『壹』 飞机升力产生的原因是什么
升力就是向上的力,在机翼得上下表面产生了压强差。
飞机的升力来自于仰角,机翼弧形产生向下的压力和前进阻力,也就是动力学中的牛顿第三定律,俗称相互作用力。
在真实且可产生升力的机翼中,气流总是在后缘处交汇,否则在机翼后缘将会产生一个气流速度为无穷大的点。这一条件被称为库塔条件,只有满足该条件,机翼才可能产生升力。
起落装置
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。
早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。水上飞机的起落架由浮筒代替机轮。
以上内容参考网络-飞机
『贰』 飞机结构有哪些
大多数飞机由5个主要部分组成:机翼、机身、发动机、操纵系统、起落装置。
机翼:机翼的主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚转;放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。机翼有各种形状,数目也有不同。在航空技术不发达的早期为了提供更大的升力,飞机以双翼机甚至多翼机为主,但现代飞机一般是单翼机。
尾翼:尾翼也是机翼,但主要是用来平衡飞行姿态、对飞机进行操纵,比如起飞、降落、在空中转弯。包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可转动的升降舵组成(某些型号的民用机和军用机整个平尾都是可动的控制面,没有专门的升降舵)。垂直尾翼则包括固定的垂直安定面和可动的方向舵。
机身:机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其他部件如尾翼、机翼及发动机等连接成一个整体。如果将机身和机翼连接为一个整体,这种飞机叫飞翼。
发动机:有的叫引擎,用来产生拉力或推力,使飞机前进。其次还可以为飞机上的用电设备提供电力,为空调设备等用气设备提供气源。发动机好比人的心脏,现代飞机的动力装置主要包括涡轮发动机和活塞发动机两种。应用较广泛的动力装置有四种:航空活塞式发动机加螺旋桨推进器;涡轮喷射发动机;涡轮螺旋桨发动机;涡轮风扇发动机。随着航空技术的发展,火箭发动机、冲压发动机等,也逐渐被采用。
起落装置:起落装置又称起落架,是用来支撑飞机并使它能在地面和其他水平面起落和停放。陆上飞机的起落装置,一般由减震支柱和机轮组成,此外还有专供水上飞机起降的带有浮筒装置的起落架和雪地起飞用的滑橇式起落架。它是用于起飞与着陆滑跑、地面滑行和停放时支撑飞机。
操纵系统:包括各种显示飞机飞行姿态的仪表、用于控制飞机发动机功率、操纵飞机起飞、降落、转弯,军用飞机还要做各种战术动作,比如最早由苏—27战斗机做的“眼镜蛇”机动等等。由于飞机在高空、高速飞行时受到的作用力非常大,现代飞机通常都采用液压、电传操纵系统来协助飞行员。
现代飞机驾驶舱内可供驾驶员使用的飞行操纵装置通常包括:
主操纵装置:驾驶杆或驾驶盘和方向舵脚蹬。在某些采用电传操纵系统的飞机上,驾驶杆或驾驶盘已经被简化成位于驾驶员侧方的操纵杆。
辅助操纵装置:襟翼手柄、配平按钮、减速板手柄。
随着电子技术的发展,飞行操纵装置的形式也发生了根本性的变化。在大型飞机中,传统的机械式操纵系统已逐渐地被更为先进的电传操纵系统所取代,计算机系统的全面使用,使得飞行操纵系统发生了根本性变化,驾驶员的操作已不再像是直接操纵飞机动作,而更像是给飞机下达运动指令。由于某些采用电传操纵系统的飞机取消了原有的驾驶杆或驾驶盘等装置而改为侧杆操纵,驾驶舱的空间显得比以往更加宽松,所以有些驾驶员称此类驾驶舱为“飞行办公室”。
『叁』 直升机起落装置的分类
【直升机起落装置的分类】 在陆地上使用时,直升机起落装置有轮式起落架和滑橇式起落架两种。如果要求直升机具备在 水面起降或应急着水迫降能力,一般要求有水密封机身和保证横侧稳定性的浮筒,或应急迫降浮筒。对于舰载直升机,还需装备特殊着舰装置,如拉降设备等。现详述如下:
1、轮式起落架: 和固定翼飞机相似,直升机轮式起落架由油气式减震器和橡胶充气机轮组成。优点是可以收放,有利于减小飞行阻力;地面滑行、移动方便,对起降地点有很好的适应性。缺点是结构较复杂,重量较大,容易损坏;不适合小型直升机使用。
2、滑橇式起落架:优点是结构简单,重量轻;可靠性高,不易损坏。缺点是无法收放,容易增大阻力;地面滑行、移动不便,且对起降地点适应性差;不适合大中型直升机。
3、浮筒式起落架:主要用于水上降落,可以看作滑橇式的衍生。
【直升机起落装置】是直升机上用于地面停放时支撑重量和着陆时吸收撞击能量的部件。主要作用是吸收在着陆时由于有垂直速度而带来的能量,减少着陆时撞击引起的过载,以及保证在整个使用过程中不发生“地面共振”。此外,起落装置往往还用来使直升机具有在地面运动的能力,减少滑行时由于地面不平而产生的撞击与颠簸。
直升机起落架减展器除了具有吸收着陆能量、减小撞击等功能以外,还需要通过减震器弹性和阻尼的配置消除“地面共振”。为了在所有使用状态减震器都能提供阻尼,消除“地面共振”的发生,直升机上普遍采用双腔式减震器。
『肆』 飞机是怎么飞起来的原理
飞机的飞行原理需要从空气动力学的角度进行分析,空气流速快慢会让空气的压力出现大小变化,而飞机的机翼设计就是为了在飞行过程中,让空气出现流速的变化,在这些力的作用下,飞机就能够实现在空中的飞行。
在飞机的起飞阶段,飞机的机翼就会呈现出一定的仰角,这就让飞机在滑行的过程中,机翼上方的空气大都往下流动,这样上方的空气流速便会减小,而反之下方空气的流速就会增大,在两个力的作用下,飞机就拥有了一个向上的升力。
当机翼上下方的压力比达成一个最合适的点时,再加上飞机上本身也有发动机提供推力,两者一结合飞机就可以飞起来,同时空气的流速还会根据飞机的速度来改变,所以飞机速度越快,飞机得到的升力就越大,自然也就越飞越高。
飞机在空中的航行过程中,三片尾翼需要起到一个控制方向的作用,它们都能够通过变换角度的方式去改变空气动力,所以在飞机有变向操作时,这些尾翼都会随着变化。
飞机的结构
1、机身
机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
2、机翼
机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面,机翼前后绿都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状呈三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。
3、垂直尾翼
垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵,通常垂直尾翼后线设有方向舵,飞行员利用方向舵进行方向操纵。
4、水平尾翼
水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵,低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
5、起落装置
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放,着陆时还通过起落装置吸收撞击能量,改善着陆性能。
6、控制系统
飞机操纵系统是指从座舱中飞行员驾驶杆到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。
7、动力装置
飞机动力装置是用来产生拉力或推力,使飞机前进的装置,采用推力矢量的动力装置,还可用来进行机动飞行。
『伍』 飞机主要哪些部件组成各部件作用是什么
大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。
一、机身
机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
二、机翼
机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。
机翼通常有平直翼、后掠翼、三角翼等。机翼前后绿都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;
右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。
三、尾翼
1、垂直尾翼
垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后线设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右用航时,方向舵右们,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头有偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵。整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2、水平尾翼
水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。同样飞行员推杯时升降舵下偏,飞机低头。
超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。飞行员推拉杆时整个水平尾翼都随之偏转。飞行员用全动平尾来进行俯仰操纵。其操纵原理与升降舵相同。某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。
有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。这时放在机翼前面的水平尾翼称为鸭翼或前翼。也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。
四、起落装置
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。
早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。水上飞机的起落架由浮筒代替机轮。
五、控制系统
飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。
六、动力装置
飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。 喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。
设计制造
大多数飞机是由公司制造的,目的是为客户批量生产。小型涡轮螺旋桨飞机的设计和规划过程(包括安全测试)可持续长达四年,而大型飞机则需要更长的时间。
在此过程中,确定了飞机的目标和设计规范。首先,建筑公司使用图纸和方程、模拟、风洞测试和经验来预测飞机的行为。公司使用计算机来绘制、规划和进行飞机的初始模拟。然后在风洞中测试飞机全部或某些部分的小型模型和模型,以验证其空气动力学特性。
当设计通过这些过程时,该公司构建了数量有限的原型用于地面测试。航空管理机构的代表经常进行首飞。飞行测试继续进行,直到飞机满足所有要求。然后,国家航空管理公共机构授权该公司开始生产。
在美国,该机构是美国联邦航空管理局(FAA),在欧盟是欧洲航空安全局(EASA)。在加拿大,负责和授权大规模生产飞机的公共机构是加拿大运输部。
当零件或组件需要通过焊接连接在一起以用于几乎任何航空航天或国防应用时,它必须符合最严格和特定的安全法规和标准。Nadcap或国家航空航天和国防承包商认证计划为航空航天工程制定了质量、质量管理和质量保证的全球要求。
运输公共机构的许可。例如,欧洲公司空客制造的飞机需要获得美国联邦航空局的认证才能在美国飞行,而美国波音公司制造的飞机需要获得欧洲航空安全局的批准才能在欧盟飞行。
为了应对机场附近城市地区空中交通增长造成的噪声污染增加,法规已导致飞机发动机的噪声降低。
业余爱好者可以自行设计和建造小型飞机。其他自制飞机可以使用预先制造的零件套件组装成基本飞机,然后必须由制造商完成。
很少有公司大规模生产飞机。然而,为一家公司生产一架飞机实际上是一个涉及数十家甚至数百家其他公司和工厂的过程,这些公司和工厂生产进入飞机的零件。例如,一家公司可以负责起落架的生产,而另一家公司则负责雷达。
此类零件的生产不限于同一个城市或国家;就大型飞机制造公司而言,此类零件可能来自世界各地
零件被送到飞机公司的主要工厂,生产线就在那里。在大型飞机的情况下,可以存在专用于飞机某些部件组装的生产线,尤其是机翼和机身。
完成后,将对飞机进行严格检查以寻找缺陷和缺陷。经检查员批准后,飞机将进行一系列飞行测试,以确保所有系统都正常工作并且飞机操作正常。通过这些测试后,飞机就可以接受“最终修饰”(内部配置、喷漆等),然后就可以为客户做好准备了。
以上内容参考 网络-飞机
『陆』 飞机轮子是怎么驱动的
民航客机的轮子是没有动力的,所有动力都来自于发动机,即使飞机在地面的情况下,只要发动机不停车,还在运转中,就能够提供滑行的动力,不过飞机在地面上滑行时发动机处于低功率运行中。
平时常见的民航干线客机在地面滑行,转向时都是由机长操纵手轮,实现前轮控制方向。客机一般也装备有方向舵,在脚下的位置,不过一般转向幅度小,大型客机不常使用。
通俗的说,所谓喷气式飞机就是依靠向后喷气从而产生向前的推力,这样说起来好像很简单,实际上飞机发动机是一个很精细的系统,从进气道进入的空气要最终实现能够推动飞机的力量,需要经历一个复杂的过程。
(6)起落装置上的循环传动装置扩展阅读
起飞前的滑行过程:
1、推出,飞机由停机位推出,一般使用拖车推出。尽管发动机能够提供反向动力,将飞机向后推动,但是开反推对于发动机的损耗比较大,因此通常情况都是由拖车推动,而不使用飞机自身动力。
2、滑行,飞机在滑行道上由发动机提供动力进行滑行,进入起飞跑道,并逐渐加速,达到起飞速度。
3、起飞,飞机上还装备有辅助动力系统,当飞机在地面时,辅助动力系统提供空调和照明,节省发动机的动力,当飞机爬升时,照明和空调依然由辅助动力系统提供,以便于飞机发动机将所有功率都集中在飞机的爬升上。
『柒』 飞机是怎么飞起来的原理
飞机飞起来的原理如下:
当等质量的空气同时通过机翼上表面和下表面时,会在机翼上下方形成不同流速。空气通过机翼上表面时流速大,压强较小,通过下表面时流速较小,压强大。因而此时飞机会有一个向上的合力,即向上的升力,由于升力的存在,使得飞机可以离开地面,在空中飞行。
空气的密度、温度和压力是确定空气状态的三个主要参数,飞行中,飞机的空气动力和大小和飞行性能的好坏都与这些参数有关。粘性和压缩性是空气的两种物理性质,在飞行中,飞机之所以会受到空气阻力原因之一就是空气有粘性。而飞机以接近音速或者超过音速飞行时会出现阻力突增等现象,则与空气的压缩性有关。
飞机构成
大多数飞机由五个主要部分组成,即机翼、机身、尾翼、起落装置和动力装置,它们的主要作用如下:
1、机翼的主要功用是产生升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼能使机翼升力增大。
2、机身的主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其他部件如尾翼、机翼及发动机等连接成一个整体。
3、尾翼包括水平尾翼和垂直尾翼,水平尾翼由固定的水平安定面和可动的升降舵组成,垂直尾翼则包括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,并保证飞机能平稳地飞行。
4、起落装置是用来支持飞机,并使它能在地面和水平面起落和停放。
『捌』 飞机轮子是怎么驱动的
飞机的轮子是没有动力的,引擎不带动轮子转动。引擎和在空中推进飞机一样,在地面推着飞机走的,但飞机轮子都有制动装置。
平时我们常见的民航干线客机在地面滑行,转向时都是由机长操纵手轮,实现前轮控制方向。客机一般也装备有方向舵,在脚下的位置,不过一般转向幅度小,大型客机不常使用。
1、推出,飞机由停机位推出,一般使用拖车推出。尽管发动机能够提供反向动力,将飞机向后推动,但是开反推对于发动机的损耗比较大,因此通常情况都是由拖车推动,而不使用飞机自身动力。
2、滑行,飞机在滑行道上由发动机提供动力进行滑行,进入起飞跑道,并逐渐加速,达到起飞速度。
3、起飞,飞机上还装备有辅助动力系统,当飞机在地面时,辅助动力系统提供空调和照明,节省发动机的动力,当飞机爬升时,照明和空调依然由辅助动力系统提供,以便于飞机发动机将所有功率都集中在飞机的爬升上。
(8)起落装置上的循环传动装置扩展阅读:
起落装置:
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。
早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。水上飞机的起落架由浮筒代替机轮。
控制系统:
飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。
动力装置:
飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。 喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。