导航:首页 > 装置知识 > 装载机装载装置机构设计计算

装载机装载装置机构设计计算

发布时间:2023-02-10 10:02:34

㈠ 装载机工作装置的设计为什么要用试凑法

用试凑法,攻击者可以检查 XML 文档的各个子节点并通过查看这个 XPath表达式是否能促成成功的身份验证以收集信息。

㈡ 跪求装载机工作装置设计计算说明书,急!急!

我有徐工原厂转载机挂图

㈢ 装载机崛起力怎么计算

装载机崛起力计算方法如下:
1、主动作用力是液压缸推动机构运动时的作用力,其最大值取决于液压系统的工作压力和液压缸直径。
2、被动作用力是作业时外阻力作用于闭锁状态的液压缸上的作用力,其最大值取决于液压系统的过载阀调定压力值和液压缸直径。如提升臂不动,利用铲斗液压缸上翻铲斗进行铲掘作业时,铲斗液压缸所产生的作用力为主动作用力,提升液压缸所承受的作用力为被动作用力。

㈣ 装载机的工作装置

装载机的铲掘和装卸物料作业是通过其工作装置的运动来实现的。装载机工作装置由铲斗1、动臂2、连杆3、摇臂4和转斗油缸5、动臂油缸6等组成。整个工作装置铰接在车架7上。铲斗通过连杆和摇臂与转斗油缸铰接,用以装卸物料。动臂与车架、动臂油缸铰接,用以升降铲斗。铲斗的翻转和动臂的升降采用液压操纵。
装载机作业时工作装置应能保证:当转斗油缸闭锁、动臂油缸举升或降落时,连杆机构使铲斗上下平动或接近平动,以免铲斗倾斜而撒落物料;当动臂处于任何位置、铲斗绕动臂铰点转动进行卸料时,铲斗倾斜角不小于45°,卸料后动臂下降时又能使铲斗自动放平。
综合国内外装载机工作装置的结构型式,主要有七种类型,即按连杆机构的构件数不同,分为三杆式、四杆式、五杆式、六杆式和八杆式等;按输入和输出杆的转向是否相同又分为正转和反转连杆机构等。
土方工程用装载机铲斗结构,其斗体常用低碳、耐磨、高强度钢板焊接制成,切削刃采用耐磨的中锰合金钢材料,侧切削刃和加强角板都用高强度耐磨钢材料制成。
铲斗切削刀的形状分为四种。齿形的选择应考虑插入阻力、耐磨性和易于更换等因素。齿形分尖齿和钝齿,轮胎式装载机多采用尖形齿,而履带式装开机多采用钝形齿。斗齿数目视斗宽而定,斗齿距一般为150-300mm。斗齿结构分整体式和分体式两种,中小型装载机多采用整体式,而大型装载机由于作业条件差、斗齿磨损严重,常采用分体式。分体式斗齿分为基本齿2和齿尖1两部分,磨损后只需要更换齿尖。
装载机特殊工作装置
1. 加大斗
在标准机型配置的基础上,加大铲斗容量,以提高工作效率,以满足比重较轻物料的铲装,如:煤炭等。
2. 岩石王
主要针对装卸岩石工况,铲斗的斗臂板、支撑板斗进行了加强,并配备了高耐磨的副刀板、高耐磨精铸斗齿,从而提高了整个铲斗的使用寿命。
3. 高卸黑金王
满足货车日益增高的围栏高度,对于煤炭等比重较低的物料,即可满足高卸载,又可满足大装载量,大大提高工作效率。
4. 侧卸斗
针对场地狭小特别是隧道作业工况的工作装置,铲斗可单向侧翻,在隧道作业中可有效降低驾驶员的劳动强度。
5. 夹木叉
主要用于林场及港口进行物料的搬运和装卸。
6. 快换装置
主要针对工作场地中存在多种物料需要装卸的工作环境,驾驶员坐在驾驶室内即可对工作装置进行快速更换,使用方便、作业效率高,可更换的工作装置有:铲斗、夹木叉等。
7. 抓草斗
主要应用于植物秸秆等抓取,具有开口大、压实紧、抓草效率高等特点。
8. 全自动滤清器排尘机
1. 防止“风枪”吹滤清器导致粉尘回流,而进入发动机,成为缸体早期磨损的隐患。
2. 省发动机维修费;因清理频繁,保证了滤清器的通透性,可以缩小滤清器的过滤孔径,挡住了更多粉尘,提高了发动机的进气纯度,延长发动机使用寿命,可达20%以上。
3. 省滤芯更换费;因工作频繁,粉尘总量保有率下降,可延长滤清器的使用寿命,节省滤清器80%,延长滤清器保养时间2-3倍,节省滤清器维护费用80%。
4. 省燃油费;有效降低进气阻力,保证发动机在高转速时的混合比,增加发动机输出功率,节省燃油3%-5%。
5. 省人工费;不必拆装,即可对滤清器进行自动清理,从而减轻了使用者的劳动强度。

㈤ 求装载机工作装置的设计流程,铲斗,动臂,摇臂,连杆,动臂油缸,转斗油缸等需要的参数和公式。急

这个应该是每个厂家的技术秘密吧

㈥ 关于ZL40装载机的铲斗的参数计算

轮式装载机工作装置设计中,要对其各个部件的强度进行计算,方法很多,算出的结果也很精确,但如果外载荷选择不当,计算将是没有用的。本文对轮式装载机工作装置计算工况,计算载荷进行讨论,提出外载荷的求解方法。

1 计算位置和计算工况的确定
装载机工作装置强度计算中,应选择工作装置受力最大的位置为计算位置。分析装载机铲掘、运输,提升及卸载等作业过程,以装载机在水平面上铲掘物料时,工作装置受力最大。因此对工作装置强度计算应取装载机在水平面上作业,铲斗斗底与地面水平时为计算位置。
装载机工作装置计算工况,文献〔1〕、〔2〕中介绍了六种工况:①对称水平受力工况;②对称垂直受力后轮离地工况;③对称水平与垂直同时作用后轮离地工况;④水平受力偏载工况;⑤垂直受力偏载后轮离地工况;⑥水平偏载与垂直偏载后轮离地工况。对于④、⑤、⑥三种工况,由于偏载程度至今尚未研究清楚,若取极限位置进行强度计算,动臂板高应力区都达到了材料的屈服极限,这与实际测量数据出入较大,看来极限偏载工况的假设不尽合理,我们只讨论①、②、③种工况。根据对ZL30装载机工作装置进行强度分析,①、②种工况的应力大大小于第③种工况的应力,所以我们选工况③为计算工况。工况③是受垂直载荷和水平载荷作用后轮离地工况,由于目前载机设计中,转斗掘起力远远大于动臂掘起力,我们认为第③种工况是转斗缸掘起使后轮离地,当装载机继续铲装时,铲斗与动臂下铰点没有着地,动臂是个悬梁。我们取此工况为工作装置中动臂的计算工况,并把此工况作为工况A。另一种铲掘工况是铲斗与动臂的下铰点离地高度很小,在转斗作业时有可能接地成为一个支点,致使装载机的纵向稳定性增加,这种情况转斗缸力达到最大值,铲斗、拉杆、摇臂受力最大,我们把此工况作为B工况,为铲斗、拉杆、摇臂、销轴的计算工况。

2 外载荷的确定
外载荷的确定在强度计算中是非常重要的。对于工况A中垂直载荷的计算方法,我们的观点与文献〔1〕、〔2〕、〔3〕一致,即按静态倾翻载荷确定垂直力。对水平力计算,文献〔1〕、〔2〕没有给出具体计算方法,文献〔3〕中没有考虑系统油压的影响。目前有两种方法,一是不考虑系统压力对水平力的影响,取装载机最大插入力,此时力偏大;一是扣除系统最高压力时,发动机传到驱动轮上牵引力,此时力偏小。我认为水平力的计算,应扣除在这种工况下实际工作压力时发动机传到驱动轮上的牵引力。对于工况B中的载荷计算方法目前还没有资料报道。
2.1 载荷作用点的确定
铲斗承受的水平载荷Rx水平作用在斗刃的中间。根据GB10400-89掘起力定义,垂直载荷Rz作用在距斗刃100mm的中间,见图1。

图1 外载荷作用点

2.2 工况A载荷的确定
2.2.1 垂直载荷Rz的计算
由图1知

式中:Gs——装载机整机重量;
LA——装载机重心到前轮中心距离;
LB——R2作用点到前轮中心距离。
2.2.2 水平载荷Rx的计算
2.2.2.1 连杆机构的几何关系
(1)斗四杆机构见图2,经过推导有以下关系式

图2 斗四杆机构

(1)
(2)
(3)
α4=α2-α3 (4)
α5=180°-α1-α2 (5)
(6)
α7=α6-α5 (7)
L4=R0.sinα4 (8)
L5=LO1.sinα3 (9)

(2)斗油缸四杆机构见图3,经推导有以下关系式

图3 斗油缸四杆机构

(10)
(11)
(12)
α12=α10-α11 (13)
L6=R5.sinα12 (14)

2.2.2.2 水平载荷Rx的计算见图4

图4 工作装置机构简图

(15)

式中:PT——转斗缸推力;
L1,L2,L3——结构参数;
L4,L5,L6——通过(1)~(4)式求得。

(工作装置是单转斗缸) (16)
(工作装置是双转斗缸) (17)

式中:p——工作压力;
D——转斗缸直径。
式(15)中有两个未知数PT,RX,但我们可以通过总体计算,导出RX和工作压力的关系式:
MB=F1(p) (18)
RX=F2(MB) (19)
即 RX=F(p) (20)

式中:MB——工作泵消耗的扭矩(图5)。

图5 工作泵消耗扭矩

可以通过逐次求出RX的精确值。首先将RX=0代入(15)式求出PT,通过(16),(17)式求出p,再由(20)式求出RX。然后再把RX值代入(15)式重复上述计算,这样经过多次计算,当两次RX值接近时,认为此时RX值为精确值,我们用此法对ZL30装载机工作装置外载荷进行计算,RX=65559N,而不考虑油压时RX=92567N,按系统最大压力时RX=48211N,显然这几种计算方法相差较大,最大与最小的值相差一倍多,所以我们认为按我们以上介绍的方法计算是确切的。
2.3 工况B载荷的确定见图6

图6 垂直载荷计算简图

工况B载荷RZ的确定,应按以动臂下铰点处为支承点,后轮离地时计算得出的RZ和按转斗缸最大工作压力时计算得到的RZ中取其中较小值。
由稳定性确定的载荷RZ:

(21)

由转斗缸最大工作压力确定的载荷RZ:

(22)

式中:D——转斗缸直径(如是双缸再乘以2);
p——转斗缸最大工作压力。

3 结论
(1)装载机工作装置静强度计算的载荷工况:对于动臂取水平载荷和垂直载荷同时作用后轮离地工况,铲斗、摇臂、拉杆、销轴取以动臂前端为支承点掘起工况。
(2)动臂计算工况中,水平力RX的计算应考虑在此工况下工作压力对水平力的影响。
(3)提出的水平力RX的计算方法,通过对ZL30,ZL40装载机工作装置设计中的强度计算实际应用,认为是可行

㈦ 50装载机总体设计

ZL50E轮式装载机基本参数
ZL50E WHEEL LOADER SPECIFICATIONS

发动机型号…………………………………………………………..WD615.67G3-36
D6114ZGB
Engine Model
功率(kW/PS)……………………………………………………………162/160
Power
额定转速(r/min)…………………………………………………………..2200
Rated Revolution
额定载重量(t)………………………………………………………………5
Rated Load Weight
最大卸载高度(mm)(斗尖/斗刃)………………………………………2990/3104
Max. Dump Clearance (Up to Tip/Up to Edge)
最大卸载距离(mm)(斗尖)……………………………………………………1220
Max. Dump Reach (Up to Tip)
最高行驶车速(km/h)……………………………………………………………36
Max. Travel Speed
最小转弯半径(mm)………………………………………………………………6520
Min. Turning Radius
最大牵引力(KN)………………………………………………………………..165
Max. Traction Force
工作装置动作时间(三项和)(s)……………………………………………12.5
Hydraulic cycle time (Total)
额定斗容(m3)………………………………………………………………….3
Rated Bucket Capacity
掘起力(kN)…………………………………………………………………..180
Breakout Force
总长度(mm)………………………………………………………………….8250
Overall Length
总宽度(mm)………………………………………………………………3000
Overall Width
总高度(mm)………………………………………………………………3520
Overall Height
操作重量(t)………………………………………………………………. 16.2
Operating Weight

特点
Features:
发动机
本机采用斯太尔WD615.67G3-36发动机,或可选配上柴D6114,动力强劲
Optional Engine Steyr diesel engine WD615.67G3-36, and Shanghai diesel engine D6114.
变速系 吸收了卡特技术的双涡轮液力变矩器,动力换档变速箱,结构紧凑,高效、可靠,操纵方便;主要轴承采用进口件;
Power Train Twin turbine torque converter, manufactured by Cheng Gong and employing CAT technology, and power shift transmission which features compact structure, high efficiency, reliable performance, and operational ease. The key bearings are imported.
驱动桥 采用技术成熟的、性能优良的成工50桥,承载能力大,可靠性高;关键密封件采用进口产品;
Axles Heavy ty and reliable axles designed with advanced Cheng Gong Series 50 axle technology. Key seals are imported.
液压系统 全液压转向系统,操纵轻便灵活,性能可靠。流体连接件采用国内知名品牌,密封可靠,管路系统寿命高;采用PERMCO的泵;
Hydraulic System Full hydraulic steering system with operational ease and high efficiency. Well known hydraulic fluid connections with reliable seals ensure long service life of line system. PERMCO pumps used.
工作装置 工作装置优化设计的Z型连杆机构,掘起力大,作业效率高,循环时间短;斗容大,卸载高度、卸载距离大,适合更大范围的需求;其销轴采用防尘结构设计,延长了使用寿命,缩短了维修周期。
Implement Optimally designed Z-bar linkage mechanism with large breakout force, high efficiency, short cycle time, large mp clearance and reach, and suitable for a wide variety of applications. Dust proof pins ensure its long service life.
驾驶室 符合人机工程的驾驶室,密闭、隔热、减震,降噪,操纵舒适,视野广阔;
Cab Ergonomically designed for total control and comfort with impressive panoramic visibility. It features heat insulation, shock absorption, and low noise level.
车架 四板塔型前车架与箱型后车架为主机提供了坚实的受力基础,上下铰接间距大,采用圆锥滚子轴承,寿命长;整机稳定性好;
Frame Heavy-ty front frame with four-plate loader tower and rear frame with special box-section structure provides strength and large load capacity. It features long upper and lower hitch distance, cone bearing which ensure extended service life, and a long wheelbase design which results in improved centre of gravity and stability.
整机布置 整机布置合理,液压油箱上置,燃油箱后置,维修性好,弧性机罩使外观更为协调、美观,后视效果好;
Vehicle Arrangement Improved positioning of the hydraulic tank (higher position), and the fuel tank (rear of machine). Compact structure with easy access to service points ensures hassle-free maintenance. Attractive and improved cabin and overall machine design with streamlined engine hood for superior rear visibility.
可选配件 空调、加大斗、石方斗、加长臂、破碎锤,以及集装箱叉、钢管叉、木柴叉、起吊臂等多种作业装置,满足您的各种需求;
Optional Equipment Air-conditioning
Large, light material buckets
Bucket for rock
Extended lift arms
Hydraulic hammer
Multi-purpose implements including log, container and steel tube forks, and hoisting arm.

破碎锤技术特点
Features of Hydraulic Hammer:
● 强劲的击打力量
●Strong crushing force
● 极高的系统效率
● High system efficiency
● 科学的构造、优良的材质、先进的工艺,保证了卓越的耐久性
● Scientific structure,good quality material,and advanced processing ensure the best rability.
● 简单的结构、极佳的油脂润滑位置、无氮气泄漏的后盖,使维修保养异常便利。
● Simple structure,ideal greasing position and rear cover with nitrogen gas leakage proof make the maintenance very easy.

成工产品破碎锤技术参数:
Specifications for Cheng Gong Hydraulic Hammer:

破碎锤重量 467-889 kg
Operating Weight
驱动压力 130-180 bar
Hydraulic pressure
驱动油量 45-140 lpm
Oil Flow
击打频率 400-820 bpm
Frequency
钢钎直径 85-105 mm
Tool Diameter
击打力 1200-2750 J
Crushing Force

ZL50E轮式装载机配破碎锤产品的整机参数:
Specifications for ZL50E Wheel Loader attached the hydraulic hammer:
整机重量 15500 ~ 16000kg
Operating Weight
长 8186mm
Length
宽 3000mm
Width
高 3520mm
Height

*内容及规格参数如有变更,恕不另行通知。
*Materials and specifications are subject to change without notice.

㈧ 装载机工作装置的有限元分析的难点在哪

1、 引言
装载机是工程机械的主要机种之一,广泛用于建筑、矿山、水电、桥梁、铁路、公路、港口、码头等国民经济各部门。国外装载机发展迅速,而我国装载机在设计上存在很多问题,其中主要集中在可靠性、结构设计强度等方面[1,2]。由于采取“类比试凑”等设计方法在一定程度上存在盲目性,容易形成设计中的“人为”应力集中点,造成机构整体强度的削弱甚至破坏。按这种设计生产出的产品,外观上看上去很强壮、刚性很好,但却有内在的设计缺陷,使用过程中常因工作装置结构强度等原因,产生开焊、甚至断裂等破坏,致使工作装置报废,造成重大经济损失。
本文将以SDZ20型装载机为例,建立有限元模型,在典型工况下用MARC软件进行静态结构分析,获得工作装置整体的应力及变形分布。其结论对该种结构的优化设计有一定的指导意义。
2、 工作装置结构受力破坏与力学特征
2.1工作装置的结构
工作装置由铲斗、动臂、横梁、支撑、摇臂、拉杆等组成。各构件之间由铰销联接,有相对转动。为了增强摇臂、支撑的刚度,在摇臂及支撑之间有筋板连接,在计算时,可以将其视为一体。动臂上铰点与装载机前车架铰接,中部铰点与举臂油缸铰接;摇臂上铰点与翻斗油缸铰接。用MARC对其做有限元静力分析中,认为工作装置各铰接处没有相对转动。动臂是工作装置的主要受力部件,其截面形状为矩形;又因其长、宽方向远大于厚度方向,故可以用板壳元对动臂进行离散。横梁截面为箱形,为焊接结构。摇臂和支撑也是焊接结构,其焊接板的截面均为矩形。考虑各构件的厚度远小于其它两个方向的厚度,可以认为均为板类零件。
2.2结构受力与破坏特征
装载机整体结构为对称结构。分析装载机插入、铲起、举升、卸载等的作业过程可知,装载机载初铲时,工作装置受力最大。在整个工作过程中受到的外界载荷为不变载荷,主要是物料的重量以及机构自重。由于物料种类和作业的条件不同,装载机工作时铲斗切削刃并非均匀受载,一般可以简化为两种极端情况:(1)认为载荷沿切削刃均匀分布,并以作用在铲斗切削刃中点的集中载荷来代替均布载荷,称其为对称受载情况;(2)非对称受载情况,由于铲斗偏铲、料堆密集情况不均,使载荷偏于铲斗一侧,通常将其简化为集中载荷作用在铲斗最边缘的斗齿上。这两种处理方法都是偏于安全的。当结构受力超过其极限载荷,材料发生塑性变形直至开裂(焊接部位)或断裂。
3、 有限元模型的建立及边界条件
工作装置作为装载机的主要工作部件,强度和刚度必须有充分的保证。根据工作装置的结构特征,建立起与其对应的有限元模型。
3.1单元类型的选取有限元网格划分
工作装置的各板厚度均匀,且长宽相比较小的多。根据经典薄壳理论假设,厚度小于中面轮廓尺寸1/5的为薄板。因此可以采用空间板壳单元进行网格划分。考虑四边形单元比三角形单元具有更高的计算精度,而三角形单元比四边形单元更利于拟合过渡,所以采用四边形单元与三角形单元混合进行网格划分。
有限元网格按照“均匀应力区粗划、应力梯度大的区域细划”的原则进行划分。按照给定尺寸自动划分后,对局部(如尖角和轴承孔等部位)进行细划。有限元模型如图2所示。
3.2边界条件的施加
边界条件包括两方面:边界载荷和边界约束。取额定装载量,按静力等效的原则将力施加在铲斗尖内移约100mm处中部。在初铲转斗时,可认为举臂油缸和翻斗油缸都不动,动臂的两个铰销部位和摇臂的铰销部位无相对移动。
3.2.1边界载荷
额定装载为2×104N。联合铲取的工况进行加载。根据以上假设,可以计算出铲斗所受水平力Rx和垂直力Ry。
水平力(即插入阻力)的大小由装载机的牵引力确定
Rx=Pkpmax=4000N 式中,Pkpmax为装载机的牵引力。
垂直力(即铲起阻力)大小受装载机的纵向稳定条件的限制。
Ry=GL1/L=58800x1300/2615.8=26974N 式中,G——装载机自重,为6000kg(58800N)。
L1——中心到前轮水平距离,为1300mm。
L——垂直力作用点到前轮水平距离,为2615.8mm 。
考虑到铲斗的特殊性,对其变形及破坏不予考虑。根据圣维南原理,局部载荷不影响远处应力场的分布,可以知道,在铲斗尖部附近所施加的点载荷不会影响除去铲斗外的工作装置的应力分布。所以这种加载方式是可行的。
3.2.2边界约束
根据假设,举臂油缸和翻斗油缸不动。这样,在油缸与工作装置的铰接处和动臂与前车架的铰接处分别施加对应的边界条件。
3.3材料性能参数的确定
SDZ20型装载机工作装置构件所用的材料为16Mn(包括动臂、摇臂、支撑、横梁和各筋板、加强板)和Q235(拉杆),变形在弹性范围内,对应各构件分别施加所需材料常数:
4、 结果分析
用MARC软件对工作装置进行有限元分析,得到整个工作装置的整体应力应变场、变形场分布,图3给出了工作装置的局部等效应力分布。
由结果可知,该装置的结构完全满足了强度要求。各构件情况是:动臂的危险点在动臂下铰点及动臂与举臂油缸铰接处附近,应力值已经分别达到142.5MPa和118.9MPa,偏载时应力值达到184.5 MPa和153.6 MPa,是正载时的1.29倍,且偏载的一侧与横梁焊接部分出现应力集中,其值已达到100 MPa;摇臂的危险点在摇臂与拉杆铰接处,应力已达91.7 MPa;横梁的危险点在横梁与动臂的铰接处,应力值已达65.2 MPa;拉杆的危险点在与摇臂铰接处,应力值已达107.2 MPa。同时,在偏载时,动臂承载了由于偏载所产生的大部分扭矩,而其他构件在偏载时的应力集中相对减小。即使这样,最大值仍远小于屈服应力,设计是偏于安全的。

㈨ 装载机斗容量怎么计算

长乘宽乘高。根据查询装载机斗容量计算方法指南可知装载机斗容量计算是长乘宽乘高。装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施工机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。

㈩ 急求装载机工作装置液压系统的设计

我知道东莞有一家金-中-液-压,他们那里是生产厂家,设计各种非标的液压系统,你可以去找一下他们那,希望能帮到你

阅读全文

与装载机装载装置机构设计计算相关的资料

热点内容
一条检测线的设备需要多少钱 浏览:62
暖气片回水阀门是什么阀 浏览:647
仪表盘控制柜怎么接线 浏览:608
制动传动装置的布置形式 浏览:519
生化仪器试剂过期怎么改 浏览:315
广东精艺发五金制品厂 浏览:646
神经网络数据训练工具箱 浏览:756
领界仪表显示模式怎么设置 浏览:530
东莞市有哪些日资五金制品厂 浏览:895
管道泵一般用什么阀门 浏览:790
阀门DN150A是什么意思 浏览:974
超声波液位计sl什么意思 浏览:830
机械三位开关怎么接线图 浏览:935
彩镀设备一般多少钱 浏览:522
调制冷水面主坯主要用什么手法 浏览:656
家用暖气阀门开关进户阀 浏览:754
机械设计工作室怎么开 浏览:281
自动化高度检测装置 浏览:11
怎么建造机械车迷你 浏览:649
实验室制乙酸乙酯装置改装 浏览:757