导航:首页 > 装置知识 > 赫兹电磁波实验装置图

赫兹电磁波实验装置图

发布时间:2023-02-02 15:15:50

① 夫兰克赫兹实验灯丝电压对I(A)-U(G2K)图像的影响

夫兰克-赫兹实验【实验目的】本实验通过对氩原子第一激发电位的测量,了解夫兰克和赫兹在研究原子内部能量问题时所采用的基本实验方法;了解电子与氩原子碰撞和能量交换过程的微观图象和影响这个过程的主要物理因素,进一步理解玻尔理论;学习用计算机采集和处理数据。【实验原理】根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值Ei(i=1,2,3‥),这些能量值称为能级。最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态,如图1所示。当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差,并满足普朗克频率选择定则:(为普朗克常数)本实验是通过具有一定能量的电子与原子碰撞,进行能量交换而实现原子从基态到高能态的跃迁。 本实验采用充氩的夫兰克-赫兹管,基本结构见图2。电子由阴极发出,阴极和第一栅极之间的加速电压及与第二栅极之间的加速电压使电子加速。在板极和第二栅极之间可设置减速电压,注意:第一栅极和阴极之间的加速电压约1.5伏的电压,用于消除阴极电子散射的影响。设氩原子的基态能量为,第一激发态的能量为,初速为零的电子在电位差为的加速电场作用下,获得能量为,具有这种能量的电子与氩原子发生碰撞,当电子能量时,电子与氩原子只能发生弹性碰撞,由于电子质量比氩原子质量小得多,电子能量损失很少。如果,则电子与氩原子会产生非弹性碰撞,氩原子从电子中取得能量ΔE,而由基态跃迁到第一激发态,。相应的电位差即为氖原子的第一激发电位。在实验中,逐渐增加,由电流计读出板极电流,得到如图3所示的变化曲线。【现象解释】1、夫兰克-赫兹实验中曲线的解释如果我们先不考虑阴极K发射的热电子具有一定的初始能量分布,则:当加速电压时,电子在、空间被加速而获得的能量很低,穿过栅极的电子不能克服拒斥电压到达板极,因而(如图3的0o段)。当时,电子在、空间与氩原子将发生弹性碰撞,碰撞后电子只改变运动方向而无能量损失。因而能够穿过栅极到达板极,且板极电流随着的增大而增大(如图3所示oa段)。当时,电子在栅极附近与氩原子将发生非弹性碰撞,碰撞后电子能量损失耗尽,全部交给氩原子,使氩原子最外层电子跃迁到第一激发态。这些电子因损失能量不能克服拒斥电压,故板极电流将开始减小(如图3所示a处)。当时,在接近栅极但未到栅极处,电子已经获得了的能量,若跟氩原子碰撞将发生非弹性碰撞,电子交出能量使氩原子发生第一激发态的跃迁。碰撞后电子在到达栅极前还要加速一段,获得的动能。此时电子能量不能克服,不会到达极板,且由于的增加,与氩原子发生碰撞的电子会越来越多,故电流将会继续减小(如图所示3所示ab段)。当时,电子再次加速获得的能量,此时电子有足够的动能可以克服拒斥电压到达阳极,随着的增加,与氩原子发生碰撞后,到达阳极板的电子会越来越多,故电流将会随着再次增加(如图3所示bc段)。当时,在、空间的中部电子已经获得了的能量,此时若跟氩原子碰撞,电子将交出能量使氩原子跃迁。碰撞后,电子加速到栅极时再次获得了的能量,这时若跟另外一个氩原子碰撞,电子将再次交出能量使这一个氩原子从基态跃迁到第一激发态。经过两次碰撞后电子损失能量不能克服拒斥电压,板极电流开始减小(如图3所示c处)。再往后重复以上过程。由此可见:(1)、凡当,即加速电压等于氩原子第一激发电位的整数倍时,板流都会相应下跌,形成规则起伏的伏安曲线。(2)、任何两个相邻峰间的加速电位差都应是氩原子的第一激发态电位。所以,只要测出夫兰克-赫兹曲线,即可求出氩原子的第一激发电位,并由此证实原子确实有不连续的能级存在。2、实验中的一些其它现象(1)、接触电位差的影响。实际的F—H管,其阴极与采用不同的金属材料制成,它们的逸出功不同,因此会产生接触电位差。接触电位差的存在,使真正加在电子上的加速电压不等于,而是与接触电位差的代数和。使得整个曲线平移。(2)、由于阴极发射电子后,在阴极表面积聚了许多的电子。这些空间电荷的存在改变了、间的空间电位分布。当较小时,阴极附近会出现负电位,称为虚阴极。负电位的绝对值随的增大而减小。值较大时,虚阴极消失。虚阴极的存在使得曲线的前几个峰(2到3个)的峰间距减小,而对后面的峰无影响。灯丝电压越高,阴极发射的电子流越大,空间电荷的影响越严重。(3)、因为极发出的热电子能量服从麦克斯韦统计分布规律,因此图中的板极电流下降不是陡然的。在极大值附近出现的峰有一定宽度。(4)、当较大时,由于部分电子自由程大,可积累较多的能量。使氩原子跃迁到更高的激发态,甚至使氩原子电离。(5)、电离的发生引起电子繁流,产生电流放大作用。随着的增大,电子繁流迅速增长,使得曲线各峰高度迅速增加。但超过一定值时,将导致管内气体击穿,应避免发生这种情况,否则将使管损坏。【实验装置】ZHY-FH-2智能夫兰克-赫兹实验仪的实验装置如图4所示:【实验内容】(1)、用手动方式、计算机联机测试方式测量氩原子的第一激发电位,并做比较。(2)分析灯丝电压、拒斥电压的改变对F—H实验曲线的影响。(3)了解计算机数据采集、数据处理的方法。 【操作步骤】(1)正确认识电路连接及原理;(2)启动预热;(注:预热开始,就必须设定好以下几个值:V灯、VG1K、VG2A,根据仪器给定参数设定,VG2K=30v)(3)正式测量;手动测试;联机测试。 【注意事项】1、 不许拔下仪器前面板上的导线,进行违规连接,以免发生短路,损坏仪器。2、 在设定各电压值时,必须在给定的量程或范围之内设值,如果超出范围,可能会导致烧坏仪器。【数据处理】计算VC的公式为:相对误差: 【思考与讨论】1、能否用氢气代替氩气?为什么?2、为什么I-U曲线不是从原点开始?3、为什么 I不会降到零?4、为什么I的下降不是陡然的?5、在F-H实验中,得到的I-U曲线为什么呈周期性变化?6在F-H管内为什么要在板极和栅极之间加反向拒斥电压?7、在F-H管的I-U曲线上第一个峰的位置,是否对应于氩原子的第一激发电位?

② 赫兹实验的具体过程

“以太”是经典力学中曾经站统治地位几百年的一个观点和基石,后来被证明其存在的实验的反向结论而被戏剧性地否定。

以太是一个历史上的名词,它的涵义也随着历史的发展而发展。
在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的R.迪卡儿是一个对科学思想的发展有重大影响的哲学家。他最先将以太引入科学,并赋予他某种力学性质。在迪卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。

17世纪的迪卡儿(1596年3月31日—1650年2月11日)认为:物质由微粒构成,物质微粒是唯一的实体,物质的本性是其空间广延性,机械运动即位置变动是物质唯一的运动形式。一切自然现象,一切物质性质(包括色、香、硬度、热等)都是由于物质粒子的机械相互作用产生的。有了物质(空间)和(机械)运动,就能按照物质运动本身的自然规律构造出全部世界,无须上帝照管。这类机械论的自然观以后曾统治自然科学两个多世纪。他又认为物质充满空间,即不存在真空(要说有一个绝对无物体的虚空或空间,那是反乎理性的),物质可以无限分割(宇宙中并不可能有天然不可分的原子或物质部分),空间是无限的(世界的广袤是无限定的),并且肯定物质世界的统一性与多样性(天上和地下的物质都是一样的,而且世界不是多元的”,“物质的全部花样或其形式的多样性,都依靠于运动)。因此恩格斯在《反杜林论》中称赞笛卡儿是辩证法的卓越代表人物之一。迪卡儿的方法论对于后来物理学的发展有重要的影响。

笛卡儿把他的机械论观点应用到天体,形成了他关于宇宙发生与构造的学说。他认为,从发展的观点来看而不只是从己有的形态来观察,对事物更易于理解。他用以太旋涡模型(如图示),第一次依靠力学而不是神学解释了天体、太阳、行星、卫星、慧星等的形成过程。他认为天体的运动来源于惯性(沿轨道切向)和某种宇宙物质,以太旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体(如太阳),以这种假说来解释天体间的相互作用。

迪卡儿的天体演化说、旋涡模型和近距作用观点,正如他的整个思想体系一样,一方面以丰富的物理思想和严密的科学方法为特色,起着反对经院哲学、启发科学思维、推动当时自然科学前进的作用,对许多自然科学家的思想产生深远的影响。而另一方面又经常停留在直观和定性阶段,不是从定量的实验事实出发,因而一些 具体结论往往有很多缺陷,成为后来牛顿物理学的主要对立面,导致了广泛的争论。

尽管如此,作为自然科学家和哲学家,“迪卡儿”的唯物论已成为真正的自然科学的财富。

今天,当我们以物质的“物与磁”的统一场观点来认识整个宇宙体系之际,显然,可以清晰地发现,迪卡儿以太观中一个最大的忽略之处,是在于把以太与天体以及物质的微观粒子之间相互脱离。如果迪卡儿当时把以太与天体以及微观粒子紧密结合、并一体化思维的话,人类的科技进步必将少走许多弯路,科技水准必将早已远远超越今天的状态。

牛顿,1643年1月4日诞生于英格兰林肯郡乡村。 1686年,发表了他根据据J.开普勒行星运动定律得到的万有引力定律,并用以说明了月球和行星的运动以及潮汐现象,这是一项伟大的发现。看起来,牛顿的引力定律似乎支持超距作用观点,但是牛顿本人并不赞成超距作用解释。他在给R.本特利的一封著名的信中写道:“很难想象没有别种无形的媒介,无生命无感觉的物质可以毋须相互接触而对其他物质起作用和产生影响。……引力对于物质是天赋的、固有的和根本的,因此,没有其他东西的媒介,一个物体可超越距离通过真空对另一物体作用,并凭借和 通过它,作用力可从一个物体传递到另一个物体,在我看来,这种思想荒唐之极,我相信从来没有一个在哲学问题上具有充分思考能力的人会沉迷其中。” 牛顿本人倒是倾向于以太观点的,他在给R.玻意耳的信中私下表示相信,最终一定能够找到某种物质作用来说明引力。但是地对于以太的具体设想与当时颇有影响的R.迪卡儿观点只是在细节上有所不同。

众所周知,牛顿在理解光的本质上持微粒说。但他在同胡克、惠更斯等讨论光的本质时,说光具有这种或那种本能激发以太的振动。这意味着以太是光振动的媒质。于此,似乎牛顿对光的双重性有所理解。其实不然,他对以太媒质之存在极似空气之无所不在,只是远为稀薄、微细而具有强有力的弹性。他又重申说,就是由于以太的动物气质才使肌肉收缩和伸长,动物得以运动。他又进一步以以太来解释光的反射与折射,透明与不透明,以及颜色的产生(包括牛顿环)。他甚至于设想地球的引力是由于有如以太气质不断凝聚使然。《原理》第二编第六章诠释的结尾说,从记忆中他曾做实验倾向于以太充斥于所有物体的空隙之中的说法,虽然以太对于引力没有觉察的影响。

14、15世纪以来欧洲的学者对以太着了迷,以太学说风靡一时。后来,科学巨匠迪卡儿对以太的存在深信不疑。他认为行星之运行可以以太旋涡来解释。以太学说成为一时哲学思潮。尊重实验的牛顿也不免卷入这股哲学思潮中去,倾向于它存在。当时人们对超距作用看法不一。牛顿曾经提出他的引力相互作用定理,并不认为是最终的解释,而只是从实验中归纳出来的一条规则。因此,牛顿并未就引力本质作出结论。

可是,《原理》第二编最后文字中牛顿澄清了旋涡假设与天体运动无关。

显然,牛顿同迪卡儿一样,也没有把物质与以太统一一体而思维。因此,留下了“引力相互作用定理,并不认为是最终的解释,且未就引力本质作出结论”的遗憾。今天,我们从物质的“物、磁”二重性的原理,显然是可以归纳出以太与宇宙及物质的根本联系性极其特征的,进而对整个宇宙自然有一个更加深刻与本质的认识。

以太观认为,以太虽然不能为人的感官所感觉,但却能传递力的作用,如 磁力和月球对潮汐的作用力。 后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由R.胡克首先提出的并为C.惠更斯所进一步发展。在相当长的时期内(直到20 世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。由于 光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象 。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用并承认以太的存在。在他看来 以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛 顿也 认为以太可以传播振动,但以太的振动不是光,因为光的波动学说(当时人们还不知道横波,光波被认为是和声波一样的纵波)不能解释现在称为光的偏振现象,也不能解释光的直线传播现象。

18世纪是以太论没落的时期。由于法国迪卡儿主义拒绝引力的平方反比定律而使牛顿的追随者起来反对迪卡儿哲学体系,连同他倡导的以太论也在被反对之列。随着引力的平方反比定律在天体力学方面的成功以及探寻以太未获实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,首先是从光学开始的,这主要是T.杨和A.J.菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下于1817年提出光波为横渡的新观点(当时对弹性体中的横波还没有进行过研究),解决了波动说长期不能解释光的偏振现象的困难。可见,以太观的复兴和发展,对促进科技进步是有利的。

菲涅耳用波动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯——菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳进一步解释了光的双折射,获得很大成功。1823年,他根据杨的光波为横渡的学说和他自己1818年提出的透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名 公式,它很好地说明了D.布德斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年,他为了解释阿喇戈关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。由此即可得出物体中以太的平均速公式:(1-1/nn)v ,其中 v 为物体的速度。

利用以上结果不难推得:在以太参照系中,运动物体内光的速为(准到v/c的一次方),u=c/n =(朴-1/nn)vcoso ,其中 o为u与v之间的夹角。上式称为菲涅耳运动媒介光速公式。它为以后的斐索实 验所证实。

19世纪中期曾进行了一些实验以显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度v,但都得出否定的结果。这些实验结果可从上述菲涅耳理论得到解释。根据菲涅耳运动媒质中的光速公式,当实验精度只达到v/c量级时,地球相对以太参照系的速度在这些实验中不会表现出来。要测出v,精度至少要达到vv/cc的量级(估计 vv/cc=10**-8),而当时的实验都未达到此精度。

杨和 菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。不过以太论也遇到一些问题。首先,若光波为横波则以太应为有弹性的固体媒质。这样,对为何天体运行其中会不受阻力的问题,有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。另外弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。光学对以太性质所提出的要求似乎很难同通常的弹性力学相符合。为了适应光学的需要,人们要对以太假设一些非常的属性,如1839年麦克可拉模型和阿西模型。再如,由于对不同的光频率,折射率 n 的值也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。

随后,以太在电磁学中也获得了地位,这主要是由于m.法拉第和j.c.麦克斯韦的贡献。 在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位。他引入了力线来描述磁作用和电作用,在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在前人工作的基础上提出用一组微分方程来描述电磁场的普遍规律。这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为3.1*10**8 米/秒,与当时己知的空气中的光速3.15*10**8米/秒,在 实验误差范围内是一致的。麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:光就是产生电磁现象的媒质(指以太 ) 的横振动。” 后来,H.R.赫兹用实验方法证实了电磁波的存在(1888年)。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度B比做以太的速度。后来(1861年——1862年)他接受了W.汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。他 认为以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法。w. 汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早(1838年)就 提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移D的大小与电场强度E成正比。当电荷粒Z的位移随时间变化时,将形成电流。这就是他所谓电流)才是真实的电流。

在这一时期还曾建立了其它一些以太模型。尽管麦克斯韦在电磁理论上取得了很大进展,但他以及后来的赫兹等人把电磁理论推广到运动物质上的意图却未获成功。

19世纪90年代H.A.洛伦兹提出了新的概念。他把物质的电磁性质归之于其中同原子相联系的电子的效应,至于 物质中的以太则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。在考虑了上述效应后,他同样推出了菲涅耳关于运动物质中的光速公式。而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)现己不存在。洛伦兹根据束缚电子的强追振动并可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,他获得了很大成功。

19世纪末可以说是以太论的极盛时期,但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化。这样它几乎己退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它己失去了所有其他具体生动的物理性质。这就又为它的衰落创造了条件。

为了测出地球相对以太参照系的运动,如上所述,实验精度必须达到vv/cc量级。到19世纪80年代,A.A.迈克耳孙和E.W.莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的(即地球相对以太不运动)。此后其他的一些实验亦得到同样的结果。于是以太进一步失去了它作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域 。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。 量子力学的建立更加强了这种现点,因为人们发现物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性己成为物质运动的基本属性的一个方面。那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点己完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)这种真空涨落是相互作用着的场的一种量子效应。今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏是真空的这种特殊“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一 理论己获得很大的成功。

这样看来,机械以太虽然死亡了,但以太的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

总之,以太论从14世纪诞生后,经过了三个世纪的发展壮大、衰落、到17世纪的灭亡,到18世纪的复苏、再发展、再壮大、再衰落,至直19世纪初的彻底失败的历史进程,乃至当今21世纪初的可能的、甚至是必然的重新复活。可见,以太的发展道路,是人类科技道路上的曲曲折折的进步历程。是人类对大自然认识水平提高与完善的光辉历程。因此,以太论的复苏,是人类认识自然大千世界的新的希望与新的曙光。

19世纪末,在光的电磁理论的发展过程中,有人认为宇宙间充满一种叫做“以太”的介质,光是靠以太来传播的,而且把这种“以太”选作绝对静止的参考系,凡是相对于这个绝对参考系的运动叫做绝对运动,以区别于对其他参考系的相对运动。经典电磁理论只有在相对于以太为静止的惯性系中才能成立。根据这个观点,当时物理学家设计了各种实验去寻找以太参考系。其中,1887年,迈克耳孙(A.A.Michelson)和莫雷(E.W.Morley)的实验特别有名。根据他们的设想,如果存在以太,而且以太又完全不为地球运动所带动,那么,地球对于以太的运动速度就是地球的绝对速度。利用地球的绝对运动的速度和光速在方向上的不同,应该在所设计的迈克耳孙干涉仪实验中得到某种预期的结果,从而求得地球相对于以太的绝对速度。

迈克耳孙和莫雷在不同地理条件、不同季节条件下多次进行实验,却始终看不到干涉条纹的移动。出乎意料的是原本为验证以太参考系而进行的实验,却无意中提出了否定以太参考系的证据,并被整个物理学领域接受而至今。狭义相对论正是在这种条件下破土而出的。

可是,由于光具有波粒二相性,是一个个非常非常微小的能量个体,不仅仅是直线传播(运行),而是具有波动特性的螺旋运动轨迹。尽管光波是电磁波的一种类型,但是,光波并不像大多数电磁波一样做球形扩张式传播。因此,光粒子不是靠以太来传播的,它犹如出镗的子弹,单方向直线(螺旋线)运行,只需启动能量,不需介质的传播,更不能简单地等同于声波的机械能量在其介质中的连续的球形扩张式传递。同时,把“以太”选作绝对静止的参考系,是一种主观片面性。因为,以太凭什么要绝对静止呢?如果“以太”不是绝对静止的物质体系,而恰恰是一个与星系的运动相关的,或者是同步的、广密的物质体系,那么,19世纪末之前,人们却正好把“以太”作为绝对静止的参考系来看待,因此则必然导致错误的结论和错误的理论体系!如果分布在地球表面的以太,是与地球运行速度(公转与自转)既同向又同步的话,如同“论统一场”所描述的那样。那么,1887年,迈克耳孙(A.A.Michelson)和莫雷(E.W.Morley)所做的证明以太存在的光干涉实验,事实上应该是充分地证明了以太肯定存在的科学结论。也即,实验肯定无误,是“以太绝对静止”这个假定的前提有误,因而导致了历史性的、截然不同的科学结论!!!

显而易见,迈克耳孙和莫雷的为验证以太参考系而进行的光干涉实验,因为其假定的前提条件的不完全充分性,因此不能作为否定以太参考系的证据,哪怕是已经被世界物理学界、科技界认可了一百多年。由此可见,否定以太的实验结论是一个历史的失误或错觉。

进一步地,当以太确实存在,而且不是绝对静止不动的以太,那么,仅仅建立在坐标变换条件下的爱因斯坦相对论,则自然只是数学上的变换而已,并不一定具有确切的物理意义。况且,相对论并没有从具体的物理意义上破译引力场这种特殊物质的物质性质和具体的引力传递与作用机制,仅仅只是一种数学上的描述而已。一个不能直接揭示其物理意义和物质本质的数学描述形式,尽管是所谓的十分精确,但是,它显然在对物质本质的深刻认识与系统全面地破译方面,仍然存在一定差距,甚至是相当的差距。因此,爱因斯坦自己也非常追求理论上的简洁性,并对统一场理论持续了几十年的探寻不已,且直至终生。当他对统一场无能为力之际,也极大地寄希望于后来人。

③ 电磁波的发射装置由什么构成

找了一些你看看吧电磁波的发射和接收、调幅 用赫兹振子演示,装置见图⑥.在感应圈G上装两个球形电极Q,球的直径约1厘米,两球间隙约0.5厘米.外侧分别与两根等长的铜(或铝)管a、b连接,每根管长约1米,外径约0.5厘米,用绝缘支架支成水平,构成发射天线.于绝缘板B上固定两根同样的金属管c、d作为接收天线,两管也成一直线,中间连接氖泡N.接收天线和发射天线的总长度l应相等,也可以用收音机或电视机的拉杆天线构成.使感应圈工作,两球形电极间就产生断续的火花放电,每产生一个火花,由感应圈的副线圈和天线a、b(相当于电容器)构成的回路中就形成一次高频阻尼电磁振荡,并向空间辐射出电磁波.让接收天线与发射天线平行放置,相距1~2米,可看到氖泡发光,表明c、d接收到电磁波,高频电压使氖泡发光.距离越远发光越弱,表明空间电磁场的强弱与离开发射天线的远近有关.使c、d与a、b垂直,氖泡熄灭,表明天线有方向性.将a、b由感应圈上取下,氖泡也不能发光,表明利用开放电路才能有效地辐射电磁波.若将一台收音机放在附近,无论调到什么频率上,都会受到感应圈放电时射出电磁波的干扰而发出“喀喀”声.汽车发动机和手电钻等设备中产生的电火花干扰收音机和电视机也是这个道理.用J2464型教学信号源(或J2465型学生信号源)可以演示调幅,装置如图⑦所示.由屋顶悬下一条长约2米的导线A作为发射天线,让信号源发射出535~1605千赫范围内的高频电磁波,由机内任意一个音频信号(如1000赫)调幅.一台收音机放在几米远处,调节到和信号源谐振,就发生音频声.用示波器显示发射信号的波形,示波器输入耦合开关置于“AC”,Y衰减置于“1”,扫描范围旋到“100~1k”,调节扫描微调等旋钮,就可显示出高频调幅电压波形.如这个波形的音频包络线的幅度(即调幅度)不合适,可调节信号源上音频增幅旋钮.为了证明包络线是音频信号,可将信号源上调幅的音频改为其他值,如 500赫、 1500赫,而保持示波器的扫描频率不变,则波形包络线的周期数和收音机发出的声音音调都相应地发生变化.还可将示波器的Y输入端改接到信号源的低频输出端,可看到波形,和包络线形状一样.将示波器Y输入恢复为图⑦接法,信号源上“等幅—调幅”开关扳到“等幅”位置,收音机中就听不到音频声了,表明未调幅的高频电流是不能传播声音信息的.当收音机在较远处接收信号源发射的调幅信号时,将天线A去掉,收音机中就几乎听不到声音了.还可在信号源的“高频输出”和“地”两个接线柱上接一对平行板电容器的圆铝板,当两板正对靠近时,收音机听到的声音很弱,逐渐分开两板,声音也逐渐增强.这都表明开放电路能有效地辐射电磁波. 包线绕70匝左右作为线圈L).实验时,使磁棒T和圆环A的平面垂直,并和圆环的轴线重合,这样接受到的电磁波最强.再将这LC回路用短的屏蔽线接到示波器上,示波器的输入耦合开关置于“AC”,Y衰减置于“1”,扫描范围旋到“10~100k”.使信号源发射出 535~1605 kHz间某一频率的等幅电磁波,调节C和示波器上有关旋钮,使显示出最大幅度的正弦波形.此时无论再将C的容量增大或减小,波形幅度都急剧减小,表明原来已调到谐振状态.改变信号源发射电磁波的频率,波形幅度急剧减小,再调C使LC回路和新的频率谐振,波形幅度又达到最大.③用自制仪器演示:按图9甲的电路装置一台小发射机,元件安装在绝缘板上.空心线圈L0用直径2毫米以上的裸铜线(或扁铜线)绕6匝,拉开后线圈直径5厘米,总长度10厘米,C0为20~270皮法的空气介质可变电容器,Z为高频阻流圈,可在直径约8毫米的塑料管或瓷管上用细漆包线单层绕100匝.图乙为接收回路,L和C的结构规格与L0和C0相同,图中灯泡为“6.3V 0.1A”微型灯泡.发射机通电,C0旋到某一角度,将接收回路的线圈L和发射回路线圈L0平行靠近或轴线重合靠近,调节C到和C0近似相同的角度时,灯泡D发光最亮,表示谐振.改变C0,则必须相应地改变C才能再谐振.

④ 求高中物理史实

你好,
一.力学中的物理学史
1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。
2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。
3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。
4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11N·m2/kg2(微小形变放大思想)。
5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。
二.热学中的物理学史
1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比( ,即为玻意耳定律。
3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比( )即为查理定律。
4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比( )即为盖·吕萨克定律。
三.电、磁学中的物理学史
1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。
3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
四.光学、原子物理中的物理学史
1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。
2、1800年,英国物理学家赫谢尔发现红外线。红外线具有明显的热效应。应用:红外遥感和红外高空摄影。
3、1801年,英国物理学家托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。
4、1801年,德国物理学家里特发现紫外线。紫外线具有明显的化学作用、荧光效应。应用:杀菌、消毒、黑光灯灭害虫。
5、1818年,法国科学家泊松:观察到光的圆板衍射——泊松亮斑。
图1光电效应实验
6、1895年,德国物理学家伦琴:发现比紫外线频率还要高的电磁波——X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。高速电子流射到任何固体上都能产生这种射线。

7、1896年,法国物理学家贝克勒尔:发现天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。之后居里夫人于1898年7月发现放射性元素钋(Po)同年12月又发现了镭(Ra)。
8、1900年,德国物理学家普朗克:解释物体热辐射规律时提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。
图2 α粒子散射实验装置
9、1905年爱因斯坦:在德国物理学家赫兹首先发现“光电效应”实验(如图1)的基础上提出了“光子说”,成功地解释了光电效应规律。

10、1897年,英国物理学家汤姆生:利用阴极射线管发现了电子,说明原子可分、有复杂内部结构,并提出原子的枣糕模型。
图3 α粒子散射实验结果演示图
11、1909年,英国物理学家卢瑟福为了验证汤姆生提出的原子结构模型做了著名的“α粒子散射实验”。(如图2)

实验结果:(如图3)①绝大多数α粒子穿过金箔后,跟原来的运动方向偏离不多(平均2°一3°)②少数α粒子产生较大的偏转③极少数α粒子产生超过90°的大角度偏转,个别α粒子被弹回。据此卢瑟福提出了原子的核式结构模型,由实验结果估计原子核直径数量级为10 -15 m 。
显微镜
银箔

氮气
氮气
图4 粒子轰击氮核装置
12、1909年-1911年,英国物理学家卢瑟福:用α粒子轰击氮核,(如图4)第一次实现了原子核的人工转变,并发现了质子。 。

13、1913年,美国物理学家密立根:测出元电荷的电量 ,即著名的“密立根油滴实验”。
14、1924年,法国物理学家德布罗意:预言了一切微观粒子包括电子、质子、和中子都具有波粒二象性。
15、1932年查德威克:在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。 。其用中子轰击石蜡打出了质子(如图5)。
Po
粒子

石蜡
质子
图5 粒子轰击铍实验

中子
16、1934年,约里奥·居里夫妇:用 粒子轰击铝箔时观察到正电子。反映方程 。可见,正电子是由磷30衰变发射出来的。像磷30这种具有放射性的同位素称之为放射性同位素。放射性同位素的应用:机械探伤、消菌杀毒、作为示踪原子等。

17、1971年国际计量大会规定的7个基本单位:长度:米(m ),质量:千克(Kg),时间:秒(s),电流:安[培](A),热力学温度:开[尔文](K),物质的量:摩[尔](mol),发光强度:坎[德拉](cd)。

⑤ 赫兹的感应线圈

当火花在感应圈两个金属球间跳动时,必定建立一个快速变化的电磁场.这种变版化的电磁场权以电磁波的形式在空间快速传播,当电磁波经过导线环时,迅速变化的电磁场在导线环中激发出感应电动势,使得导线环的两个小球间也产生了火花。在赫兹实验中,感应圈成了电磁波发射器,导线环成了电磁波的检测器。

⑥ 求这个验证电磁波产生的实验原理

将电池用导线时接、时断,导线里面的电流时有时无(这也可以说是一种变化的电流),那么这个电流理论上讲会产生相应的电磁波。理论上讲,其是可以产生很宽的电磁波频率的(但用这种方式,产生的电磁波频带宽度具体是多少,有待研究)。如果其中某一个频率(和调幅载波一致)恰好被调幅收音机接收到,那么会有出现声音的可能;如果其中一段频率(正好在调频收音机频偏范围)被调频收音机接收到,应该也是可以解调出信号的。但出现的声音是否是咔咔声,有待实践。因此,严格地说,只是一种可能而已(接收应该设计得再简单些)。这让我想起了早期的振荡器——电火花。
当初先辈们验证电磁波的时候,采用了类似的原理。请看赫兹的著名实验。自己摆渡吧。
谢绝追问。
这种问题一看就是学生问的——成年人绝大多数是答不上来的。人就是这样丧失观察力、创新力的。

⑦ 海因里希·鲁道夫·赫兹的主要贡献

赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。赫兹也是是国际单位制中频率的单位,它是每秒中的周期性变动重复次数的计量。赫兹的名字来自于德国物理学家海因里希·鲁道夫·赫兹。其符号是Hz。电(电压或电流),有直流和交流之分。在通信应用中,用作信号传输的一般都是交流电。呈正弦变化的交流电信号,随着时间的变化,其幅度时正、时负,以一定的能量和速度向前传播。通常,我们把上述正弦波幅度在1秒钟内的重复变化次数称为信号的“频率”,用f表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。波行进一个周期所经过的距离称为“波长”,用λ表示,以米为单位。f、T和λ存在如下关系: f=1/T ,v=λ.f ,其中,v是电磁波的传播速度,等于3x10^8米/秒。频率的单位是赫兹,简称赫,以符号Hz表示。
赫兹(H·Hertz)是德国著名的物理学家,1887年,是他通过实验证实了电磁波的存在。后人为了纪念他,把“赫兹”定为频率的单位。常用的频率单位还有千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。在载带信息的电信号中,有时会包含多种频率成分;将所有这些成分在频率轴上的位置标示出来,并表示出每种成分在功率或电压上的大小,这就是信号的“频谱”。它所占据的频率范围就叫做信号的频带范围。例如,在电话通信中,话音信号的频率范围是300~3400赫;在调频(FM)广播中,声音的频率范围是40赫~15千赫,电视广播信号的频率范围是0~4.2兆赫等。 接触力学是研究相互接触的物体之间如何变形的一门学科。赫兹1882年发表了关于接触力学的著名文章“关于弹性固体的接触(On the contact of elastic solids)”,赫兹进行这方面研究的初衷是为了理解外力如何导致材料光学性质的改变。为了发展他的理论,赫兹用一个玻璃球放置在一个棱镜上,他首先观察到这个系统形成了椭圆形的牛顿环,以此实验观察,赫兹假设玻璃球对棱镜施加的压力也为椭圆分布。随后他根据压力分布计算了玻璃球导致的棱镜的位移并反算出牛顿环,以此再和实验观察对比以检验理论的正确性。最后赫兹得到了接触应力和法向加载力,接触体的曲率半径,以及弹性模量之间的关系。赫兹的方程是研究疲劳,摩擦以及任何有接触体之间相互作用的基本方程。
赫兹接触理论的主要缺点是没有考虑两个接触体之间的结合力。这一问题在1971年 K. L. Johnson K. Kendall 和 A. D. Roberts解决,他们提出了最后以三人名字命名的JKR接触理论。JKR理论中他们考虑了材料的表面能效应,由于表面能的存在,相互接触的固体之间将引进一个结合力,最后根据能量平衡的原理,他们得到一个方程描述接触应力分布,接触体曲率半径,弹性模量以及材料表面能之间的关系。在JKR模型中,当表面能为零时,方程自然过渡到赫兹方程。推导JKR模型的前提之一是,认为两个接触体的所有相互作用均发生在接触半径之内,后来证明如果采用不同的假设会得到不同的结论。1975年,B.V.Derjaguin, V. M. Muller and Y. P. Toporov等人假设接触体之间相互作用可以发生在接触半径之外,据此假设提出了所谓的DMT模型试图考虑结合力的影响。根据JKR和DMT模型,会的到不同的(pull-off)分离力(分开两个接触体所需要的最大作用力),这一不同的结果曾引起很多争论,最后Muller等人指出JKR和DMT模型各有各的应用范围:JKR模型对大颗粒,高表面能,低弹性模量的材料描述较好。而DMT模型则相反。
由赫兹开创性工作开始,随后由其他人完善的接触力学理论是涉及到接触体的各种科学及工程研究中不可缺少的工具之一。因此赫兹在接触力学领域所作出的贡献不应该被他在电磁学领域杰出的成就而忽视。
赫兹的主要贡献是用实验证明了电磁波的存在,并测出电磁波传播的速度跟光速相同,还进一步观察到电磁波具有聚焦、直进性、反射、折射和偏振等性质。
(1)赫兹证明电磁波存在的实验
赫兹是亥姆霍兹的学生,在老师的影响和要求下,他深入研究了电磁理论。1879年,德国柏林科学院悬奖征解,向当时科学界征求对麦克斯韦电磁理论进行实验验证,促使年轻的赫兹萌发了进行电磁波实验的雄心壮志。
赫兹的实验装置一部分如。AA′是两块40厘米见方的铜板,焊上直径0.5厘米,长70厘米的铜棒,头上各接一小铜球,相对放置,球中间留有空隙约0.75厘米。铜球表面仔细磨光,两棒分别接到感应圈的两端,当通电时,两棒之间产生放电,形成振荡。 再取2毫米粗的铜棒做成圆环,半径为35厘米,如中的B。圆环的空隙f,宽度可用精密螺旋调节,从零点几毫米调到几毫米。当放在适当位置时,f间隙会跟随AA′产生火花放电,火花可长达6-7毫米。B环可围绕平行于AA′面的法线mn旋转,旋转到不同位置,f放电的火花长度不一样。当f处于a或a′时,完全没有火花;转动些许角度,开始会产生火花;转至b或b′时,火花最大。
(2)赫兹测出电磁波速度
赫兹最有说服力的实验是直接测出电磁波的传播速度。他用的装置如下:导体AA′(赫兹称之为原导体)在感应圈的激励下产生电磁波。AA′平面与地板垂直,在图中赫兹标了一条基线rs,下面是距离标记从离AA′中心点45厘米处计程。
实验在一间15×14米的大教室进行,在基线的12米内无任何家具。整个房间遮黑,以便观察放电火花。次回路就是那个半径为35厘米的圆环C或边长60厘米的方形导线框B。
根据麦克斯韦理论,已经知道这个速度大概是每秒3万公里,要直接测这样的速度是十分困难的。赫兹想起了20年前他的老师昆特(Kundt)用驻波测声速的方法,巧妙地设计了一个方案。他在教室的墙壁上贴了一张4米高,2米宽的锌箔,并将锌箔与墙上所有的煤气管道、水管等联接,使电磁波在墙壁遭遇反射。前进波和反射波叠加的结果就会组成驻波,。根据波动理论,驻波的节距等于半波长,测出节点的位置就可以知道波长。 赫兹沿基线rs移动探测线圈,果然在不同的位置上火花隙的长度不一样。有的地方最强,这是波腹;有的地方最弱,甚至没有火花,这是波节。
根据电容器的振荡理论赫兹算得电磁振荡的周期。从光速就是电磁波的速度的假设和测得的波长也可算出周期,两者相差大约10%,赫兹证实了电磁波的速度就是光速。
(3)观察到电磁波有聚焦、直进、反射、折射和偏振现象
为了进一步考察电磁波的性质,赫兹又设计了一系列实验,其中有聚焦、直进性、反射、折射和偏振。他用2米长的锌板弯成抛物柱面形,,柱面的焦距大约为12.5厘米。他把发射振子和接收振子分别安在两块柱面的焦线上,调整感应圈使发射振子产生电火花。当两柱面正好面对时,接收振子也会发出火花;位置离开就不产生效果,由此证明电磁波和光波一样也有聚焦和直进性的性质。赫兹还用1.5米高重500千克的大块沥青做成三棱镜,让电磁波通过,和光一样电磁波也发生折射。他测得最小偏向角为22°,三棱镜的顶角是30°,由此算出沥青对电磁波的折射率是1.69。他还用"金属栅"显示了电磁波的偏振性。
在1888年12月13日向柏林科学院作了题为《论电辐射》的报告,他以充分的实验证据全面证实了电磁波和光波的同一性。他写道:"我认为这些实验有力地铲除了对光、辐射热和电磁波动之间的同一性的任何怀疑"。
二、发现电子与原子的碰撞规律赫兹科学研究中最出色的工作是他与弗兰克合作的著名实验,通过这一实验证明了当原子受到电子的冲击激发而发射谱线时,所需要的能量是分立的。这一先驱性的工作,给玻尔的原子量子化模型以决定性的支持。因这一重要发现,赫兹与弗兰克共获1925年度的诺贝尔物理学奖。

阅读全文

与赫兹电磁波实验装置图相关的资料

热点内容
机械地意思是什么原因 浏览:640
换下旧机械硬盘怎么用 浏览:567
油点工具箱下载 浏览:182
电动车仪表总成如何加装大灯 浏览:491
c067制冷片需要什么散热器 浏览:538
换轴机械键盘如何设置 浏览:602
贱人工具箱自动标注 浏览:930
机械钳工怎么考试时间 浏览:941
兰州二手工程机械市场在什么地方 浏览:237
如何提高供电设备检修质量 浏览:421
合肥峰华机电设备有限公司怎么样 浏览:245
机床代号是什么 浏览:341
小轴承企业如何生存 浏览:392
实验室制No2发生装置图 浏览:761
生产pvc阀门的是什么机器 浏览:983
台铭超声波清洗机怎么样 浏览:465
宜宾宏一机械厂电话是多少 浏览:189
电传动装置分类 浏览:739
压力机床型号中E是什么意思 浏览:235
自来水阀门口径20什么意思 浏览:197