导航:首页 > 装置知识 > 某机械传动装置中采用了型号为6207

某机械传动装置中采用了型号为6207

发布时间:2023-01-30 13:29:20

① 带式输送机传动装置设计

一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:

1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

② 论文总体方案设计

论文总体方案设计

导语:方案设计是设计中的重要阶段,它是一个极富有创造性的设计阶段,同时也是一个十分复杂的问题,它涉及到设计者的知识水平、经验、灵感和想象力等。下面是由我整理的关于论文总体方案设计。欢迎阅读!

论文总体方案设计

一、课题:CK6150经济型数控车床进给系统及润滑系统的设计

二、小组成员:刘X、杨X、徐XX、张XX

三、总规划:

(1)引言

1、数控技术的发展

2、数控机床改造的必要性

(2)数控机床进给传动系统的分析

1、数控机床进给系统的作用 数控机床的进给传动系统常用伺服进给系统来工作。伺服进给系统的作用是根据数控系统传来的指令信息,进行放大后控制执行部件的运动,它不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。因此,数控机床的进给系统,尤其是轮廓控制系统,必须对进给运动的位置和速度两方面同时实现自动控制。

2、数控机床对进给传动系统的要求 摩擦阻力小 运动惯量小 传动精度与定位精度高 进给调速范围宽 响应速度快 无间隙传动 稳定性好,寿命长 使用维护要方便

3、进给传动系统的组成 一个典型的数控机床闭环控制进给系统,通常由位置比较、放大元件,驱动单元,机械传动装置和检测反馈元件等组成,其中,机械传动装置是位置控制环中的重要环节。

机械传动装置是指将驱动源旋转运动变为工作台直线运动的整个机械传动链,包括减速装置、联轴器、丝杠螺母副等。减速装置采用齿轮机构和带轮机构,导向元件采用导轨。进给系统的精度、灵敏度和稳定性,将直接影响工件的加工质量。数控机床常见的进给传动系统主要由电动机、联轴器、滚珠是杠副、轴承等组成,由于电动机有步进电动机、直流伺服电动机、交流伺服电动机等几种形式,因此,数控机床进给传动系统有3种类型,即步进电动机伺服进给系统、直流伺服电动机进给系统、交流伺服电动机进给系统。

(3)进给传动系统的选型与设计

经济型的数控机床动力系统可分为三类

一、步进电机式:

采用步进电机驱动与定位,是开环系统,同时限于造价,不再采用其他措施补偿位置误差。由于目前功率步进电机力矩还不能太大,所以机床的空选档速度较低,一般用于半精加工。这种系统具有2-3插补功能,通过软件控制接口,可以加工锥面,螺纹,简单外形的曲面等十分灵活。由于性价比较恰当,一般中小型企业在技术力量和财力上都比较容易实现,因此在全国较容易推广和普及。

二、交流点位式:

采用交流电机变频驱动,用光栅数字点位控制,与步进电机相比,提高了定位精度。光栅分辨率可达0.001mm,重复定位精度为0.005mm,所以加工精度较高。由于采用交流电机驱动,功率大,可进行大切削量加工零件加工中心,效果尤为显著。目前,交流点位式系统只能加工柱面,不能加工曲面和螺纹,功能上有限,而且成本高。使性价比相对下降,一般用于大企业或专业化工厂使用,国内用的很少。

三、半闭环连续控制式:

采用直流伺服电动机驱动,以脉冲编码器检测位置,实现半闭环连续控制。由于采用高性能直流伺服电动机驱动,扭矩大,速度高,过载能力强,可以进行强力切削。当丝杠螺母在6mm左右时,快速可达8~9m/min,且不丢步,效率高。该系统功能齐全,还带有可编程序控制器,使强操作大大简化。 就以上三种驱动方式而言,各有利弊。经过比较选择直流伺服电机驱动因为速度高,过载能力强,且拥有可编程序控制器,易学易用,在机床伺服控制系统中,步进电机开环执行单元,具有控制方便可靠,价格低,且适合于开环控制等特点,因此在简易数控机床中得到广泛的应用。但由于步进电机步距角、功率较小,存在振荡等弱点的限制,在高精度大功率应用场合并不很适合,故考虑采用伺服电机控制。

(4)机械传动装置的`选择与设计

数控机床的传动装置是将电动机的旋转运动变为工作台的直线运动的整个机械传动链及其附属结构。

包括齿轮减速机,丝杠螺母副,导轨,工作台等。在数控机床数字调节技术当中,传动装置是伺服系统中的一个重要环节,因此,数控机床的传动装置与普通机床中传动装置上有重要差别,故它的设计与普通机床传动装置的设计不同。数控机床传动装置的设计要求除了有较高的定位精度外,还应具有良好好的动态响应特性,即系统跟踪指令信号的响应要快,稳定性要好,为确保数控机床进给系统的传动精度和工作稳定性,在设计机械传动装置时,通常提出了无间隙,低摩擦,低惯量,高刚度,高谐振频率有适应阻尼比的要求。

设计任务要完成的设计,一般来说此种系统的传动装置采用螺旋传动。 螺旋传动主要用来把旋转运动转变为直线运动,或把直线运动变为旋转运动。其中,有传递能量为主的传力螺旋;有以传递运动为主,并要求有较高的传动精度的传动螺旋;还有调节零件相互位置的调整螺旋。螺旋传动机构又有滑动丝杠螺母,滚珠丝杠螺母和液压丝杠螺母机构。

在经济型数控机床的进给系统中,螺旋传动主要来实现精密的进给运动,并广泛采用滚珠丝杠副传动机构。 选用滚珠丝杠副传动机构,因此此种机构有如下特点:

a.传动效率高,摩擦损失小。滚珠丝杠副的传动效率为η:0.92~0.96,比常规的丝杠螺母副提高了3~4倍(滑动丝杠效率为0.2~0.4),因此,功率消耗只相当于常规丝杠副的1/4~1/3。

b.给予适当预紧,可消除丝杠和螺母的螺纹间隙,反向时就可以消除空程死区。定位精度高,刚度好。 c.有可逆性,可以从旋转运动转化为直线传动,也可以从直线传动转化为旋转运动,即丝杠和螺母都可以作为主动件。

d.磨损小,使用寿命长,精度保持性好。

(5)机床润滑方式的选择与设计

润滑方式总体来说分为手动润滑和自动润滑,前者在现代化的加工制造业中使用已变得越来越少。

本课题的润滑系统有六个润滑点:

床鞍的两个导轨(2点)

托板上的两个导轨(2点)

纵向进给丝杠螺母副的润滑(1点)

横向滚珠丝杠副的润滑(1点)

VERSAⅡ电子程控润滑器C型。由一套电子装置控制电子齿轮泵,以时间或计数的周期方式工作,适用于单阻尼的润滑系统。广泛用于机械制造、纺织、冲压、包装机械、印刷机械等领域,是一种多用途,高性能的程控润滑设备。因此选择VERSAⅡ电子程控润滑器能满足润滑系统的要求。

;

③ 螺旋千斤顶的设计

一、设计任务书
设计带式输送机的传动装置。
工作条件:带式输送机连续单向运转,工作平稳无过载,空载起动,输送带速度允许误差±5% ;两班制工作(每班按8小时计算),使用期限10年,小批量生产。
具体的设计任务包括:
(1)传动方案的分析和拟定;
(2)电动机的选择,传动装置的运动和动力参数的计算;
(3)传动零件的设计(带传动、单级齿轮传动);
(4)轴和轴承组合设计(轴的结构设计,轴承组合设计,低速轴弯、扭组合强度校核,低速轴上轴承寿命计算);
(5)键的选择及强度校核(低速轴上键的校核);
(6)联轴器的选择;
(7)减速器的润滑与密封;
(8)减速器装配草图俯视图设计(箱体、附件设计等);
二、传动方案的拟定及电动机的选择
已知条件:运输带的有效拉力 F=3000N,传送带的速度为 v=2m/s,滚筒直径为 D=300mm。连续单向运转,工作平稳无过载。
1、 传动方案的拟定
采用V带传动及单级圆柱齿轮传动。
(1)、类型:采用Y系列三相异步电动机
(2)、容量选取:工作机有效功率:
Pw=FV/1000=3000 2/1000=6KW
设 :V型带效率
:滚动轴承效率
:闭式齿轮传动(设齿轮精度为8级)效率
:弹性联轴器效率
:卷筒轴效率
ŋ6: 滚筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
传动装置总效率为:
ŋ总= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
电动机所需功率为:
Pd=FV/1000×0.83=7.23KW
查《机械设计基础课程设计》附录二, 选取电动机的额定功率 Pe=7.5kW
(3)、确定电动机转速
滚筒转速为:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因带传动的传动比2-4为宜,齿轮传动的传动比3-5为宜,则
最大适宜传动比为
最小适宜传动比为
则电动机转速可选范围为:
nd=i =127.4×(6~20)=764.4~2548 r/min
可选的同步转速有
1000r/min 1500r/min 3000r/min
三种,三种方案的总传动比分别为:
i =7.61 i =11.3 =22.76
考虑到电动机转速越高,价格越低,尺寸越小,结构更紧凑,故选用同步转速为 的电动机。
查《机械设计基础课程设计》附录二,得此电动机的型号为 Y132M-4。
电动机型号:Y132M-4
额定功率 :7.5
满载转速 :1440
启动转矩 :2.2
最大转矩 :2.2
由电动机具体尺寸参数 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底脚安装尺寸 :216 178
地脚螺孔直径 :12
轴外伸尺寸 :38 80
装键部位尺寸 :10 33 38
2、 计算传动装置的总传动比并分配传动比
(1)、总传动比: i总=11.3
(2)、分配传动比:取带传动比 i带=2.8,则减速器传动比 i齿=11.3/2.8=4。
三、 传动装置的运动和动力参数计算
1、各轴转速计算
nⅠ= /i带=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齿=514.286/4.0=127.4 r/min
滚筒n筒=nⅡ=127.4 r/min
2、各轴输入功率计算
PⅠ= Pd ŋ带=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各轴输入转矩计算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、传动零件的设计计算
(一)、V带及带轮的设计
已知条件:电动机型号为 Y132M-4 中心高132mm,电动机的输出功率为 7.5kw。满载转速为 1440r/min。每天运转时间为16小时(八小时每班,两班制),I轴转速为 514.286 r/min
齿轮传动传动比:
i=nⅠ/nⅡ=4
(1) 、确定计算功率 每天运转时间为16小时的带式输送机的工况系数 =1.2。则 = Pe=1.2×7.5=9 kw
(2)、 选择V带型号
查表知选A型带
并考虑结构紧凑性等因素,初选用窄V带SPA型。
(3)、确定带轮的基准直径 和
I、初选小带轮直径
一般取 ,并取标准值。查表取小带轮直径为125m m。机中心高为 H=132mm,由 ,故满足要求。
II、验算带速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般应使 ,故符合要求。
III、计算大带轮直径
要求传动比较精确,考虑滑动率 ,取 =0.01
有 =(1- )i带 =(1-0.01)×125×2.825=346.959mm
取标准值 =350mm
则传动比 i=2.8
对减速器的传动比进行修正,得减速器的传动比 i=4
从动轮转速为 n2=127.4r/min
IV、确定中心距和带长
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算带长
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
选取相近的标准长度 Ld=2500mm
【3】 确定中心距
实际中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、验算小轮包角
【1】计算单根V带的许用功率
由SPA带的 =125mm, n=1440r/min
i带=2.8
得 =1.93kw
又根据SPA带 Δ =0.17kw
又由 Ld=2500mm
查表,长度系数
=180°-Δ×60°/a=164.7°
同时由 =164.7°得包角系数 Ka=0.964
【2】、计算带的根数z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA带推荐槽数为1-6,故符合要求。
VI、 确定初拉力
单位长度质量 q=0.1kg/m
单根带适宜拉力为:=161.1N
VII、 计算压轴力
压轴力为:
FQ=2z sin( a1/2)= 1596.66N
VIII、张紧装置
此处的传动近似为水平的传动,故可用调节中心距的方案张紧。
VIIII、带轮的结构设计
已知大带轮的直径da2=350mm,小带轮的直径为 da1=125mm。对于小带轮,由于其与电动机输出转轴直接相连,故转速较高,宜采用铸钢材料,
又因其直径小,故用实心结构。
对于大带轮,由于其转速不甚高,可采用铸铁材料,牌号一般为HT150或HT200,
又因其直径大,故用腹板式结构。

(二)、齿轮设计
已知条件:已知输入功率P1=6.94kw ,转速为 n1=514.286 r/min,齿数比 u=4,单向运转,载荷平稳,每天工作时间为16小时,预计寿命为10年。
(1)、选定齿轮类型、材料、热处理方式及精度等级
A、采用直齿圆柱齿轮传动。
B、带式输送机为一般机械,速度不高,选用8级精度。
C、查表 小齿轮材料为45钢,调质处理,平均齿面硬度为250HBS。
大齿轮材料为45钢,正火处理,平均齿面硬度为200 HBS。
(2)、初步计算齿轮参数
因为是闭式齿面齿轮传动,故先按齿面接触疲劳强度设计,按齿根弯曲疲劳强度校核。
小齿轮分度圆的直径为
A、 Ad==85
B、 计算齿轮转矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齿宽系数
齿数比为u=4
D、 取 ,则大齿轮的齿数: =84
E、 接触疲劳极限
[σH]lim =610MPa, [σH]lim =500MPa
应力循环次数
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查图得接触疲劳寿命极限系数为 =1, =1.1
取安全系数SH=1
则接触应力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa

则 =85
>=66mm 取d1=70mm
(3)、确定传动尺寸
1、计算圆周速度
v=pd1n1/60*1000=1.77m/s
2、计算载荷系数
查表得使用系数
由 v=1.77 ,8级精度,查图得动载系数
查表得齿间载荷分配系数
查表得齿向载荷分布系数 (非对称布置,轴刚性小)

3、 确定模数: m=d1/z1=70/21=3.33mm,取标准模数为 .5
4、计算中心距:
a=m(z1+z2)/2=183.75mm
圆整为a=185mm
5、精算分度圆直径
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、计算齿宽
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、计算两齿轮的齿顶圆直径、齿根圆直径
小齿轮:
齿顶圆直径:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齿根圆直径:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齿轮:
齿顶圆直径:
da2=297.5mm
齿根圆直径:
df2=285.25mm
(4)、校核齿根弯曲强度

式中各参数的含义
1、 的值同前
2、查表齿形系数 Ya1=2.8 Ya2=2.23
应力校核系数 Ysa1=1.55 Ysa2=1.77
4、许用弯曲应力
查图6-15(d)、(c)的弯曲疲劳强度系数为
=1

查图得弯曲疲劳寿命系数
,取安全系数 ,故有KFN1=0.85 KFN2=0.8
满足齿根弯曲强度。
(5)结构设计
小齿轮的分度圆直径为 ,故可采用实心结构
大齿轮的分度圆直径为 ,故应采用腹板式结构
(6)、速度误差计算
经过带轮和齿轮设计后,
滚筒的实际转速n= /i= =127.57r/min
滚筒理论要求转速为 127.4r/min
则误差为
故符合要求。
五、轴的设计计算
(一)、低速轴的设计校核
低速轴的设计
已知:输出轴功率为 =6.66KW,输出轴转矩为 =499.286Nm,输出轴转速为 =127.4r/min,寿命为10年。
齿轮参数: z1=21, z2=84,m=3.5,
1、 选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,查得
2、 求输入轴的功率,转速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小轴径
最小轴径
当选取轴的材料为45钢,C取110
=
输出轴的最小直径显然是安装联轴器处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
d=(1+5%)41.3=43.4mm
则d=45mm
为使所选直径 与联轴器的孔径相适应,故需同时选择联轴器。
联轴器的扭矩 ,查表得 ,又TII=499.286Nm,则有
Tc=kT=1.5 499.286Nm=748.9Nm
理论上该联轴器的计算转矩应小于联轴器的公称转矩。
从《机械设计基础课程设计》 查得采用 型弹性套柱联轴器。
该联轴器所传递的公称转矩
取与该轴配合的半联轴器孔径为 d=50mm,故轴径为d1=45mm
半联轴器长 ,与轴配合部分长度 L1=84mm。
轴的结构设计
装联轴器轴段I-II:
=45mm,因半联轴器与轴配合部分的长度为 ,为保证轴端挡板压紧联轴器,而不会压在轴的端面上,故 略小于 ,取 =81mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 =50mm,
轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取 =45mm.
(3)、装左轴承轴段III-VI:
由于圆柱斜齿轮没有轴向力及 =55,初选深沟球轴承,型号为6211,其尺寸为
D×d×B=100×55×21,故 =55。
轴段III-VI的长度由滚动轴承的宽度B=21mm,轴承与箱体内壁的距离s=5~10(取 =10),箱体内壁与齿轮距离a=10~20mm(一般取 )以及大齿轮轮毂与装配轴段的长度差(此处取4)等尺寸决定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、装齿轮轴段IV-V:
考虑齿轮装拆方便,应使d4>d3=55mm, 轴段IV-V的长度由齿轮轮毂宽度 =80mm决定,取 =77mm。
(5)、轴环段V-VI:
考虑齿轮右端用轴环进行轴向定位,取d5=70mm。
轴环宽度一般为轴肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考虑右轴承用轴肩定位,由6211轴承查得轴肩处安装尺寸为da=64mm,取d6=60mm。
轴段VI-VII的长度由轴承距箱体内壁距离 ,轴环距箱体内壁距离 决定,则 =19mm。
(7)、右轴承安装段VII-VIII:
选用6211型轴承,d7=55mm,轴段VII-VIII的长度由滚动轴承宽度B=21mm和轴承与箱体内壁距离决定,取 。
轴总长为312mm。
3轴上零件的定位
齿轮、半联轴器与轴的周向定位均用平键连接。
按 =45mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为70mm。
半联轴器与轴的配合代号为
同理由 =60mm,选用平键为10×8×70,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4考虑轴的结构工艺性
轴端倒角取 .为便于加工,齿轮、半联轴器处的键槽分布在同一母线上。
5、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,
并找出圆锥滚子轴承的支反力作用点。由表查得代号为6211轴承 ,B=21mm。则
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、计算齿轮上的作用力
输出轴大齿轮的分度圆直径为
d2=294mm,
则圆周力

径向力

轴向力
Fa=Ft tan =Ft tan 0°=0
(2)、计算轴承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、画弯矩图
截面C处的弯矩
a、 水平面上的弯矩

b、 垂直面上的弯矩
c、 合成弯矩M
d、 扭矩
T=T =499286Nmm

e、 画计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面B、C处的当量弯矩为

=299939Nmm
f、 按弯扭组合成应力校核轴的强度可见截面C的当量弯矩最大,故校核该截面的强度

查表得 ,因 ,故安全。
A截面直径最小,故校核其强度

查表得 ,因 ,故安全。
g、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。

(二)、高速轴的设计校核
高速轴的设计
已知:输入轴功率为PⅠ=6.94 kw ,输入轴转矩为TⅠ= 128.87Nm
,输入轴转速为nⅠ=514.286 r/min,寿命为10年。
齿轮参数: z1=21,z2=84,m=3.5, 。
1、选择轴的材料
该轴无特殊要求,因而选用调质处理的45钢,由表查得
1、 求输出轴的功率 ,转速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小轴径
最小轴径 d min=
由表可知,当选取轴的材料为45钢,C取110
d min=26.2 mm
此最小直径显然是安装大带轮处轴的直径 。
考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。
则 d min=1.05 26.2=27.5mm,取 =28 mm
2、 轴的结构设计
(1)、装带轮轴段I-II:
=28 mm,轴段I-II的长度根据大带轮的轮毂宽度B决定,已知 =60mm,为保证轴端挡板压紧带轮,而不会压在轴的端面上,故 略小于 ,故取 =57mm。
(2)、装左轴承端盖轴段II-III:
联轴器右端用轴肩定位,取 ,轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取
(3)、装左轴承轴段III-IV:
由于圆柱直齿轮无轴向力及 ,初选深沟球轴承,型号6207,其尺寸为 , 。
轴段III-VI的长度由滚动轴承的宽度,滚动轴承与箱体内壁距离 ,等尺寸决定: 。
(4)、间隙处IV-V:
高速轴小齿轮右缘与箱体内壁的距离 。
取 ,
(5)、装齿轮轴段V-VI:
考虑齿轮装拆方便,应使 ,取 ,轴段V-VI的长度由齿轮轮毂宽度B=80mm决定,取 。
(6)、轴段VI-VII:
与轴段IV-V同。 。
(7)、右轴承安装段VII-VIII:
选用6207型轴承, B=17mm ,轴VII-VIII的长度取
轴总长为263mm。
3、 轴上零件的定位
小齿轮、带轮与轴的周向定位均用平键连接。
按 =28mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为45mm。
带轮与轴的配合代号为 。同理由 ,选用平键为 ,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。
4、 考虑轴的结构工艺性
轴端倒角取 。
为便于加工,齿轮、带轮处的键槽分布在同一母线上。
7、轴的强度验算
先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,并找出圆锥滚子轴承的支反力作用点。查《机械设计课程设计指导书》得代号为6207的深沟球轴承 a=17mm,则
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、计算齿轮上的作用力
输出轴小齿轮的分度圆直径为
d1=mz1=3.5 21=73.5mm
则圆周力

径向力

轴向力 Fa=0
(2)、计算轴承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力

RVA=3220N
RVB= =347N
【3】、截面C处的弯矩
1、 水平面上的弯矩

2、 垂直面上的弯矩

3、 合成弯矩M

4、 扭矩
T= TⅠ= 128.87Nm
5、 计算弯矩
因单向运转,视扭矩为脉动循环, ,则截面C、A、D处的当量弯矩为

6 、 按弯扭组合成应力校核轴的强度
可见截面A的当量弯矩最大,故校核该截面的强度

查表得 ,因 ,故安全。
截面D的直径最小,故校核该截面的强度

因 ,故安全。

5、 判断危险截面
剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。
从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。

六、键连接的校核计算
键连接设计
I、 带轮与输入轴间键连接设计
轴径 ,轮毂长度为 ,查手册,选用A型平键,其尺寸为 。
现校核其强度:
, , 。

查手册得 ,因为 ,故满足要求。
II、 小齿轮与输入轴间键连接设计
轴径 d=50mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
TI=128872Nmm, , 。

查手册得 ,因为 ,故满足要求。
键连接设计
III、 大齿轮与输出轴间键连接设计
轴径d=60mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为
现校核其强度:
TII=499.286 Nm, , 。

查手册得 ,因为 ,故满足要求。
IV、 半联轴器与输出轴间键连接设计
轴径 ,半联轴器的长度为 ,查手册,选用A型平键,其尺寸为 .
现校核其强度:
, , 。

查手册得 ,因为 ,故满足要求。
七、 滚动轴承的选择及寿命计算
滚动轴承的组合设计及低速轴上轴承的寿命计算
已知条件:
采用的轴承为深沟球轴承。
一、滚动轴承的组合设计
1、滚动轴承的支承结构
输出轴和输入轴上的两轴承跨距为H1=155mm,H2=150mm ,都小于350mm。且工作状态温度不甚高,故采用两端固定式支承结构。
2、滚动轴承的轴向固定
轴承内圈在轴上的定位以轴肩固定一端位置,另一端用弹性挡圈固定。
轴承外圈在座孔中的轴向位置采用轴承盖固定。
3、滚动轴承的配合
轴承内圈与轴的配合采用基孔制,采用过盈配合,为 。
轴承外圈与座孔的配合采用基轴制。
4、滚动轴承的装拆
装拆轴承的作用力应加在紧配合套圈端面上,不允许通过滚动体传递装拆压力。
装入时可用软锤直接打入,拆卸时借助于压力机或其他拆卸工具。
5、滚动轴承的润滑
对于输出轴承,内径为d=55mm,转速为n=127.4 ,则
,查表可知其润滑的方式可为润滑脂、油浴润滑、滴油润滑、循环油润滑以及喷雾润滑等。
同理,对于输入轴承,内径为35,转速为514.286 r/min
,查表可知其润滑的方式可为润滑脂、油 浴润滑、滴油润滑、循环油润滑以及喷雾润滑等
6、滚动轴承的密封
对于输出轴承,其接触处轴的圆周速度

故可采用圈密封。
二、低速轴上轴承寿命的计算
已知条件:
1轴承 ,

2轴承

轴上的轴向载荷为0径向载荷为
查表得 ,则轴承轴向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此时
Fs1 > Fs2
则轴承2的轴向载荷

轴承1轴向载荷为
.
且低速轴的转速为127.4
预计寿命 =16 57600h
I、计算轴承1寿命
6、 确定 值
查《机械设计基础课程设计》表,得6207基本动荷 ,基本额定静载荷 。
7、 确定e值
对于深沟球轴承,则可得 e=0.44
8、 计算当量动载荷P

<e
由表查得 ,则

9、 计算轴承寿命
由 =
查可得 ,取 ;查表可得 (常温下工作);6207轴承为深沟球轴承,寿命指数为 ,则
>
故满足要求。
II、计算轴承2寿命
1、确定 值
查《机械设计基础设计》,得6211型轴承基本额定动载荷 ,基本额定静载荷 。
2、 确定e值
对于深沟球轴承6200取,则可得e=0.44
4、 计算当量动载荷P


由表10-5查得 ,则
P=Fr2=1687N
5、 计算轴承寿命

查表10-7,可得 ,取 ;查表10-6可得 (常温下工作);深沟球轴承轴承,寿命指数为 ,则
> ,故满足要求。
八、 联轴器的选择
与低速轴轴端相连的半联轴器为弹性套柱销联轴器,型号为 ,其公称转矩为 ,而计算转矩值为:
,故其强度满足要求。
九、箱体结构设计
箱体采用灰铸铁铸造而成,采用剖分式结构,由箱座和箱盖两部分组
成,取轴的中心线所在平面为剖分面。
箱体的强度、刚度保证
在轴承座孔处设置加强肋,做在箱体外部。外轮廓为长方形。
机体内零件的密封、润滑
低速轴上齿轮的圆周速度为:

由于速度较小,故采用油池浸油润滑,浸油深度为:

高速轴上的小齿轮采用溅油轮来润滑,利用溅油轮将油溅入齿轮啮合处进行润滑。
3、机体结构有良好的工艺性.
铸件壁厚为8mm,圆角半径为R=5。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到传动零件啮合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M8螺钉紧固。
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 定位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
F 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.

总结:机箱尺寸

名称 符号 结构尺寸/mm
箱座壁厚
8
箱盖壁厚
8
箱座凸缘厚度
12
箱盖凸缘厚度
12
箱底座凸缘厚度
20
箱座上的肋厚
7
箱盖上的肋厚
7
轴承旁凸台的高度
39
轴承旁凸台的半径
23
轴承盖的外径
140/112



钉 直径
M16
数目
4
通孔直径
20
沉头座直径
32
底座凸缘尺寸
22
20



栓 轴承旁连接螺栓直径
M12
箱座的连接螺栓直径
M8
连接螺栓直径
M18
通孔直径
9
沉头座直径
26
凸缘尺寸 15
12
定位销直径
6
轴承盖螺钉直径
M8A
视孔盖螺钉直径
M6
吊环螺钉直径
M8
箱体内壁至轴承座端面距离
55
大齿轮顶圆与箱体内壁的距离
12
齿轮端面与箱体内壁的距离
15

十、润滑与密封
滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定
十一、设计小结
十二、参考资料
1《画法几何及工程制图 第六版》朱辉、陈大复等编 上海科学技术出版社
2、《机械设计基础课程设计》 陈立德主编 高等教育出版社
3、《机械设计计算手册 第一版》王三民主编 化学工业出版社
4、《机械设计 第四版》邱宣怀主编 高等教育出版社

我的设计作业F=3000N V=2m/s D=300mm

④ 二级直齿轮传动减速器设计

以下 也是我借用的
应该也可以套用
希望能帮助你

设 计 说 明 书 一、前 言 (—)课程设计的目的(参照第1页)机械零件课程设计是学生学习《机械技术》(上、下)课程后进行的一项综合训练,其主要目的是通过课程设计使学生巩固、加深在机械技术课程中所学到的知识,提高学生综合运用这些知识去分析和解决问题的能力。同时学习机械设计的一般方法,了解和掌握常用机械零部件、机械传动装置或简单机械的设计方法与步骤,为今后学习专业技术知识打下必要的基础。(二)传动方案的分析(参照第10页) 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。带传动承载能力较低.在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。本设计采用的是单级直齿轮传动(说明直齿轮传动的优缺点)。说明减速器的结构特点、材料选择和应用场合(如本设计中减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成)。已知输送带的有效拉力Fw=2350,输送带的速度Vw=1.5,滚筒直径D=300。连续工作,载荷平稳、单向运转

⑤ 单级圆柱齿轮减速器图 就图纸 要有详细尺寸

设计题目:单级圆柱齿轮减速器
计算过程及计算说明
一、传动方案拟定
第九组:设计单级圆柱齿轮减速器和一级带传动

带式输送机的传动装置简图
1-电动机;2-三角带传动;
3-减速器;4-联轴器;
5-传动滚筒;6-皮带运输机
1、传动方案的分析与拟定
(1) 工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,小批量生产,工作为二班工作制,环境清洁。
(2) 原始数据:滚筒圆周力F=1900N;带速V=2.55m/s;
滚筒直径D=240mm;滚筒长度L=250mm。
3、方案拟定:

采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。

二、电动机选择
1、电动机类型的选择: Y系列三相异步电动机
2、电动机功率选择:
(1)传动装置的总功率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.982×0.97×0.99×0.96
=0.85
(2)电机所需的工作功率:
P工作=FV/1000η总
=1900×2.55/1000×0.85
=5.7KW
查手册得 P额 = 7.5kw
3、确定电动机转速:计算滚筒工作转速:
n筒=60×1000V/(πD)
=60×1000×2.25/π×500
=97.45r/min
按推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围ig=3~4。取V带传动比ip=2.5~3.5,则总传动比理时范围为I总=7.5~14。
4、确定电动机型号
故电动机转速的可选范围为
Nd =i总×nw=(7.5~14)×97.45=731~1364r/min
适合这一范围的有750r/min和1000r/min,因此选择电动机的型号为Y系列160M-6,n满=970r/min.
三、计算总传动比及分配各级的伟动比
1、总传动比:i总=n电动/n筒=970/97.45=9.95
2、分配各级转动比
总传动比等于各传动比的乘积:i总=i齿轮×i带
取齿轮i带=3(单级减速器i=2.5~3.5合理)
∵i总=i齿轮×i带
∴i齿轮=i总/i带=9.95/3=3.32
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
n0=n满=970 r/min
nI=no/i带=970/3=323(r/min)
nII=nI/i齿轮=323/3.32=97.29(r/min)
nIII= nII =97.29(r/min)
2、 计算各轴的功率(KW)
Po=P工作=5.7KW
Ⅰ轴: PI=Poη带=5.7×0.96=5.5KW
Ⅱ轴:PII=PI×η轴承×η齿轮=5.5×0.98×0.97 =5.2KW
卷筒轴:pIII= PII×η轴承×η联轴器=5.2×0.98×0.99=5.05 KW
3、 计算各轴扭矩(N•mm)
To=9550Po/no=9550×5.7/970=56.12 N•m
TI=9550PI/nI=9550×5.5/323=162.62N•m
TII=9550PII/nII=9550×5.2/97.29=510.43N•m
TIII=9550PIII/nIII=9550×5.05/97.29=715.22N•m
轴号 功率
P/kW N /(r.min-1) /
(N﹒m)
i
0 5.7 970 56.12 2.5
1 5.5 323 162.62
2 5.2 97.29 510.43 4.02
3 5.05 97.29 495.71 1

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本P130表8.12得:kA=1.1
PC=KAP=1.1×7.5=8.25KW
nI==970r/min
由课本P131图8.12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
查资料表6-5,6-6
则取dd1=125mm>dmin=75
dd2=nI/ nII•dd1=970/323×125=375mm
由课本P115表8-3,取dd2=375mm
实际转动比i= dd2/dd1 =375/125=3
带速V:V=πdd1nI/60×1000
=π×125×970/60×1000
=6.3m/s(带速合适)
(3) 确定带长和中心矩
根据课本P132式(8-14)得
0.7(dd1+dd2)≤a0≤2(dd1+dd2)
0.7(125+375)≤a0≤2×(125+375)
所以有:350mm≤a0≤1000mm
预选a0=650
由课本P132式(8-15)得带的基准长度:
L0=2a0+1.57(dd1+dd2)+(dd2+dd1)/4a0
=2×650+1.57(125+375)+(375+125)2/(4×650)
=2181mm
根据课本P117表8.4取基准长度:Ld=2240mm
根据课本P132式(8-16)得:
a≈a0+(Ld-L0)/2=650+(2240-2181)/2
=679.5mm
amin=a-0.015 Ld =679.5-0.03×2240=747mm
amax=a+0.015 Ld =679.5+0.03×2240=646mm
(4)验算小带轮包角
一般使α1≥1200(特殊情况下允许α1≥900,若不满足此条件,可适当增大中心距或减小两带轮的直径差。
根据课本P132式(8-17)得
α1=1800-【(dd2-dd1 )/a】×57.30
=1800-【(375-125)/679.5】×57.30
=158.90>1200(满足)
(5)确定带的根数
由式 确定V带根数,
查6-3表得 =1.18kW,查6-7表得 =0.11kW
查6-2表得 =0.99, =0.89
则 Z=PC/((P0+△P0)• =2.71/(0.97+0.11)×0.99×0.89
= 2.47 故要取3根A型V带
6)计算轴上压力
由课本P121表8-6查得A型普通V带的每米长质量q=0.1kg/m,由课本P132式(8-19)单根A型普通V带的初拉力:
F0=(500PC/ZV)×(2.5/Kα-1)+qV2
=(500×2.64/3×4.92)×(2.5/0.98-1)+0.1×4.922]N
=141.1N
则作用在轴承的压力FQ,由课本P133式(8-20)
FQ=2ZF0sinα1/2=2×3×141.1sin167.8/2
=840.4N
(7)设计结果:选用3根A-1600,GB11544-1997 A型普通V带
中心距a=500mm,带轮直径dd1=100mm,dd2=236mm
轴上压力FQ=840.4N
2、齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不在,所以齿轮采用软齿面。小齿轮选用45C调质,齿面硬度为220~240HBS。大齿轮选用45钢正火,齿面硬度170~210HBS;根据《机械零件设计手册》选8级精度。齿面精糙度Ra≤3.2~6.3μm
(2)按齿面接触疲劳强度设计
由d1≥76.43(kT1(u+1)/φ[σH]2)1/3
由式公式确定有关参数如下:传动比i齿=3.32
取小齿轮齿数:Z1=25。
则大齿轮齿数:Z2=iZ1=3.32×25=83
实际传动比I0=83/25=3.32
传动比误差:(i-i0)/I=(3.32-3.32)/3.32=0%<2.5% 可用
齿数比:u=i0=3.32
(3)转矩T1
T1=9550×P/n11=9550×5.7/510.43
=106.64N•m
(4)载荷系数k
由课本P185表10-11取k=1.1
(5)许用接触应力[σH]
[σH]= σHlimZNT/SH由课本P181图10-24查得:
σHlimZ1=560Mpa σHlimZ2=530Mpa
由课本P180式N=60njLh计算应力循环次数NL
NL1=60njLh =60n1rth=60×323×1×(10×300×16)
=9.3×108
NL2=NL1/i=9.3×108/4=2.93×108
由课本P183图10-27查得接触疲劳的寿命系数:
ZNT1=1 ZNT2=1.15
通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0
[σH]1=σHlim1ZNT1/SH=560×1.0/1.0Mpa
=560Mpa
[σH]2=σHlim2ZNT2/SH=530×1.15/1.0Mpa
=609.5Mpa
故得:
d1≥76.43(kT1(u+1)/φ[σH]2)1/3
=76.43[1×162620×(4+1)/1×4×5602]1/3mm
=82.28mm?
模数:m=d1/Z1=82.28/25=3.29mm
根据课本P165表10-3取标准模数:m=4mm
(6)校核齿根弯曲疲劳强度
根据课本P187(10-24)式
σF=(2kT1/bm2Z1)YFaYSa≤[σF]
确定有关参数和系数
分度圆直径:d1=mZ1=4×25mm=100mm
d2=mZ2=4×100mm=400mm
齿宽:b=φdd1=1×100mm=100mm
取b=100mm b1=105mm
(7)齿形系数YFa和应力修正系数YSa
根据齿数Z1=25,Z2=100由课本P187表10-13和表10-14相得
YFa1=2.65 YSa1=1.59
YFa2=1.34 YSa2=1.80
(8)许用弯曲应力[σF]
根据课本P180(10-14)式:[σF]= σFlim YSTYNT/SF
由课本P182图10-25C查得:σFlim1=210Mpa σFlim2 =190Mpa
由课本P183图10-26查得:YNT1=1 YNT2=1
试验齿轮的应力修正系数YS1=1.59 YS2=1.80
按一般可靠度选取安全系数SF=1.3
计算两轮的许用弯曲应力
[σF]1=σFlim1 YSTYNT1/SF=210/1.3Mpa
=162Mpa
[σF]2=σFlim2 YSTYNT2/SF =190×/1.3Mpa
=146Mpa
将求得的各参数代入式
σF1=(2kT1/bm2Z1)YFa1YSa1
=(2×1.1×48700/50×22×25) ×2.65×1.59Mpa
=90.3Mpa< [σF]1
σF2=σF1YF2YS2/YF1YS1=(90.3×1.34×1.8/2.65×1.59)Mpa
=84Mpa< [σF]2
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=m/2(Z1+Z2)=4/2(25+100)=500mm
(10)计算齿轮的圆周速度V
V=πd1n2/60×1000=3.14×100×97.29/60×1000
=3.78m/s
查表的选8级精度是合适的
六、轴的设计计算
输入轴的设计计算
1、按扭矩初算轴径
由已知条件可知此减速器传递的功率属中小功率,对材料无特殊要求,选用45#调质,并经调质处理,硬度217~255HBS, 抗拉强度σb=590Mpa,弯曲疲劳强度σ-1=255Mpa。[σ-1]=60Mpa
根据课本P265(14-2)式,d≥c(p/n) 1/3
C——以材料及受载情况有关的系数,根据课本P265,查表14-1,取c=102.72~118
P——高速轴的输入功率
n——高速轴的转速
d≥c(pⅡ/nⅡ) 1/3 =(102.72~118)(2.092/427)1/3mm=18~20mm
考虑有键槽,将直径增大5%,则
d=(18~20)×(1+5%)mm=(18.9~21)
∴选d=20mm
2、轴的结构设计
(1)轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,这样齿轮在轴上的轴向位置被完全确定。联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过盈配合固定。
(2)确定轴各段直径和长度
工段:d1=d=20mm 长度取L1=55mm
II段: d2=d1+2h
∵h=2c 查表得c=1.5mm
d2=d1+2h=20+2×2×1.5=26mm
∴d2=26mm
初选用6206型深沟球轴承,其内径为30mm,宽度为16mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:L2=(2+20+16+55)=93mm
III段直径d3= d2+2h =32mm
L3=L1-L=55-2=53mm
Ⅳ段直径d4=d3+2h=32+2×3=38mm
长度与右面的套筒相同,即L4=20mm
但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(26+3×2)=32mm
因此将Ⅳ段设计成阶梯形,左段直径为32mm
Ⅴ段直径d5=30mm. 长度L5=15mm
由上述轴各段长度可算得轴支承跨距L=108mm
(3)按弯矩复合强度计算
①求分度圆直径:已知d1=mz1=50mm
②求转矩:已知T1=48700N•mm
③求圆周力:Ft
根据课本P184(10-15)式得
Ft=2T1/d1=2×48700/50=1948N
④求径向力Fr
根据课本P184(10-15)式得
Fr=Ft•tanα=1948×tan200=709N
⑤因为该轴两轴承对称,所以:LA=LB=55mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=354.5N
FAZ=FBZ=Ft/2=974N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=354.5×54=19143 N•mm
(3)绘制水平面弯矩图(如图c)
截面C在水平面上弯矩为:
MC2=FAZL/2=974×54=52596N•mm
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(191432+525962)1/2=55971N•mm
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P/n2)×106=48700N•mm
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩
Mec=[MC2+(αT)2]1/2=[559712+(1×48700)2]1/2=74191N•mm
(7)校核危险截面C的强度
由式σe=Mec/0.1d33 得
σe=Mec/0.1d33=74191/0.1×323
=22.6MPa< [σ-1]=60MPa
∴该轴强度足够。

图a

2)输出轴的设计计算
由于设计的是单级减速器的输入轴,属于一般轴的设计问题,选用45#调质,并经调质处理,硬度217~255HBS, 抗拉强度σb=590Mpa,弯曲疲劳强度σ-1=255Mpa。[σ-1]=60Mpa
1、按扭矩初算轴径
根据课本P265(14-2)式,d≥c(p/n) 1/3
C——以材料及受载情况有关的系数,根据课本P265,查表14-1,取c=102.72~118
d≥c(pⅢ/nⅢ) 1/3 =(102.72~118)(2.01/106.82)1/3mm=28.5~31mm
考虑有键槽,将直径增大5%,则
d=(28.5~31)×(1+5%)mm=(30~33)
由设计手册取标准值d1=30
(1)轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。大带轮轮毂靠轴肩、平键和螺栓分别实现轴向定位和周向固定。
(2)确定轴的各段直径和长度
工段:d1=30mm L1=55mm
II段: d2=d1+2h
∵h=2c 查指导书取c=1.5mm
d2=d1+2h=30+2×2×1.5=36∴d2=36mm
初选6207型滚动球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长96mm,安装齿轮段长度为轮毂宽度为2mm。
III段直径d3= d2+2h =42mm
L3=L1-L=55-2=53mm
Ⅳ段直径d4=d3+2h=42+2×3=48mm
长度与右面的套筒相同,即L4=20mm
但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(36+3×2)=42mm
因此将Ⅳ段设计成阶梯形,左段直径为42mm
Ⅴ段直径d5=40mm. 长度L5=15mm
由上述轴各段长度可算得轴支承跨距L=108mm
(3)按弯扭复合强度计算
①求分度圆直径:已知d2=200mm
②求转矩:已知T2=9.55×(PⅡ/nⅢ)×106=187×103N•m
③求圆周力Ft:根据课本P184(10-15式得
Ft=2T2/d2=2×187×103/200=1870N
④求径向力Fr根据课本P184(10-15式得
Fr=Ft•tanα=1870×0.36379=680.6N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAY=FBY=Fr/2=680.6/2=340.3N
FAZ=FBZ=Ft/2=1870/2=935N
(2)由两边对称,书籍截C的弯矩也对称
截面C在垂直面弯矩为
MC1=FAYL/2=340.3×54=18376.2N•mm
(3)截面C在水平面弯矩为
MC2=FAZL/2=935×54=50490N•mm
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(18376.22+504902)1/2
=53730N•mm
(5)计算当量弯矩:转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C
Mec=[MC2+(αT)2]1/2=[537302+(1×187000)2]1/2
=194566N•mm
(6)校核危险截面C的强度
σe=Mec/(0.1d3)=275.06/(0.1×403)
=30.4+Mpa<[σ-1]b=60Mpa
∴此轴强度足够
七、滚动轴承的选择及校核计算
根据根据条件,轴承预计寿命
16×365×10=58400小时
1、计算输入轴承
(1).求轴承的当量动载荷P1、P2
由题目工作条件查课本P293表15-12和15-14选择载荷系数fP=1.2,温度系数ft=1。
已知轴颈d2=26mm,转速n1=427.27 r/min,假设轴承仅受径向载荷R1和R2,由直齿齿轮受力分析公式P184式10-15可得:
Ft1=2T1/d1=2×48700/50=1948N
Fr1=Ft1tan20=709N
因轴承对称齿轮分布,故R1=R2=Fr1/2=354.5N
P1=fP R1=1.2×354.5=425.4N
P2=ft XR2=1×0.56×354.5=198.52N
2.试选轴承型号
根据计算轴颈d2=26mm,初选6206型,查指导书P154附
10-2得该型号轴承的基本额定动载荷Cr=19500N,基本额定静载荷Cor=11500N。
3.由预期寿命求所需C
P1>P2,即按轴承1计算
C=P1/ft×(60n Lh/106)1/3
= 425.4×(60×427.27×58400/106)1/3
=5104.8N
因C<Cor=11500N,故选此轴承型号为6206型
2、计算输出轴承
1.求轴承的当量动载荷P1、P2
由题目工作条件查课本P293表15-12和15-14选择载荷系数fP=1.2,温度系数ft=1。
已知轴颈d2=40mm,转速n1=106.82r/min,假设轴承仅受径向载荷R1和R2,由直齿齿轮受力分析公式P184式10-15可得:Ft2=2000T2/d2=2×187×103/200=1870N
Fr2=Ft2tan20=680.6N
因轴承对称齿轮分布,故R1=R2=Fr2/2=340.3N
P1=fP R1=1.2×340.3=408.4N
P2=ft XR2=1×0.56×340.3=190.568N
2.试选轴承型号
根据计算轴颈d2=40mm,初选6207型,查指导书P154附表10-2得该型号轴承的基本额定动载荷Cr=25500N,基本额定静载荷Cor=15200N。
3.由预期寿命求所需C
P1>P2,即按轴承1计算
C=P1/ ft ×(60n Lh/106)1/3
=408.4×(60×106.82×58400/106)1/3
=2943.3N
因C<Cor=15200N,故选轴承型号为6207型
八、键联接的选择及校核计算
由于齿轮和轴材料均为刚和合金钢,故取[σP]=100Mpa
1、输入轴与大带轮轮毂联接采用平键联接
轴径d1=20mm,L1=55mm
查课本P276表14-8得,选用C型平键,得:b=6mm,h=6mm,键长范围L=14-70mm。
键长取L=L1-(5~10)=50mm。键的工作长度l=L-b=44mm。
强度校核:由P276式14-7得
σp=4T1/dhl=4×48700/20×6×44 =37Mpa<[σP](100Mpa)
所选键为:键C6×50GB/T1096
2、输入轴与齿轮联接采用平键联接
轴径d3=32mm,L3=53mm
查课本P276表14-8得,选用A型平键,得:b=10mm,h=8mm,键长范围L=22~110mm。
键长取L=L3-(5~10)=45mm。键的工作长度l=L-b=35mm。
强度校核:由P276式14-7得
σp=4T1/dhl=4×48700/32×8×35 =21.8Mpa<[σP](100Mpa)
所选键为:键A10×45GB/T1096
3、输出轴与齿轮2联接用平键联接
轴径d3=42mm,L3=53mm
查课本P276表14-8得,选用A型平键,得:b=12mm,h=8mm,键长范围L=28~140mm。
键长取L=L3-(5~10)=45mm。键的工作长度l=L-b=33mm。
强度校核:由P276式14-7得
σp=4T2/dhl=4×187000 /42×8×33 =67.5Mpa<[σP](100Mpa)
所选键为:键A12×45GB/T1096
3、输出轴与联轴器联接用平键联接
轴径d1=30mm,L1=55mm
查课本P276表14-8得,选用C型平键,得:b=8mm,h=7mm,键长范围L=18~90mm。
键长取L=L1-(5~10)=50mm。键的工作长度l=L-b=42mm。
强度校核:由P276式14-7得
σp=4T2/dhl=4×187000 /30×7×42 =84.8Mpa<[σP](100Mpa)
所选键为:键C8×50GB/T1096
第九章 箱体主要结构尺寸计算
箱体用水平剖分式结构,用HT200灰铸铁铸造而成,箱体主要尺寸计算参看唐曾宝《机械设计课程设计》(第二版)表5-1
箱体结构尺寸选择如下表:
名称 符号 尺寸(mm)
机座壁厚 δ 8
机盖壁厚 δ1 8
机座凸缘厚度 b 12
机盖凸缘厚度 b 1 12
机座底凸缘厚度 b 2 20
地脚螺钉直径 Df 16
地脚螺钉数目 N 4
轴承旁联结螺栓直径 d1 12
机盖与机座联接螺栓直径 d2 8
轴承端盖螺钉直径 d3 8
窥视孔盖螺钉直径 d4 6
定位销直径 D 6
凸台高度 h 根据低速级轴承座外径确定,
以便于扳手操作为准
箱体外壁至轴承座端面距离 l1 C1+C2+(5—8)=34
大齿轮顶圆与内机壁距离 △1 12
齿轮端面与内机壁距离 △2 12
机盖、机座肋厚 m1 ,m2 9, 9
轴承端盖外径(凸缘式) D2 101, 120

⑥ 求一级斜齿圆柱齿轮减速器设计说明书及CAD图

所有图(包括弯矩扭矩图)在我邮箱,有需要再通知我[email protected]

目 录

1. 任务书
2. 电动机的选择
3. 传动装置总传动比计算并分配传动比
4. 传动装置的运动参数和动力参数计算
5. 齿轮传动设计及计算
6. 输入轴的设计结构计算
7. 输出轴的设计结构计算
8. 滚动轴承的选择计算
9. 键的选择
10. 联轴器的选择
11. 箱体的结构设计计算
12. 润滑方式的选择
13. 润滑油的选择
14. 密封选择
15. 参考资料
16. 学习小结
17. 零件图

1. 任务书
一、 程设计的性质和目的
机械设计课程设计是把学过的各学科的理论较全面地综合应用到实际工程中
去,力求从课程内容上、从分析问题和解决问题的方法上,从设计思想上培养工
程设计能力,课程设计有以下几个方面的要求:
1. 培养综合运动机械设计课程和其他先修课程的基础理论和基础知识,以及结
合生产实践分析和解决工程实际问题的能力使所学的知识得以融会贯通,调
协应用。
2. 通过课程设计,学习和掌握一般机械设计的程序和方法,树立正确的工程设
计的思想,培养独立的、全面的、科学的工程设计能力。
3. 在课程设计的实践中学会查找、翻阅、使用标准、规范,手册,图册和相关
的技术资料等。熟悉个掌握机械设计的基本技能。

二、 课程设计的内容
1.设计题目:
带式输送机传动装置中的一级圆柱齿轮减速器
2.运动简图

3.工作条件
传动不逆转,载荷平稳,起动载荷的名义载荷的1.25倍,使用期限10年,两班制工作,输送带速度容许误差为±5%,输送带效率一般为0.94~0.96。
4.原始数据
已知条件 题号 1
输送带拉力F(N) 3.2
滚筒直径D(mm) 450
输送带速度v(m/s) 1.7

三、 完成工作量
(1) 设计说明书1份
(2) 减速器装配图1张
(3) 减速器零件图3张

四、 机械设计的一般过程
设计过程:

设计任务——总体设计——结构设计——零件设计——加工生产——安装调试

五、 课程设计的步骤
在课程设计时,不可能完全履行机械设计的全过程,只能进行其中一些的重要
设计环节,如下:
1. 设计准备
认真阅读研究设计任务书,了解设计要求和工作条件。
2. 传动装置的总体设计
首先根据设计要求,同时参考比较其他设计方案,最终选择确定传动装置的总
体布置。
3. 传动零件的设计计算
设计计算各级传动零件的参数和主要尺寸
4. 结构设计(装配图设计)
首先进行装配草图设计,设计轴,设计轴承,最后完成装配图的其他要求。在
完成装配草图的基础上,最终完成的图即正式的饿装配结构设计。
5. 完成两张典型零件工作图设计
6. 编写和整理设计说明书
7. 设计总结和答辩

六、 课程设计中应注意的问题
课程设计是较全面的设计活动,在设计时应注意以下的一些问题:
(一)全新设计与继承的问题
在设计时,应从具体的设计任务出发,充分运用已有的知识和资料进行科学、
先进的设计。
(二)正确使用有关标准和规范
为提高所设计机械的质量和降低成本,在设计中应尽量采用标准件,外购件,
尽量减少的自制件。
(三)正确处理强度,刚度,结构和工艺间的关系
在设计中任何零件的尺寸都不可能全部由理论计算来确定,而每个零件的尺寸
都应该由强度,刚度,结构。加工工艺,装配是否方便,成本高低等各方面的要
求来综合确定的。
(四)计算与图画的要求
进行装配图设计时,并不仅仅是单纯的图画,常常是图画与设计计算交叉进行
的。先由计算确定零件的基本尺寸,再草图的设计,决定其具体结构尺寸,再进
行必要的计算。

2. 电动机的选择
电动机已经系统化,系统化一般由专门工厂按标准系列成批大量生产,设计时只需根据工作载荷,工作机的特性和工作环境,选择电动机的类型,结构形式和转速,计算电动机功率,最后全顶电动机型号.
一 类型选择
电动机类型选择是根据电源种类(流或交流),工作条件(度,环境,空间,尺寸等)及载荷特点(性质,大小,起动性和过载现象)来选择的.目前广泛应用Y系列三相异步电动机(JB3074-82)是全封闭自扇冷鼠型三相异步电动机,适用于无特殊要求的各种机械设备.由于Y系列电动机具有交好的起动性能,因此,也适用于某些对起动转矩有较高要求的机械,如压缩机等.
二 电动机功率确定
电动机功率是根据工作机容量的需要来确定的.电动机的额定功率应等于或大于电动机所需功率Pw
1 工作机所需功率Pw
根据公式计算:已知工作机阻力Fw和速度Vw则工作机所需功率Pw为:

式中:Fw-工作机阻力,N
Vw-工作机线速度,m/s
将数据 Fw=3.2kN
带入公式 =5.44kW
2输出功率Pd
已知Pw=5.44kW
由任务要求知:
查表得:
代入得:
由公式
选择额定功率7.5kW的电动机
在计算传送装置的总功率时,应注意以下几点:
1)取传动副效率是否以包括其轴效率,如包括则不应计算轴承效率
2)轴承的效率通常指-对轴承而言
3)同类性的几对传动副,轴承,或联轴器,要分别考虑效率
4)当资料给出的效率为-范围时,一般可以取中间值,如工作条件差,加工条件差,加工精度低或维护不良时应取低值,反之应取高值.
3确定工作机转速
额定功率相同的类型电动机,可以有几种转速供选择,如三相异步电动机就有四种常见 同步转速,即:3000r/min,1500r/min,1000r/min,750r/min电动机的转速高,极对数少,尺寸和质量叫,价格便宜,但机械传动装置总转动比加大,结构尺寸偏大,成本也变高,所以选择电动机转速时必须作全面分析比较,首先满足主要要求,尽量兼顾其他要求.
公式:
代入数据:V=1.7m/s,d=450mm(注:式中为输送带速度为滚筒转矩)

为了便于选择电动机转速,需要先考虑电动机转速得可选范围。由《机械设计课程设计》P6表2-1查得V带传动常用得传动常用得传动范围i链=2~5,i齿3~5,则电动机转速可选范围为:

nd=i链*i齿*nw=(2~5)*(3~5)*72.2=(6~25)*72.2=433.2~1805r/min

4型号选择
综合考虑电动机和转动装置的尺寸,结构和带装动,及减速器的转动比,故查表知电动机型号可选择:Y132M-4.
(注:表格在课程设计书264页)
以下附电动机选择计算表:
电动机类型 Y系列一般用三相异步电动机
选择电动机功率
Pw=5.44(kW)

输出功率:

确定电动机转速
nd=433.2-1805r/min
型号选择 Y132M-4

(注:参考选择表均在《课程设计》书中:P10,P264)

3. 传动装置总传动比计算并分配传动比
电动机选定后,按照电动机的满载转速n及电动机的传速n,可确定传动装置的总传动比
i=nm/nw
当各级传动机构串联时,传动装置的总传动比是各级传动比的连乘积,即i=i1*i2*i3……in

式中i1、i2、i3……in分别为各级的传动比。

i总=nm/nw=满载转速/工作机转速
由传动方案可知,传动装置的总传动比等于各级合理地分配各级传动比,在传动装置总体设计中很重要地,它将直接影响到传动装置外廓尺寸.质量.润滑条件.成本地高低.传动零件地圆周速度大小及精度等级地高低。要同时满足各方面地要求是不现实的,也是非常困难的,应根据具体设计要求,进行分析比较,首先满足主要要求,尽量兼顾其他要求。在合理分配传动比时应该注意以下几点。
1 .各级传动比都应在常用的合理范围之内,以符合各种传动形式的工作特点,能在最佳状态下运转,并使结构紧凑,工艺合理。
2 .应使传动装置结构尺寸较小,质量较轻。
3 .应使各传动件尺寸协调,结构均匀称合理,避免相互干扰碰撞。

传动装置中的总传动比 i总=nm/nw i总=19.95
分配各级传动比 i齿=4 I链=19.95/4=4.99
(注:各级传动比见《课程设计》P12表2—4)

4. 传动装置的运动参数和动力参数计算

机械传动装置的运动参数和动力参数,主要指的使各轴的功率.转速和转距,它为设计计算传动比和轴提供极为需要的依据。
计算各轴运动和动力参数时,应将传动装置中各轴从高速轴到低速轴依此编号,定位0轴(电机轴).1轴.2轴…,相邻的输入功率P1.P2.P3…,相邻两轴的传动比效率为n01.n12.n23…,各轴的输入功率为P1.P2.P3…,各轴的输入转距为T1.T2.T3…,各轴的输入转速为n1.n2.n3….
电动机轴的输出功率、转速、和转距为
1.转动比分配
工作机的转速 n=
i总= n/n=1440/81.21=17.73
i齿=4,i链=19.95/4=4.99
将电动机至工作机的轴依次编号0,1,2……

(1) 转速n
nm=n1=n0=1440r/min
n2=n1/i齿=1440/4=360r/min
n3=n2/i链=360/4.99=72.14r/min
(2) 功率P
P0=Pd=6.63kW
P1=P0×η联×η轴承=6.63×0.99×0.99=6.50kW
P2=P1×η齿×η轴承=6.50×0.97×0.99=5.99kW
P3=P2×η链×η轴承=5.99×0.96×0.99=5.70kW
(3)转距
T0=9550×P0/n0=9550×6.63/1440= 43.97N•m
T1=T0 ×η轴承×η联= 43.97×0.99×0.99=43.09 N•m
T2=T1 ×η轴承×η齿×i齿=43.09×0.96×0.97×4=160.52 N•m
T3=T2×η链×i链=160.52×0.96×4.99=768.95 N•m
根据上述计算可得出各轴的功率、转速和扭距。
0轴 P0=Pd=6.63kW
n满=n1=n0=1440r/min
T0=9550×Pd/N满=9550×6.63/1440= 43.97N•m P0=6.63kW
n0=1440r/min
T0=43.97N•m
1轴 P1=P0×η联×η轴=6.63×0.99×0.99=6.50kW
n1=n0=1440r/min
T1=T0 ×η轴承×η联轴器=43.97×0.99×0.99=43.09 N•m P1=6.50kW
n1=1440r/min
T1=43.09 N•m

2轴 P2=P1×η齿×η轴承=6.50×0.97×0.99=5.99kW
n2=n1/i齿=1440/4=360r/min
T2=T1 ×η轴承×η齿×i齿=43.09×0.96×0.97×4=160.52 N•m P2=5.99kW
n2=360r/min
T2=160.52 N•m

3轴 P3=P2×η链×η轴承=5.99×0.96×0.99=5.70kW
n3=n2/i链=360/4.99=72.14r/min
T3=T2×η轴承×η链×i链=160.52×0.96×4.99=768.95 N•m P3=5.70 kW
n3=72.14r/min
T3=768.95 N•m

具体计算数据如下:
轴名 功率P/kW 转矩T/N•M 转速N(r/min) 传动比
i 效率
η
输入 输出 输入 输出
电机轴 6.63 43.97 1440 1 0.990
Ⅰ轴 6.05 43.09 1440 4 0.990
Ⅱ轴 5.99 160.52 360 4.99 0.970
Ⅲ轴 5.70 768.95 72.14 0.960
5.齿轮传动设计计算
设计单级标准直齿圆柱齿轮减速的齿轮传动。该减速器用电动机驱动,载荷平稳,单向运转。
齿轮材料与热处理的选择是要根据具体的工作要求来决定的,此外还要考虑齿轮毛呸制造方法。当齿轮直径d≤500mm时,根据制造条件,可采用锻造毛呸。
当齿轮直径d≥500mm时,多采用铸造毛呸。小齿轮根圆直径与轴径接近时,齿轮要和轴要制成一体,这时选材要兼顾轴的要求。同一减速器的各级小齿轮(或大齿轮)的材料尽可能一致,以减少材料牌号和工艺要求。
齿轮强度计算中不论是针对大齿轮还是针对小齿轮的(许用应力和齿轮系数,不论用哪个齿轮的数值),其公式中的转矩,齿轮的直径或齿数都应是小齿轮的转矩T1,小齿轮的分度圆d1和小齿轮的齿数z1
小齿轮的齿数选取首先要注意不能产生根切,另外齿数的选取还要考虑在满足强度要求的情况下,尽能多一些,这样可以加大重合度系数,提高转动的平稳性,且能减少加工量。大齿轮和小齿轮的齿数最好互为质数,防止磨损或失效集中在某几个齿上。
为了保证齿轮安装以后仍能够全齿啮合,那么小齿轮齿宽应比大齿轮齿宽要宽5~8mm。模数首先要标准化,是一个标准值,并且在工程上要求传递动力的齿轮的模数M≥1.5mm。
按下表步骤计算:
计算项目 计算内容 计算结果
1.选择材料与热处理方式 因该齿轮传动比无特殊要求,故可选一般材料,而且为软齿面。 小齿轮材料为45钢,调质处理,硬度为(220-250)HBS.计算取平均数235HBS
大齿轮材料为45钢,正火处理,硬度为(170-210)HBS. 计算取平均数
2.选择齿轮精度 因为是一般减速器,故选择8级精度,要求齿面粗糙度
Ka≤(3.2-6.3)μm 初选8级精度

计算齿轮比
小齿轮的转矩 由原动机为电动机,工作机为带式输送机,载荷平稳,齿轮在两轴之间对称布置,查零件书P117章节内容(直齿 均匀、轻微冲击)
μ=Z2/Z1=N1/N2=1440/360=4
T1=9.55× ×P1/N1=9.55× × N•mm
K=1.2
μ=4
T1=4.31×

确定齿数Z1 Z2 对于周期性变化的载荷,为避免最大载荷总是总用在某一对或几对齿轮上而是磨损过于集中,Z1 Z2应互为质数。 Z1=27 Z2=103
应力循环次数 N1=60njLh=60×1440×1.05×(10×300×8×2)=4.35×109
N2=N1/i齿=1.09×109 N1=4.35×109
N2=1.09×109
许用接触应力
选择齿宽系数 由书P126图7-18得ZNT1=0.9,ZNT2=0.95
由书P120表7-9得SH=1.05
由书P122图7-16(a)得 =560 Mpa =530 Mpa
[σH]1=ZNT1×GHLIM1/SH=0.9×560/1.05=480MPa
[σH]2=ZNT2×GHLIM2/SH=0.95×530/1.05=479.52MPa [σH]1=480MPa
[σH]2=479.5MPa
齿轮分度圆直径 由于口齿合求出应力是一样的故用小齿轮应力计算(书P114 公式7-5)
d≥ = =50mm
d=50mm
确定齿轮模数 m=d/z1=50/27=1.85取标准模数m=2 取m=2
计算齿轮主要尺寸 d1=mz1=2×27=54mm
d2=mz2=2×103=206mm
中心距a=0.5(d1+d2)=0.5×(54+206)=130mm
齿轮宽b2=ψd×d1=59.4mm
经圆整后b2取60mm
为了保证齿轮安装以后仍能够全齿啮合,那么小齿轮齿宽应比大齿轮齿宽要宽5~8mm。
b1=b2+5mm=65mm d1=54mm
d2=206mm
a=130mm
b2=60mm
b1=65mm

校核齿轮强度 确定两齿轮的弯曲应力由书P190图10-25查得齿轮弯曲疲劳极限
σFlim1=210MPa
σFlim2=190MPa
由最小安全系数SF=1.35
由书P190图10.26查得弯曲疲劳系数
YNT1=0.85
YNT2=0.9
[σF]1=(YNT1×σFlim1)/SF=(0.85×210)/1.35=132.22MPa
[σF]2=(YNT2×σFlim2)/SF=(0.9×190)/1.35=126.67MPa σFlim1=210MPa
σFlim2=190MPa

[σF]1=132.22MPa
[σF]2=126.67MPa
两齿轮齿根的弯曲应力 计算两齿轮齿根的弯曲应力由书P195表10.13 10.14
YF1=2.57
YS1=1.60
YF2=2.18
YS2=1.79
比较(YF1×YS1)/[ σF]1=2.57×1.60/132.22=0.032
(YF2×YS2)/[ σF]2=2.18×1.79/126.67=0.030
计算小齿轮齿根弯曲应力 σF1= =54.61 MPa <[σF]1=132.22MPa
弯曲强度足够
验算圆周速度V并选取齿轮精度 V=πd1n1/(60×1000)=π×55×1440/(60×1000)=4.52<5m/s
8级精度合适
齿轮几何尺寸计算 齿顶圆直径da(ha*=1) da1=d1+2ha1=(Z1+2ha*)m=58mm
da2=d2+2ha1=(Z2+2ha*)m=210mm
齿全高h (C*=0.25)
h=(2ha*+C*)m=4.5mm
齿厚S=πm/2=3.14mm
齿根高hf=(ha*+C*)m=2.5mm
齿顶高ha=ha*m=2mm
齿根圆直径df1=d1-2hf=49mm df2=d2-2hf=201mm da1=58mm
da2=210mm
h=4.5mm
ha=2mm
h)f=2,5mm
df1=49 mm
df2=201mm
s=3.14 mm
齿轮结构设计 小齿轮采用齿轮轴结构,大齿轮采用锻造毛坯的腹板结构
大齿轮的相关尺寸计算如下:
轴孔直径 ds=48 mm
轴毂直径 D1=1.6ds=76.8 mm
轴毂长度 L=b2=60mm
轴缘厚度 δ0=(3-4)m=6-8mm 取7mm
轮缘内径 D2=da-2h-2δ0=180mm
腹板厚度 C=0.3b2=0.3×58=18 mm
腹板中心孔直径 D=0.5(D2+D1)=128.4mm
腹板的孔径d0=0.25(D2-D1)=26 mm
齿轮倒角n=0.5m=1.25 mm =1mm ds=48 mm
D1=76.8 mm
L= 60mm
δ0=7mm
D2= 180 mm
C=18mm
D=128.4mm
d0=26mm
n=1 mm

6.输入轴的设计结构计算
减速器传递功率属于小功率,对于材料无特殊要求,选用45号钢并经调质处理
根据表14.1得A=107-118
mm
若考虑到轴的最小直径处要安装联轴器,会有键槽,故将估算直径加大3%~5%
17.68×1.03=18.21
19.5×1.05=20.475

由设计手册查取直径 取d1=20mm
主动轴结构设计
根据设计一级减速器,可将齿轮布置在箱体中央,将轴承对称安装在齿轮两侧,轴的外伸端安装联轴器
根据轴上零件的定位,装拆方便的需要,同时,考虑到强度原则,主动轴和从动轴均设计为阶梯轴。
a)初步确定安装联轴器处直径d1=20mm因半联轴器轴孔长度Y型,轴孔长度L=52mm
b)为使轴段2与密封装置相适合并与轴段1轴肩,故d2=22mm轴承盖在端面与联轴器距离L’=20轴承盖厚=10mm 参考减速器箱体有关资料箱体内壁到轴段4距离为10故取轴段2的长度L2=30mm
c) 由轴段3与轴段2形成轴肩并与轴承相适应,故取d3=25mm L3=40mm
d)由轴承初选6305的安装尺寸得知:
da=d4=30mm L4=b=1.4h=5.4mm取整得L4=6mm
e) d5 =35 轴段5为齿轮宽b1=60mm由齿轮端到箱体内壁 10mm,为保证齿轮固定可靠,轴段5的长度应短于齿轮轮毂宽度2mm,得L5
f)d6=30mm L6=7.5mm
g)d7=25mm L7=13mm
由此初步确定轴的各段长度和直径

输入轴的强度校核
(1)计算作用力
圆周力Ft=2000T1/d1=(2000×43.09)/54=1595,53N
径向力Fr=Ft×tanα。=574.5N
由于直齿轮轴向力 Fa=0
(2)作主动轴受力简图
L=60+40=100
水平弯矩:FHA=FHB=Ft/2=797,97N
MHC=Ft(L/4)=39898.25 N•mm

铅垂面弯矩:FVA=FVB=Fr/2=469.522/2=287.251N
MVC=Fr(L/4)=287.25×100/4=14362.5N•mm
合成弯距:
扭矩T=4.309× (N•mm)

α=0.6 脉动循环
校核危害截面的强度
由书P176表9-5 [σ-1b]=60MPa [σ0b]=102.5 MPa
σb=Mec/W=31.8MPa<[σ0b]=102.5 MPa

故轴的强度足够

修改轴的结构
由于所设计轴的强度足够,此轴不必再做修改

7.输出轴的设计结构计算
(1)选择轴的材料确定许用应力,由已知减速器传递功率居中小功率,对材料无特殊要求,选45钢并经调质处理,由书查得强度极限σB=650MPa再由表得 许用弯曲应力[σ0b]=102.5MPa
(2)按扭转强度估算直径由书P173表9-3得
A=107-118
mm
由于轴的最小直径处要安装链轮,会有键槽,故将直径加大3%~5%得27.32×1.03=28.14 mm 30.12×1.05=31,63mm由设计手册取标准直径d1=38mm
a)绘制轴系结构草图
根据轴的轴向定位要求确定轴径和轴长
b)初步确定轴径d1=38mm轴段1的长度L1=82mm
c)轴段2要与轴段1形成轴肩并与密封装置相适应,故取d2=40手册P260表18-10由轴承盖右端面与轮毂左端面距离为10 mm,轴承端盖厚度为10 mm,参考减速箱体有关数据,箱体内壁至轴承端盖左侧距离为62 mm故L2=54.5mm
d)由轴段3与轴承相适合初选一对6009深沟球轴承,d×D×B=45×75×16
故d3=45mm 由(b2/2)+a1=(b2/2)+a2 得齿轮端面至箱体内壁的距离为12.5mm 故轴段3的长度L3=50mm
e)轴段4与齿轮轮毂相适合,使轮毂与套筒紧贴,要略短于轮毂长度L=52mm d4=48mm 所以 L4=52mm d4=48mm
f)轴环取 h=(0.07-0.1)h 取h=6mm d5=54mm L5=b=1.4h=8.4 mm取整10 mm
g)轴段6与轴承相适应 d6=45mm L6=18mm
所以 d6=45mm L6=18mm

由此初步确定轴的各段长度和直径

从动轴强度校核
(1)计算作用力
圆周力Ft=2000T3/d2=(2000×768.95)/220=7689.5N
径向力Fr=Ft×tanα=2833.2N
由于直齿轮轴向力 Fa=0
(2)输出轴受力
支撑点间距离L=50+43=95mm
水平弯矩:FHA=FHB=Ft/2=3934.75N
MHC=Ft(L/4)=192802.75N•mm

铅垂面弯矩:FVA=FVB=Fr/2=1416.51N
MVC=Fr(L/4)=69408.99 N•mm
合成弯距:

校核危害截面的强度
由书P176表9-5 [σ0b]=102,5MPa
σb=Mec/W =45.6MPa<[σ0b]=102.5MPa
故轴的强度足够.

修改轴的结构
由于所设计轴的强度足够,此轴不必再做修改

8.滚动轴承的选择计算
滚动轴承的选择:
1)主动轴的轴承
考虑轴受力小且主要是径向力,故选用深沟球轴承
寿命计划:寿命10年双班制 Lh=10×300×8×2=48000h
两轴承受纯径向载荷 由书P219表11-5 fp=1.5 X=1 Y=0 球轴承ε=3

基本容量定动载荷
由书P236表16-2选取6305深沟球轴承一对GB/T276-1994
L10h= =120113.96h由L10h> Lh 故轴承寿命合格
2)从动轴的轴承
X=1 Y=0 球轴承ε=3

基本额定动载荷
由书选择6009深沟球轴承一对GB/T276-1993
L10h= =109204.3h
由L10h> Lh 故轴承寿命合格

9.键的选择
(1)输入轴外伸端D1=20mm,考虑键在轴中部安装
a)选键的型号和确定尺寸
车毂长L=52mm故由(课程设计P183表14-21)选键的型号和确定尺寸
选A型普通键,材料45钢
键宽b=8mm,键高h=7mm,键长由(设计基础P279)长度采到取键长L=45mm
b)校核键联接强度
由键、轮毂、轴、材料为45钢,由表14.6得
[σJH]b3=100-120MPa(轻微冲击)
A键工作长度L=L-B=45-8=37mm
σjy=4T/dhl=12.18MPa
由σjy小于[σb],则强度足够键8×45 GB1096-79

(2)输入轴中部D5=30mm考虑键在轴中部安装轴段长L=48mm,故由手册P183表14-21得
a)选键的型号和确定尺寸
选A型普通键,材料45钢
L=36mm 键宽b=8mm 键高h=7mm
b)校核键联接强度
由键车毂,轴材料为45钢由表14.6
得[σJH]b3=100-120MPa
A键工作长度L=L-b=28mm
σjy=4T/dhl=14.4MPa
由σjy小于[σ] 则强度足够键10×45 GB1096-79

(3)输出轴外伸端D=38mm,考虑键在轴中部安装段长L=62mm 查(课程设计P183表14-21)
a)选键的型号和确定尺寸
键宽b=8mm,键高h=7mm
键长由长度系列取键长L=45mm
b)校核键联接强度
由键车毂,轴材料为45钢
[σJH]b3=100-120MPa
A键工作长度L=L-b=45-8=37mm
σjb=4T/dhl=10.66MPa
由σjy小于[σ]则强度足够键8×45 GB1096-79

(4)输出轴中部D5=45mm考虑键在轴中部安装轴段长L=48mm,故由手册P183表14-21得
a)选键的型号和确定尺寸
选A型普通键,材料45钢
L=36mm 键宽b=10mm 键高h=8mm
b)校核键联接强度
由键车毂,轴材料为45钢由表14.6
得[σJH]b3=100-120MPa
A键工作长度L=L-b=28mm
σjy=4T/dhl=6.73MPa
由σjy小于[σ] 则强度足够键10×45 GB1096-79

10.联轴器的选择
(1)由于减速器载荷平稳,速度不高,无特殊要求,考虑装拆方便及经济问题选凸缘联轴器
由书得K=1.35
TC=KT=1.35×43.09=52.8N•m
由手册P645选GYH2联轴器 GB5843-2003
凸缘联轴器,公称担矩Tn=63N•m
TC大于Tn采用Y型轴孔 轴孔直径D=20mm Y型
轴孔长度L=52mm
YL4型凸缘联轴器有关参数
(2)输出轴 转矩为T=768.95
查手册P645查手册选GYH5联轴器GB5843-2003
轴孔直径d=35mm 轴孔长度L=82mm Y型

型号 公称转矩 许用转速 轴孔直径 外径 键型
GYH2 63N.m 10000r/min 20mm 90mm A键
GYH6 900 N.m 6800 r/min 38mm 140mm A键

11. 箱体主要结构尺寸的计算
机座壁厚δ=0.025a+1≥8取11mm
机盖壁厚δ1=0.02a+1≥8取10mm
机座凸缘厚度b=1.5δ=16.5取17mm
机盖凸缘厚度b1=1.5δ1=15mm
机座底缘厚b2=25δ=27.5取28mm
地脚螺钉直径df=0.036a+12=15.6取M16
地脚螺钉数a≤250 n=4
轴承弯联接直径d=0.75df=M12
机盖与机座连接螺栓直径d2=(0.5-0.6)df=M10
联接螺栓D2间距L=(150~200)mm
轴承端盖螺钉直径d3=(0.4-0.5)df取M8
窥孔盖螺钉直径d4=(0.3-0.4)df取M4
螺钉扳手空间
至外机壁L1LIM=13mm
至凸缘边距离C2MIN=11mm
外机壁旁凸台半径R1×C1=11mm
大齿轮顶圆与机壁距离Δ大于1.2δ取13mm
齿轮端面与内壁距离Δ2=10mm
机盖`机座助厚M1≈0.85S1取10 mm M2≈0.85S2取10mm
从动轴承端盖外径D2=D+(5-5.5)d3=95mm
主动轴承端盖外径D'2=D’+(5-5.5)d3=105mm
轴承端盖厚t=(1-1.2)d3取10mm

12. 减速器润滑方式润滑油牌号及用量密封方式的选择
1)计算线速度
V=3.14×d×n/60×1000m/min
V1=3.14×55×1440/60×1000=4.1448 m/min
由V小于12应用浸油润滑

2)由书P209表10.18得运动粘度ν50℃=85mm2/S
再由书P13表2.1得齿轮润滑选L-CKC680机械油GB5903-95
最低~最高油面距(大齿轮)10mm,需用油量1.5L左右
书P15表2.2 轴承选用ZL-3型润滑脂 GB7324-87
用油量为轴承1/3~1/2为宜

3)a)箱座与箱盖凸缘合面的密封
选用在接合面涂密封漆或水玻璃的方法
b)观察孔和油孔等处接合面的密封
在观察孔或螺塞与机体之间加石棉橡胶低.垫片密封
c)轴承孔的密封
透盖用作密封与之对应的轴承外部轴的中端与透盖间隙
由手册P260表18~10
主动轴毡圈22 FZ/T92010-91
从动轴毡圈22 FZ/T92010-91

13.参考资料
参考文献:1:《机械设计基础》,高等教育出版社,陈立德主编,2004年7月第二版;
2:《机械设计课程设计》,北京航空航天大学出版社,任家卉主编;
3:《机械零件》-北京:主编:郑志祥,高等教育出版社,2000 (2010重印);
4:《新编机械设计手册》/张黎骅,郑严编,-北京:人民邮电出版社,2008.5
5:《机械原理》,高等教育出版社,陈立德主编;

⑦ 外经72内经35的轴承是什么型号怎样算

这个是查机械手册得到的,不用计算,35*72*17型号是6207。
轴承: 轴承bearing,用于确定旋转轴与其他零件相对运动位置,起支承或导向作用的零部件。它的主要功能是支撑机械旋转体,用以降低设备在传动过程中的机械载荷摩擦系数。按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两类。

⑧ 机械设计课程设计 设计带式输送机传动装置中的一级圆柱直齿轮和一级圆柱斜齿轮减速器

以下的东西我也是 借用来的
你修改修改
也可以套用

目 录
设计计划任务书 ﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎1
传动方案说明﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎2
电动机的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎3
传动装置的运动和动力参数﹎﹎﹎﹎﹎﹎﹎﹎5
传动件的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎6
轴的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎8
联轴器的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎10
滚动轴承的选择及计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎13
键联接的选择及校核计算﹎﹎﹎﹎﹎﹎﹎﹎﹎14
减速器附件的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎15
润滑与密封﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
设计小结﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
参考资料﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎17

1.拟定传动方案
为了估计传动装置的总传动比范围,以便选择合适的传动机构和传动方案,可先由已知条件计算其驱动卷筒的转速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为17或25。
2.选择电动机
1)电动机类型和结构形式
按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机。它为卧式封闭结构。
2)电动机容量
(1)卷筒轴的输出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)电动机输出功率Pd
Pd=Pw/t
传动装置的总效率 t=t1*t2^2*t3*t4*t5
式中,t1,t2,…为从电动机到卷筒之间的各传动机构和轴承的效率。由表2-4查得:
弹性联轴器 1个
t4=0.99;
滚动轴承 2对
t2=0.99;
圆柱齿轮闭式 1对
t3=0.97;
V带开式传动 1幅
t1=0.95;
卷筒轴滑动轴承润滑良好 1对
t5=0.98;

t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762

Pd=Pw/t=3.08/0.8762
(3)电动机额定功率Ped
由第二十章表20-1选取电动机额定功率ped=4KW。
3)电动机的转速
为了便于选择电动事,先推算电动机转速的可选范围。由表2-1查得V带传动常用传动比范围2~4,单级圆柱齿轮传动比范围3~6,
可选电动机的最小转速
Nmin=nw*6=60.0241*6=360.1449r/min
可选电动机的最大转速
Nmin=nw*24=60.0241*24=1440.6 r/min
同步转速为960r/min
选定电动机型号为Y132M1-6。
4)电动机的技术数据和外形、安装尺寸
由表20-1、表20-2查出Y132M1-6型电动机的方根技术数据和
外形、安装尺寸,并列表刻录备用。

电机型号 额定功率 同步转速 满载转速 电机质量 轴径mm
Y132M1-6 4Kw 1000 960 73 28

大齿轮数比小齿轮数=101/19=5.3158
3.计算传动装置总传动比和分配各级传动比
1)传动装置总传动比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各级传动比
取V带传动比为
i1=3;
则单级圆柱齿轮减速器比为
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圆柱齿轮和单级圆柱齿轮减速器传动比的常用范围。
4.计算传动装置的运动和动力参数
1)各轴转速
电动机轴为0轴,减速器高速轴为Ⅰ轴,低速轴为Ⅱ轴,各轴转速为
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min

2)各轴输入功率
按机器的输出功率Pd计算各轴输入功率,即
P0=Ped=4kw
轴I 的功率
P1=P0*t1=4*0.95=3.8kw
轴II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各轴转矩
T0=9550*P0/n0=9550*4/960=39.7917 Nm
T1=9550*P1/n1=9550*3.8/320=113.4063 Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878 Nm
二、设计带轮
1、计算功率
P=Ped=4Kw
一班制,工作8小时,载荷平稳,原动机为笼型交流电动机
查课本表8-10,得KA=1.1;
计算功率
Pc=KA*P=1.1*4=4.4kw
2选择普通V带型号
n0 =960r/min
根据Pc=4.4Kw,n0=960r/min,由图13-15(205页)查得坐标点位于A型
d1=80~100
3、确定带轮基准直径
表8-11及推荐标准值
小轮直径
d1=100mm;
大轮直径
d2=d1*3.5=100*3.5=350mm
取标准件
d2=355mm;
4、验算带速
验算带速
v=∏*d1*n0/60000=3.14*100*960/60000=5.0265m/s
在5~25m/s范围内
从动轮转速
n22=n0*d1/d2=960*100/355=270.4225m/s
n21=n0/3.5=960/3.5=274.2857m/s
从动轮转速误差=(n22-n21)/n21=270.4225-274.2857/274.2857
=-0.0141
5、V带基准长度和中心距
初定中心距
中心距的范围
amin=0.75*(d1+d2)=0.75*(100+355)=341.2500mm
amax=0.8*(d1+d2)=0.8*(100+355)=364mm
a0=350mm;
初算带长
Lc=2*a0+pi*(d1+d2)/2+(d2-d1)^2/4/a0
Lc = 1461.2mm
选定基准长度
表8-7,表8-8查得
Ld=1600mm;
定中心距
a0+(Ld-Lc)/2=(1600-1461.3)/2=419.4206mm
a=420mm;
amin=a-0.015*Ld=420-0.015*1600=396mm
amax=a+0.03*Ld=420+0.03*1600=468mm
6、验算小带轮包角
验算包角
=180-(d2-d1)*57.3/a=180-(355-100)*57.3/a
145.2107 >120度 故合格
7、求V带根数Z
由式(13-15)得
查得 n1=960r/min , d1=120mm
查表13-3 P0=0.95
由式13-9得传动比
i=d2/(d1(1+0.0141)=350/(100*(1+0.0141)=3.5
查表(13-4)得

由包角145.21度
查表13-5得Ka=0.92
KL=0.99
z=4.4/((0.95+0.05)*0.92*0.99)=3
8、作用在带上的压力F
查表13-1得q=0.10
故由13-17得单根V带初拉力

三、轴
初做轴直径:
轴I和轴II选用45#钢 c=110
d1=110*(3.8/320)^(1/3)=25.096mm
取d1=28mm
d2=110*(3.65/60)^(1/3)=43.262mm
由于d2与联轴器联接,且联轴器为标准件,由轴II扭矩,查162页表
取YL10YLd10联轴器
Tn=630>580.5878Nm 轴II直径与联轴器内孔一致
取d2=45mm
四、齿轮
1、齿轮强度
由n2=320r/min,P=3.8Kw,i=3
采用软齿面,小齿轮40MnB调质,齿面硬度为260HBS,大齿轮用ZG35SiMn调质齿面硬度为225HBS。
因 ,
SH1=1.1, SH2=1.1


因: , ,SF=1.3
所以

2、按齿面接触强度设计
设齿轮按9级精度制造。取载荷系数K=1.5,齿宽系数
小齿轮上的转矩
按 计算中心距
u=i=5.333
mm
齿数z1=19,则z2=z1*5.333=101
模数m=2a/(z1+z2)=2.0667 取模数m=2.5
确定中心矩a=m(z1+z1)/2=150mm
齿宽b=
b1=70mm,b2=60mm
3、验算弯曲强度
齿形系数YF1=2.57,YF2=2.18
按式(11-8)轮齿弯曲强度

4、齿轮圆周速度

按162页表11-2应选9做精度。与初选一致。

五、轴校核:

圆周力Ft=2T/d1
径向力Fr=Ft*tan =20度 标准压力角
d=mz=2.5*101=252.5mm
Ft=2T/d1=2*104.79/252.5=5852.5N
Fr=5852.5*tan20=2031.9N
1、求垂直面的支承压力Fr1,Fr2
由Fr2*L-Fr*L/2=0
得Fr2=Fr/2=1015.9N

2、求水平平面的支承力
FH1=FH2=Ft/2=2791.2N

3、画垂直面弯矩图
L=40/2+40/2+90+10=140mm
Mav=Fr2*L/2=1015.9*140/2=71.113Nm

4、画水平面弯矩图
MaH=FH*L/2=2791.2*140/2=195.384Nm

5、求合成弯矩图

6、求轴传递转矩
T=Ft*d2/2=2791.2*2.5*101/2=352.389Nm

7、求危险截面的当量弯矩
从图可见a-a截面是最危险截面,其当量弯矩为
轴的扭切应力是脉动循环应力
取折合系数a=0.6代入上式可得

8、计算危险截面处轴的直径
轴的材料,用45#钢,调质处理,由表14-1查得
由表13-3查得许用弯曲应力 ,
所以
考虑到键槽对轴的削弱,将轴的最小危险直径d加4%。
故d=1.04*25.4=26.42mm
由实际最小直径d=40mm,大于危险直径
所以此轴选d=40mm,安全
六、轴承的选择
由于无轴向载荷,所以应选深沟球轴承6000系列
径向载荷Fr=2031.9N,两个轴承支撑,Fr1=2031.9/2=1015.9N
工作时间Lh=3*365*8=8760(小时)
因为大修期三年,可更换一次轴承
所以取三年
由公式
式中 fp=1.1,P=Fr1=1015.9N,ft=1 (工作环境温度不高)
(深沟球轴承系列)

由附表选6207型轴承
七、键的选择
选普通平键A型
由表10-9按最小直径计算,最薄的齿轮计算
b=14mm,h=9mm,L=80mm,d=40mm
由公式
所以
选变通平键,铸铁键

所以齿轮与轴的联接中可采用此平键。
八、减速器附件的选择
1、通气器:
由于在外界使用,有粉尘,选用通气室采用M18 1.5
2、油面指示器:
选用油标尺,规格M16
3、起吊装置:采用箱盖吊耳,箱座吊耳
4、放油螺塞:选用外六角细牙螺塞及垫片M16 1.5
5、窥视孔及视孔盖
选用板结构的视孔盖
九、润滑与密封:
1、齿轮的润滑:采用浸油润滑,由于低速级大齿轮的速度为:

查《课程设计》P19表3-3大齿轮浸油深度为六分之一大齿轮半径,所以取浸油深度为30mm。
2、滚动轴承的润滑
采用飞溅润滑在箱座凸缘面上开设导油沟,并设挡油盘,以防止轴承旁齿轮啮合时,所挤出的热油溅入轴承内部,增加轴承的阻力。
3、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备选用
L-AN15润滑油
4、密封方式选取:
选用凸缘式端盖,易于调整轴承间隙,采用端盖安装毡圈油封实现密封。
轴承盖结构尺寸按用其定位的轴承外径决定。
设计小结:
二、课程设计总结
设计中运用了Matlab科学工程计算软件,用notebook命令调用MS—Word来完成设计说明书及设计总结,在设计过程中用了机械设计手册2.0 软件版辅助进行设计,翻阅了学过的各种关于力学,制图,公差方面的书籍,综合运用了这些知识,感觉提高许多,当然尤其是在计算机软件CAD 方面的运用,深切感到计算机辅助设计给设计人员带来的方便,各种设计,计算,制图全套完成。
由于没有经验,第一次做整个设计工作,在设计过程中出现了一些错误比如线形,制图规格,零件设计中的微小计算错误等都没有更正,设计说明书的排版也比较混乱等等。对图层,线形不熟悉甚至就不确定自己画出的线,在出图到图纸上时实际上是什么样子都不知道 ,对于各种线宽度,没有实际的概念。再比如标注较混乱,还是因为第一次做整个设计工作,没有经验,不熟悉。

这次设计的目的是掌握机械设计规律,综合运用学过的知识,通过设计计算,绘图以及运用技术标准,规范设计手册等有关设计资料进行全面的机械设计技能训练。目的已经达到,有许多要求、标准心中虽然明确理解掌握但是要全力,全面的应用在实际中,还有待于提高水平。

特别感谢—程莉老师。

参考资料目录
[1]《机械设计基础》,机械工业出版社,任成高主编,2006年2月第一版;
[2]《简明机械零件设计实用手册》,机械工业出版社,胡家秀主编,2006年1月第一版;
[3]《机械设计-课程设计图册》,高等教育出版社,龚桂义主编,1989年5月第三版;
[3]《设计手册软件》,网络上下载;
[4] 湖南工院学生论坛----机械制图专栏---bbs.yeux.cn

Nw=60.0241r/min

Pw=3.08Kw

效率t=0.8762

Pd = 3.5150

Ped=4Kw

i=15.9936

i1=3

i2=5.3312

n0=960r/min
n1=320r/min
n2=60.0241r/min

P0=4Kw

P1=3.8Kw

P2=3.6491Kw

T0=39.7917Nm
T1=113.4063Nm
T2=589.5878Nm

KA=1.1

Pc=4.4Kw

d1=100mm

d2=355mm

初定中心距
a0=350mm

Lc=1461.3mm

Ld=1600mm

中心距
a=420mm

z=3根

预紧力
FQ=274.3N

d1=28mm

d2=45mm

YL10YLd10

T1=113.4063Nm

m=2.5
a=150mm

=20度

Ft=5582.5N
Fr=2031.9N

FH1=FH2=2791.2N

Mav=71.113Nm

MaH=195.38Nm

Ma=216.16Nm

Me=457.15Nm

Fr1=1015.9N

Lh=8760小时

6207型

b h L=14 9 80

输送带拉力 F=2800 N
输送带速度 V=1.1 m/s
滚筒直径 D=350 mm

⑨ 机械达人帮下忙:两级斜齿圆柱齿轮减速器的课程设计

STU你好,整理的1000份机械课设毕设,你说的里面有的,直接用就行V

⑩ 常用轴承型号含义

问题一:轴承型号含义 1)轴承内径用基本代号右起第一位数字表示。对常用内径d=20~480mm的轴承内径一般为5的倍数,这两位数字表示轴承内径尺寸被5除得的商数, 如04表示d=20mm;12表示 d=60mm等等。对于内径为10mm、12mm、15mm和17mm的轴承,内径代号依次为00、01、02和03。鸡于内径小于10mm和大于 500mm 轴承,内径表示方法另有规定,(可参看 GB/T272―93). 2)轴承的直径系列(即结构相同、内径相同的轴承在外径和宽度方面的变化系列)用基本代号右起第三位数字表示。例如,对于向心轴承和向心推力轴承,0、1 表示特轻系列;2表示轻系列;3表示中系列;4表示重系列。推力轴承除了用1表示特轻系列之外,其余与向心轴承的表示一致。 3) 轴承的宽度系列(即结构、内径和直径系列都相同的轴承宽度方面的变化系列)用基本代号右起第四位数字表示。当宽度系图13-4直径系列的对比列为0系列 (正常系列)时,对多数轴承在代号中可不标出宽度系列代号O,但对于调心滚子轴承和圆锥滚子轴承,宽度系列代号0应标出。 直径系列代号和宽度系列代号统称为尺寸系列代号。 4)轴承类型代号用基本代号右起第五位数字表示(对圆柱滚子轴承和滚针轴承等类型代号为字母)。

问题二:轴承型号的含义 6表示深沟球轴承,2、3是尺寸系列代号,02和05为公称内径代号,更多的表示方法,请你参考如下两份标准,见附件
GB/T 272-1993《 滚动轴承 代号方法》
JB/T 2974-2004 《滚动轴承代号方法的补充规定》

问题三:轴承的型号代表什么意思? 动轴承的代号表示方法
代号用途:代表象征滚动轴承的结构、尺寸、类型、精度等,代号由国家标准GB/T272-93规定。
代号的构成:
前置代号――表示轴承的分部件
基本代号――表示轴承的类型与尺寸等主要特征
后置代号――表示轴承的精度与材料的特征
内径代号:一般情况下轴承内径用轴承内径代号(基本代号的后两位数)×5=内径(mm),例:轴承6204的内径是04×5=20mm 。
常见特殊情况:
一 当轴承内径小于20mm
轴承内径尺寸为(mm)
10
12
15
17
对应内径代号为
00
01 02
03
二 当轴承内径小于10mm,直接用基本代号的最后一位表示轴承内径尺寸;例:轴承608Z,用基本代号‘608’的最后一位8作内径尺寸,轴承608Z的内径为8mm。以此类推627的内径为7mm,634的内径为4mm。
三 轴承的内径不是5的倍数或者大于等于500mm,内径代号用斜杠‘/’隔开。另一种情况:有部分滚针轴承旧代号内径代号直接用‘/’隔开。这几种情况‘/’后边的几位数值为轴承内径尺寸。见下表示例:
轴承型号
619/1.5
62/22
60/500
3519/1120
7943/25
内径尺寸(mm)
1.5
22
500
1120
25
以上是几种轴承内径常见的表示方法,国际上有些公司的代号都不尽相同;要以实际情况为准。具体要参考各种资料和各厂家样本。
尺寸系列代号:用于表达相同内径但外径和宽度不同的轴承,见图。
外径系列代号:特轻(0,1),轻(2),中(3),重(4)
宽度系列代号:一般正常宽度为“0”,通常不标注。但对圆锥滚子轴承(7类)和调心滚子轴承(3类)等类型不能省略“0”
6010为轻薄系列,应用于轻载荷、高转速;6210是轻型系列,轻型负荷转速最合理,是应用面最广的类型;6310是中重型系列;6410是重系列,用于重载低速。中型和中重型应用最广,如各类机械传动部件、中小型电动机、流水线传送带、摩托车等等各种机械设备几乎都有用到这两种类型。
类型代号:应记住常用的轴承代号:3,5,6,7,N五类,对应老代号为7,8,0,6,2类。详细请见本站首页产品分类.
公差等级代号见表:
向心轴承和角接触球轴承分五级见下表(高→低) 新等级代号
P2
P4
P5
P6
P0
旧等级代号
B
C
D
E
G
圆锥滚子轴承分四级见下表(高→低) 新等级代号
P4
P5
P6x
P0
旧等级代号
C
D
Ex
G(E)
推力球轴承分四级见下表(高→低) 新等级代号
P4 P5 P6 P0
旧等级代号
C D E G
如需要较高公差级别的轴承,可根据GB307标准规定选用适合的公差等级轴承。
游隙代号:游隙代号分六级以/C1 /C2 /C3 /C4 /CM为代号,CM为电机用轴承游隙组,其他游隙组数值越大游隙就越大;C0为基础组游隙不标注。选择轴承游隙要充分考虑轴承安装孔和轴承与轴的配合公差及温度,详请参考GB/T4604标准或咨询本站。
代号方法示例:
例①6308 6--深沟球轴承,3--中系列,08--内径d=40mm,公差等级“O”级、游隙组为“0”组都不标注;
例②N105/P5 ......>>

问题四:100722202WQ轴承型号表示意义 100:偏心率代号。
72:表示单列偏心轴承。75:表示双列。
02:内径尺寸代号。表示轴承是按照内径15mm轴承的规制制作出来的。
2202:如果是2302,比2202的外径大一号。中间这个2是外径系列代号。

WQ:未知。

问题五:常用轴承型号有哪些? 0 ――双列角接触球轴承
1――调心球轴承
2――调心滚子轴承和推力调心滚子轴承
3――圆锥滚子轴承
4――双列深沟球轴承
5――推力球轴承
6――深沟球轴承
7――角接触球轴承
8――推力圆柱滚子轴承
N――圆柱滚子轴承
NN――双列或多列圆柱滚子轴承
U――外球面球轴承
QJ――四点接触球轴承

问题六:轴承型号后面的字母是什么意思? 轴承型号后面的字母是什么意思?这是很多不大了解轴承的人都会问的一个问题。如果轴承的型号单单就只是几个数字,那么就不会有么问题了。大多数人搞不清楚轴承的型号都是因为轴承型号前面和后面的那些英文字母。这些英文字母就是轴承型号的前置代号,和后置代号。
轴承型号一般由前置代号,基本代号和后置代号组成。下面我分别展开说一下。轴承的前置代号:L-可分离轴承的可分离的外圈;R-不带可分离内圈或外圈的;K-滚子和保持架组件;WS-推力圆柱滚子轴承轴圈;GS-推力圆柱滚子轴承座圈;LR-带可分离的内圈或外圈于滚动体组件轴承。轴承的后置代号:AC-公称接触角a=25°的角接触球轴承;B-①公称接触角a=40°的角接触球轴承②接触角加大的圆锥滚子轴承;C-①公称接触角a=15°的角接触球轴承②调心滚子轴承设计改变;E-加强形内圈无挡边圆柱滚子轴承;ZW-双列滚针保持架组件;K-圆锥孔轴承,锥度1:12;K30--圆锥孔轴承,锥度1:30;-2K-双锥孔轴承,锥度1:12;-RS-轴承一面带密封圈(接触式);-RZ-轴承一面带密封圈(非接触式);-Z-轴承一面带防尘盖;Q-请同时提保持架;M-黄铜尸体保持架;L-轻合金尸体保持架;T-酚醛层压布管实体保持架;J-铜板冲压保持架;W-焊接保持架;/P5-精度等级为5级;/C1-游隙符合1组标准;/C9-轴承游隙为非标准;/DB-背背靠背成对安装轴承;/DF-面对面成对安装轴承…
轴承型号后面的字母是什么意思?我就先简单的说到这里吧!
摘自: haokun/ShowNews.asp?id=165

问题七:轴承型号里的字母是什么意思 0 双列角接触球轴承
1 调心球轴承
2 调心滚子轴承和推力调心滚子轴承
3 圆锥滚子轴承
4 双列深沟球轴承
5 推力球轴承
6 深沟球轴承
7 角接触轴承
8 推力圆柱滚子轴承
N 圆柱滚子轴承和双列圆柱滚子轴承NN
U 外球面轴承
QJ 四点接触球轴承
另外,轴承代号前后还有前置和后置代号,分别如下:
―― 前置代号
前置代号 R 直接放在轴承基本代号之前,其余代号用小圆点与基本代号隔开。
GS.―― 推力圆柱滚子轴承座圈。例: GS.81112 。
K.―― 滚动体与保持架的组合件。例:推力圆柱滚子与保持架的组合件 K.81108
R―― 不带可分离内圈或外圈的轴承。例: RNU207―― 不带内圈的 NU207 轴承。
WS―― 推力圆柱滚子轴承轴圈。例: WS.81112.
―― 内部设计
―― 外形尺寸及变形设计
―― 密封
―― 保持架
―― 公差
―― 游隙
―― 热处理
―― 特殊设计
―― 机床主轴轴承
―― 低噪省轴承
―― 后置代号
后置代号置于基本代号的后面。当具有多组后置代号时,应按轴承代号表中所列后置代号的顺序从左至右排列。某些后置代号前用小圆点与基本代号隔开。
后置代号 ― 内部结构
A 、 B 、 C 、 D 、 E―― 内部结构变化
例 : 角接触球轴承 7205C 、 7205E 、 7205B , C―15 °接触角 ,E-25 °触角, B―40 °接触角。
例:圆柱滚子、调心滚子及推力调心滚子轴承 N309E 、 21309 E 、 29412E―― 加强型设计,轴承负载能力提高。
VH―― 滚子自锁的满滚子圆柱滚子轴承(滚子的复圆直径不同于同型号的标准轴承)。
例: NJ2312VH 。
后置代号 ― 轴承外形尺寸及外部结构
DA―― 带双半内圈的可分离型双列角接触球轴承。例: 3306DA 。
DZ―― 圆柱型外径的滚轮轴承。例: ST017DZ 。
K―― 圆锥孔轴承,锥度 1 : 12 。例: 2308K 。
K30- 圆锥孔轴承,锥度 1 : 30 。例: 24040 K30 。
2LS―― 双内圈两面带防尘盖的双列圆柱滚子轴承。例: NNF5026VC.2LS.V―― 内部结构变化,双内圈,两面带防尘盖、满滚子双列圆柱滚子轴承。
N―― 外圈上带止动槽的轴承。例: 6207N 。
NR―― 外圈上带止动槽和止动环的轴承。例: 6207 NR 。
N2-―― 外圈上带两个止动槽的四点接触球轴承。例: QJ315N2 。
S―― 外圈带润滑油槽和三个润滑油孔的轴承。例: 23040 S 。轴承外径 D ≥ 320mm 的调心滚子轴承均不标注 S 。
X―― 外形尺寸符合国际标准的规定。例: 32036X
Z??―― 特殊结构的技术条件。从 Z11 起依次向下排列。例: Z15―― 不锈钢制轴承( W-N01.3541 )。
ZZ―― 滚轮轴承带两个引导外圈的挡圈。
后置代号 ―― 密封与防尘
RSR―― 轴承一面带密封圈。例: 6207 RSR
.2RSR―― 轴承两面带密封圈。例: 6207.2RSR.
ZR―― 轴承一面带防尘盖。例: 6207 ZR
.2ZR 轴承两面带防尘盖。例: 6207.2ZR
ZRN―― 轴承一面带防尘盖,另一面外圈上带止动槽。例: 6207 ZRN 。
.2ZRN―― 轴承两面带防尘盖,外圈......>>

阅读全文

与某机械传动装置中采用了型号为6207相关的资料

热点内容
超声波洗项链效果怎么样 浏览:400
宁波器材去哪里买 浏览:869
鄞州户外儿童游乐设备哪里能买 浏览:843
收购哪些废旧专用器材违法 浏览:763
磷化氢浓度检测装置 浏览:974
科学研究的器材有哪些 浏览:359
带式输送机传动装置百度百科 浏览:213
电缆电气试验有哪些仪器 浏览:211
光伏发电对制冷有什么影响 浏览:860
乙酰苯胺的制备实验装置 浏览:890
实现高层互联的设备是什么 浏览:620
变电站保护装置安装调试验收的作用 浏览:600
机械表半弦是什么状态 浏览:51
开家纺织厂需要哪些机械设备 浏览:240
万向传动装置在汽车的典型应用 浏览:144
添加不上打印机设备怎么办 浏览:73
东莞市常平风昱五金制品厂 浏览:46
途观后轮轴承如何拆卸 浏览:676
机械键盘多少钱做好 浏览:809
过氧化氢酶的实验装置 浏览:361