速上升现象,尤其是孔隙型热储层中或一些成井时间较早的地热井,在回灌运行的初期这种现象比较明显,这时就有必要采用加压方式以提高回灌量。因此在地热回灌系统中应设置加压装置,以便不具备自重回灌条件或在自然回灌条件下回灌困难、效果不理想时,启动加压泵设施采用加压方式进行回灌。

加压回灌管路系统是在自然回灌管路装置基础上,将井管密封,利用水泵压力进行回灌。加压回灌与自然回灌管路共同点是抽水管路不用控制阀门,排水及回扬管路完全一致。自然回灌适宜采用从泵管内进水方式,压力回灌因井管密封,既可以从泵管内进水,也可以用回流管从泵管外回灌。

压力回灌适用于回灌井内流体水位高、透水性差的热储层和滤网强度较大的地热深井,主要是针对新近系孔隙型热储层的回灌系统。加压泵应设置在过滤装置、排气装置之后,可选用变频立式管道离心泵,规格、型号依据回灌量和回灌压力确定。

压力回灌时系统有压力存在,要放气,因此在管路上应为加压泵专门配置放气阀和压力表等装置。实际回灌运行启动时待回灌水从放气阀溢出,使系统管路中的空气彻底排出后,再关紧封固放气阀。采用压力回灌时,回灌量和压力要由小到大逐步调节,避免造成井下滤层破坏,同时了解回灌系统的最大承载压力,不能盲目加压,否则将致使系统压力过大而损坏地热井井管和井口装置,造成不可估量的损失。

5.地热回灌系统管网材质要求

由于地热流体温度较高和普遍存在一定的腐蚀性,如果回灌运行管路采用普通金属管材,直供钢制管道,当地热流体流经铁制管道和终端设备后,排放口处尾水中铁离子的含量要大大高于地热生产井出口处的含铁量,并发现铁嗜菌;当工作系统处于开口状态时,系统腐蚀更为严重。表4-13是天津市DL-25孔隙型地热井回灌系统主要利用系统出水口水质监测跟踪资料,数据显示敞开式排水口比地热井出水口地热流体的铁离子要高出许多,说明采用金属管网对流体铁离子影响非常大。因此为有效防止腐蚀和物理、生物堵塞,回灌系统中所有输送管道、系统循环管网和回灌水管等应首选非金属管材(玻璃钢管材或PP-R管材)、镀锌钢管、不锈钢钢管,同时还要定期对所采用的管材进行严格的防腐处理。

表4-13 DL-25井供热系统各出口端水质测试结果

地热回灌地面工程系统采用的管材和管件,应综合考虑其工作压力和温度,地面输送管路管径由地热井井管及流体输送量确定,一般不宜小于φ150mm。具体选材时除综合考虑耐腐蚀和安装连接方便可靠外,还应根据输送流体的水温、水质确定,对温度不高于50℃、拉伸指数(LI)不大于10的地热流体,可选用玻璃钢管、碳钢管材、聚乙烯管或不锈钢钢管;对温度高于50℃、拉申指数(LI)大于10的地热流体,应选用无缝石油钢管或碳钢管材。

6.地热回灌系统密封要求

地热回灌系统应是一个完整的严格密闭系统,主要体现在以下几个方面:

1)在回灌运行时整个系统应始终保持正压,减少空气在地热流体输送中的渗入,严防空气渗入造成管材的氧化腐蚀,并且所有管材都必须具备良好的防腐性能和密封性能。

2)回灌井的井口装置部分应严格进行密闭处理,回灌水管、水位测管、阀门等所有接口的连接方式均应采用法兰式严格密封。尤其是人工动态监测的回灌系统,其出露在井口上的水位测孔不能是敞口直通形式,要设置有专用开关,且不得长时间处于开启状态。

3)在地热井井口安装隔氧保护设施,如设置具自动压力调节控制系统的氮气保护装置,将井内水位液面以上的井管部分自动充满惰性保护气体,始终保持井内压力略高于大气压力,阻止空气渗入到井内,隔绝空气与地热流体的直接接触,这样既能防止产生井管腐蚀,又能避免由于氧化反应所产生的新的氧化物沉淀。

4)回灌水管应保证始终浸入回灌井内流体液面以下。

由于井管回灌容易造成气堵而影响回灌效果,基岩裂隙型热储层地热回灌系统中,不宜采取井管回灌的方式,而且回灌井内不允许下置潜水电泵进行泵管回灌,应通过专用回灌水管将回灌流体从管内注入回灌井内,回灌水管下入回灌井内流体液面以下5~10m,这样能在一定程度上使整个管路形成某种意义的真空密封状态和密闭路径,减少空气渗入输送管路,实现自重密封回灌。新近系孔隙型热储层进行回灌时原则上应与基岩裂隙型热储层回灌系统一致,通过浸入液面以下的回灌水管实现自重回灌。鉴于目前新近系孔隙型热储层回灌时普遍出现回灌困难,需要不定期进行回扬,因此,回灌水管下入流体液位以下的深度应加大,浸入深度应不小于该井水位埋深的2倍,以备必要时的空压机气举回扬洗井之用;或在回灌井内下置潜水电机和泵管,下入深度大于最大动水位5~10m,潜水电机可进行抽水回扬洗井,泵管在作回扬管的同时也兼作回灌水管。

回灌井应设置专用的回扬输水旁管,并需配置专门流量计(表)。

⑨ KZDB、XD-DB型交流变频电驱动顶驱式岩心钻机

KZ30DB、XD-35DB型交流变频电驱动顶驱式岩心钻机,由中国地质装备总公司和汶川科学钻探工程中心、核工业地质局等单位合作研制,是一种具有我国自主知识产权的新型电动顶驱式岩心钻机。钻探施工能力N口径分别为5000m、3500m。该钻机由工业电网提供动力源,采用模块化交流变频电驱动单元作为提升、回转、送钻、打捞等执行系统,采用全转矩控制、全机械化作业、全数字化操作的工作模式,融合机、电、液、气、电子及信息化技术为一体,服务于孔深3500m的矿产勘探及能源钻采深部钻探作业。

(一)钻机系统设计

1)采用重载K型钻塔,承载1350kN,导轨行程25m,实现18m立根钻进。

2)顶部驱动钻井系统直接在井架上部驱动钻柱,并沿井架内导轨上下移动,通过交流变频绞车实现减压钻进功能,完成回转钻进、钻井液循环、接立根/单根、上卸扣、倒划眼等操作。

3)采用以AC-VFD-AC交流变频方式驱动钻机主要执行部件(绞车、顶驱、绳索卷扬、转盘)的电机。实现顶驱、绞车等部件全程无级调速,取消机械换挡,传动简单、可靠。

4)采用全数字化交流变频控制技术,通过电传系统PLC、触摸屏和气、电、液及仪表参数一体化设计,实现顶驱、绞车、绳索卷扬、转盘等部件的智能化控制,并可实现远程钻进参数的监控。

(二)钻机主要结构

钻机主要结构部件包括K135钻塔、2.0钻井平台、电驱顶驱系统、电驱主绞车(含盘刹)、电驱绳索绞车(含盘刹)、电控系统、司钻房、井口自动化装置、泥浆泵及固控装置等。

1.钻塔、平台

采用K型钻塔,钻塔净空高度31m,最大钩载1350kN(5×6游车绳系),平台高度2.0m,立根盒容量4000m。钻塔结构如图2-14所示。

图2-14 K型钻塔结构示意图

2.顶驱系统

直驱电驱动高速顶驱作为核心部件(图2-15),具备回转、泥浆循环、加接单根、起下立根、拧卸丝扣等功能。该顶驱获国家发明专利,专利号:ZL201310367876.4。机械部分包括以下3部分:

图2-15 顶驱结构

1)托架-滑车总成,由托架与多组滚子组成。确保顶驱沿着导轨高速运动或者慢速给进的运动限制及抗扭功能。

2)电机-水龙头总成,由变频电机组件与水龙头组件组成。

3)自动摆管装置,由提吊侧摆机构与背钳拧卸机构组成。侧摆机构负责从平台拾取钻杆单根,或从二层台抓取立根;背钳拧卸机构负责单根钻杆或钻杆立根与顶驱主轴之间的丝扣拧卸。

3.主绞车

主绞车采用300kW交流变频电机,通过减速机、卷筒离合器输出扭矩与速度到卷筒,再通过天车、游车实现对顶驱的提升与下放;主卷筒通过电机编码器、制动单元实现能耗制动及零速悬停,通过液压盘刹实现安全制动;通过卷筒编码器可以精确测定顶驱系统在钻塔净空内的运行位置;通过过卷防碰、井架防碰实现对卷筒的安全制动。主绞车结构如图2-16所示。

图2-16 主绞车结构示意图

送钻装置包含:送钻变频电机通过大速比送钻减速机、送钻离合器、减速机、卷筒离合器输出扭矩与转速给主绞车卷筒。

主绞车具有以下特点:

1)传动方式:交流变频电驱动,气胎离合。

2)控制方式:闭环控制,可实现零位悬停。

3)安全模式:过卷防碰,井架钢丝绳防碰,电子防碰。

4)刹车模式:主刹车为液压盘刹,辅助刹车能耗制动。

5)制动形式:驻车制动、工作制动、紧急制动(失电)。

6)送钻控制:小功率变频电机实现自动送钻,可实现3000N调压精度。

7)控制显示:气源、润滑油压力、游车位置与游车速度的显示与报警。

8)互锁功能:主电机与送钻电机启动互锁。

4.绳索取心绞车

绳索取心绞车(图2-17)最大拉力:25000N;最高绳速:200m/min;钢丝绳直径:8mm;容绳量:4000m。该型绞车获国家发明专利,专利号:ZL201310368723.2,其设计特点及功能优势如下。

图2-17 绳索取心绞车

(1)设计特点

1)传动方式:交流变频电驱动,电磁离合器;

2)控制方式:闭环控制,可实现零位悬停;

3)刹车模式:主刹为液压盘刹,辅刹为能耗制动;

4)排列方式:自动排绳、自动换向;

5)控制显示:可检测绳长、绳速、张力。

(2)功能优势

1)具有电磁离合,可实现无动力自由下放;

2)具有液压盘刹,可实现安全制动;

3)具有排绳、张力、绳长等装置,提高打捞成功率。

5.电控系统(AC-VF-AC)

电控系统由动力部分、变频驱动部分以及各执行单元三部分组成。动力装置为网电变压器或柴油发电机组;变频驱动装置为VFD房(Variable-frequency Drive),包含顶驱电机、绞车电机、送钻电机、绳索绞车电机、转盘电机的变频器以及综合控制装置(包含可编程逻辑控制器PLC);执行单元包含各部件的变频电机、传感器、编码器、动力电缆及控制电缆。控制系统布局图如图2-18所示。

6.钻机操作间

钻机操作间是整个钻井现场的“司令部”,如图2-19所示。主要组成部分为电气控制部分和数字化操控界面。除此之外,包含现场多点视频监控、独立检测系统、现场通信装置等。

操作间实现了集中、智能、舒适、安全操控的功能。电气控制部分(元件面板)完成回转、升降转速、扭矩设定,加杆、拧卸、刹车等启停及作业流程;数字化界面包括触摸屏、显示屏等,其功能是在各个人机界面中显示工艺参数及设备运行参数并可进行设定。

7.工作室

除操作间的人机操作界面外,还配有远程监控工作室,设置了钻进参数工控机,可实时监视钻机各个部件的运行状态及主要的钻进工艺参数,包括钻进界面、网络布局、装置布局、趋势图、操作记录、数据记录等,不仅可以实时记录设备运行参数、工艺参数、操作记录等,而且可以存储备份并远程传输。

图2-18 电控系统布局图

图2-19 钻机操作间

8.辅助装置

为配合顶驱取心钻进工艺和单吊卡作业的完整流程,配备了液压吊卡、动力钳、气动卡盘三个机械化井口作业专用辅助装置,以提高作业效率、降低人工劳动强度。

1)液压吊卡(图2-20):用于提吊大直径绳索取心钻杆加接单根、立根,协助起下钻作业,可实现自动开合、自动插销、自动锁紧。该吊卡获国家发明专利,专利号:ZL201310367854.9;

2)动力钳:用于大直径大扭矩绳索钻杆自动拧卸的动力装置;

3)气动卡盘:用于孔口自动夹持大吨位大直径绳索钻杆的装置(图2-21)。

图2-20 液压吊卡

图2-21 气动卡盘

(三)钻机主要技术参数

KZ30DB、XD-35DB型电动顶驱钻机主要技术参数见表2-8。

表2-8 KZ30DB、XD-35DB型电动顶驱钻机主要技术参数

续表

(四)钻机应用实例

XD35DB型钻机,于2012年8月~2013年5月,在江西崇仁相山大型铀矿田为“中国铀矿地质第一科学深钻”提供装备支撑,实现全孔连续取心2818.88m,终孔口径Ф122mm;创造了国内S114大口径绳索取心钻深纪录。

自2012年7月起,KZ30DB型钻机用于设计孔深3350m的四川绵阳汶川科学钻探四号孔(WFSD-4)施工,采用电驱动转盘钻进工艺。

⑩ 苏州道森钻采设备股份有限公司的公司简介

创建于2001年,拥有锻造车间、热处理车间、机加工车间、总装车间,安装了各类大型CNC加工中心、数控机床、油漆流水线和检测仪器等先进设备,已发展成为集研发、生产、销售和服务为一体的现代化石油天然气进口井口设备和石油化工阀门制造商,为国内外石油、天然气、化工、电力、核电等领域,生产和提供各种石油天然气钻采井口设备、井控装置、管汇;石油化工阀门、电站阀门和其他工业阀门等产品、代加工和服务。在国内外设有多个销售分支机构,产品远销美国、西班牙、英国、澳大利亚、加拿大、新加坡等国家和地区。
道森在产品设计上采用API、ANSI、ASME、MSS、BS、DIN和GB等标准,规格从1/2英寸至36英寸,压力从150磅至15000磅。材料包括WCB、WC6、WC9、LCB、LCC、 CF8(304)、CF8M(316) 、CF3(304L) 、CF3M(316l) 、CN7M(20#合金) 、A105、1020、1040、410、 4130、4140、17-4PH、因科镍尔合金、钛合金和蒙乃尔合金等。

阅读全文

与井口自动化装置相关的资料

热点内容
机械设计工作室怎么开 浏览:281
自动化高度检测装置 浏览:11
怎么建造机械车迷你 浏览:649
实验室制乙酸乙酯装置改装 浏览:757
仪表盘三个圈是什么 浏览:873
法兰阀门链接需要什么附件 浏览:743
矿山机械企业有哪些 浏览:795
别克gl8工具箱图片 浏览:47
梁发记机床怎么样 浏览:517
铜球阀门是什么东西 浏览:456
crv仪表盘出现扳手还能开多少公里 浏览:695
机械硬盘和固态硬盘的结构区别是什么意思 浏览:134
电信设备租赁费的税率是多少 浏览:159
机器的哪些部位容易造成机械伤害 浏览:489
蘑菇发酵隧道设备多少钱 浏览:612
北京高压平板膜片测试设备哪里有 浏览:427
皇冠仪表盘如何调 浏览:808
发动机曲轴主轴承润滑方式为什么 浏览:795
楼道暖气管子阀门坏了归谁管 浏览:422
现代车仪表灯有多少种 浏览:628