1. 谁知道都有哪些脱硫技术 最好能把你知道的其中一种说详细点、带上你的设计图为了写作业。。
设计图
烟气脱硫(Flue Gas Desulfurization,FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染的最为有效的和主要的技术手段。
目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技术,但是,其基本原理都是以一种碱性物质作为SO2的吸收剂,即脱硫剂。按脱硫剂的种类划分,烟气脱硫技术可分为如下几种方法。
(1)以CaCO3(石灰石)为基础的钙法;
(2)以MgO为基础的镁法;
(3)以Na2SO3为基础的钙法;
(4)以NH3为基础的氨法;
(5)以有机碱为基础的有机碱法。
世界上普遍使用的商业化技术是钙法,所占比例在90%以上。
烟气脱硫装置相对占有率最大的国家是日本。日本的燃煤和燃油锅炉基本上都装有烟气脱硫装置。众所周知,日本的煤资源和石油资源都很缺乏,也没有石膏资源,而其石灰石资源却极为丰富。因此,FGD的石膏产品在日本得到广泛的应用。这便是钙法在日本得到广泛应用的原因。因此,其他发达国家的火电厂锅炉烟气脱硫装置多数是由日本技术商提供的。
在美国,镁法和钠法得到了较深入的研究,但实践证明,它们都不如钙法。
在我国,氨法具有很好的发展土壤。我国是一个粮食大国,也是化肥大国。氮肥以合成氨计,我国的需求量目前达到33Mt/a,其中近45%是由小型氮肥厂生产的,而且这些小氮肥厂的分布很广,每个县基本上都有氮肥厂。因此,每个电厂周围100km内,都能找到可以提供合成氨的氮肥厂,SO2吸收剂的供应很丰富。更有意义的是,氨法的产品本身就是化肥,就有很好的应用价值。
在电力界,尤其是脱硫界,还有两种分类方法,一种方法将脱硫技术根据脱硫过程是否有水参与及脱硫产物的干湿状态分为湿法、干法和半干(半湿)法。
另一种分类方法是以脱硫产物的用途为根据,分为抛弃法和回收法。在我国,抛弃法多指钙法,回收法多指氨法。
答案补充
这里也没有图纸,不好意思,希望能帮上你的忙
o0烟圈0o 回答采纳率:31.6% 2008-11-12 14:49
生物脱硫,又称生物催化脱硫(简称BDS),是一种在常温常压下利用需氧、厌氧菌除去石油含硫杂环化合物中结合硫的一种新技术。早在1948年美国就有了生物脱硫的专利,但一直没有成功脱除烃类硫化物的实例,其主要原因是不能有效的控制细菌的作用。此后有几个成功的“微生物脱硫”报道,但却没有多少应用价值,原因在于微生物尽管脱去了油中的硫,但同时也消耗了油中的许多炭而减少了油中的许多放热量[9]。科学工作者一直对其进行了深入的研究,直到1998年美国的Institute of Gas Technology(IGT)的研究人员成功的分离了两种特殊的菌株,这两种菌株可以有选择性的脱除二苯并噻吩中的硫,去除油品中杂环硫分子的工业化模型相继产生,1992年在美国分别申请了两项专利(5002888和5104801)。美国Energy BioSystems Corp (EBC)公司获得了这两种菌株的使用权,在此基础上,该公司不仅成功地生产和再生了生物脱硫催化剂,并在降低催化剂生产成本的同时也延长了催化剂的使用寿命。此外该公司又分离得到了玫鸿球菌的细菌,该细菌能够使C-S键断裂,实现了脱硫过程中不损失油品烃类的目的[10]。现在,EBC公司已成为世界上对生物脱硫技术研究最广泛的公司。此外,日本工业技术研究院生命工程工业技术研究所与石油产业活化中心联合开发出了柴油脱硫的新菌种,此菌种可以同时脱除柴油中的二苯并噻吩和苯并噻吩中的硫,而这两种硫化物中的硫是用其它方法难以脱除的[11]。
BDS过程是以自然界产生的有氧细菌与有机硫化物发生氧化反应,选择性氧化使C-S键断裂,将硫原子氧化成硫酸盐或亚硫酸盐转入水相,而DBT的骨架结构氧化成羟基联苯留在油相,从而达到脱除硫化物的目的。BDS技术从出现至今已发展了几十年,目前为止仍处于开发研究阶段。由于BDS技术有许多优点,它可以与已有的HDS装置有机组合,不仅可以大幅度地降低生产成本,而且由于有机硫产品的附加值较高,BDS比HDS在经济上有更强的竞争力。同时BDS还可以与催化吸附脱硫组合,是实现对燃料油深度脱硫的有效方法。因此BDS技术具有广阔的应用前景,预计在2010年左右将有工业化装置出现。
4 新型的脱硫技术
4.1 氧化脱硫技术
氧化脱硫技术是用氧化剂将噻吩类硫化物氧化成亚砜和砜,再用溶剂抽提的方法将亚砜和砜从油品中脱除,氧化剂经过再生后循环使用。目前的低硫柴油都是通过加氢技术生产的,由于柴油中的二甲基二苯并噻吩结构稳定不易加氢脱硫,为了使油品中的硫含量降到10 μg/g,需要更高的反应压力和更低的空速,这无疑增加了加氢技术的投资费用和生产成本。而氧化脱硫技术不仅可以满足对柴油馏分10 μg/g的要求,还可以再分销网点设置简便可行的脱硫装置,是满足最终销售油品质量的较好途径。
(1) ASR-2氧化脱硫技术
ASR-2[12]氧化脱硫技术是由Unipure公司开发的一种新型脱硫技术,此技术具有投资和操作费用低、操作条件缓和、不需要氢源、能耗低、无污染排放、能生产超低硫柴油、装置建设灵活等优点,为炼油厂和分销网点提供了一个经济、可靠的满足油品硫含量要求的方法。
在实验过程中,此技术能把柴油中的硫含量由7000 μg/g最终降到5 μg/g。此外该技术还可以用来生产超低硫柴油,来作为油品的调和组分,以满足油品加工和销售市场的需要。目前ASR-2技术正在进行中试和工业实验的设计工作。其工艺流程如下:含硫柴油与氧化剂及催化剂的水相在反应器内混合,在接近常压和缓和的温度下将噻吩类含硫化合物氧化成砜;然后将含有待生催化剂和砜的水相与油相分离后送至再生部分,除去砜并再生催化剂;含有砜的油相送至萃取系统,实现砜和油相分离;由水相和油相得到的砜一起送到处理系统,来生产高附加值的化工产品。
尽管ASR-2脱硫技术已进行了多年的研究,但一直没有得到工业应用,主要是由于催化剂的再生循环、氧化物的脱除等一些技术问题还没有解决。ASR-2技术可以使柴油产品的硫含量达到5 μg/g,与加氢处理技术柴油产品的硫含量分别为30 μg/g和15 μg/g时相比,硫含量和总处理费用要少的多。因此,如果一些技术性问题能够很好地解决,那么ASR-2氧化脱硫技术将具有十分广阔的市场前景。
(2) 超声波氧化脱硫技术
超声波氧化脱硫 (SulphCo)[13]技术是由USC和SulphCo公司联合开发的新型脱硫技术。此技术的化学原理与ASR-2技术基本相同,不同之处是SulphCo技术采用了超声波反应器,强化了反应过程,使脱硫效果更加理想。其流程描述为:原料与含有氧化剂和催化剂的水相在反应器内混合,在超声波的作用下,小气泡迅速的产生和破灭,从而使油相与水相剧烈混合,在短时间内超声波还可以使混合物料内的局部温度和压力迅速升高,且在混合物料内产生过氧化氢,参与硫化物的反应;经溶剂萃取脱除砜和硫酸盐,溶剂再生后循环使用,砜和硫酸盐可以生产其他化工产品。
SulphCo在完成实验室工作后,又进行了中试放大实验,取得了令人满意的效果,即不同硫含量的柴油经过氧化脱硫技术后硫含量均能降低到10 μg/g以下。目前Bechtel公司正在着手SulphCo技术的工业试验。
4.2 光、等离子体脱硫技术[14]
日本污染和资源国家研究院、德国Tubingen大学等单位研究用紫外光照射及等离子体技术脱硫。其机理是:二硫化物是通过S-S键断裂形成自由基,硫醚和硫醇分别是C-S和S-H键断裂形成自由基,并按下列方式进行反应:
无氧化剂条件下的反应:
CH3S- + -CH3 CH4+CH2 ==== S
CH3S- + CH3CH2R CH3SH+CH2 ==== SCH2R
CH3S- + CH3S- CH3SSCH3
CH3S- + CH2 ==== S CH3SCH2S- -CH3 CH3SCH2SCH3
有氧化剂条件下的反应:
CH3S- + O2 CH3SOO- RH CH3SOOH + R-
SO3+ -CH3
CH3SOOH Rr CH3SO- + -OH
CH3SO- + RH CH3SOH + R-
3CH3SOOH CH3SOOSCH3 + CH3SO3H
此技术以各类有机硫化物和含粗汽油为对象,根据不同的分子结构,通过以上几种方式进行反应,产物有烷烃、烯烃、芳烃以及硫化物或元素硫,其脱硫率可达20%~80%。若在照射的同时通入空气,可使脱硫率提高到60%~100%,并将硫转化成SO3、SO2或硫磺,水洗即可除去。
晴天下的飓风 回答采纳率:12.5% 2008-11-12 18:24
用盐水是最佳
答案补充
2007年11月24—30日,我司DLP滤泡脱硫除尘装置,在浙江兽药厂
通过环保部门的检测,脱硫率达到99.77%。
2. 怎么制作简易沼气池的脱硫装置
用一大口径工程塑料管(不可燃烧的材质即可),两端用塑料板焊接密封,即成为密闭容器。然后根据图示操作即可。做好后,要进行检验,防止漏气。
3. 煤气脱硫塔如何设计及其设计参数
简单说两句:
首先确定设计所必须的条件:
1,煤气处理量xxxxxNM3/H 2,初始H2S含量g/Nm3 3,最终H2S含量g/Nm3 4,当地海拔Km
5,煤气入口温度℃ 6,煤气入口压力Pa 7,煤气入口压力Pa
设计脱硫塔时应考虑的数据:
1,空塔速度 0.4~0.75m/s
2,填料比表面积95~120m-1
3,溶液入口流速2~3.5m/s
4,溶液出口流速0.2~1.2m/s
以上是设计的前题然后根据以上数据计算出脱硫塔的塔径及高度。不知道这些东西能不能帮助你.
4. 急急急~锅炉烟气脱硫设计方案
现在有很多脱硫的方法 最常见的就是干法和湿法两种
上海科格思过滤材料有限公司
我们是成产除尘布袋的厂家
宋旭
电话021-61506009
硫技术
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。
1.1脱硫的几种工艺
(1)石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
(2)旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。
喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。
(3) 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。
肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。
(4)炉内喷钙尾部增湿烟气脱硫工艺
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。
(5)烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。
典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。
(6)海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。
(7) 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。
(8)氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
1。2燃烧前脱硫
燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。
燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。
煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。
1.3 燃烧中脱硫,又称炉内脱硫
炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB炉内喷钙技术
早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。
(2) LIFAC烟气脱硫工艺
LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。
加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。
1.4 燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)
燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。
1.3.1干式烟气脱硫工艺
该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。
(1) 喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。
(2) 粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。
1.3.2 湿法FGD工艺
世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占39.6%,石灰石法占47.4%,两法共占87%;双碱法占4.1%,碳酸钠法占3.1%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。
石灰或石灰石法主要的化学反应机理为:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。
传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。
湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。
在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。
1.5等离子体烟气脱硫技术
等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:
(1) 电子束辐照法(EB)
电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2和NO进行氧化,分别变成SO3和NO2或相应的酸。在有氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。
(2) 脉冲电晕法(PPCP)
脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。
1.6 海水脱硫
海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。
5. 鲁奇和林德的低温甲醇洗工艺有什么不同各有什么优缺点
1、林德低温甲醇洗配置在耐硫CO
变换的下游,选择性地一步法脱硫脱碳,应用林德的专利设备——绕管式换热器。它具有流程短、布置紧凑的特点。林德公司的低温甲醇洗工艺特点:●
该工艺具有易于操作,生产运行稳定、可靠。●该工艺为一步法低温甲醇洗工艺脱硫脱碳,其典型工艺是采用5塔流程,脱碳、脱硫分上下塔脱除,在一个塔内完成。●
采用专有的高效绕管式换热器,减少阻力,提高换热效率,特别是多股物流的换热,使工艺流程更为简捷,节省占地便于集中布置,但绕管式换热器需由专利商在国内合资厂提供,且价钱昂贵。●
采用锅炉给水洗涤变换气中的NH3、HCN等,避免其进入系统造成堵塞。●
在甲醇循环回路中设置甲醇过滤器,除去FeS、NiS等固体杂质,防止其在系统中积累而堵塞设备和管道。2、鲁奇低温甲醇洗配置在shell气化或鲁奇煤气化装置的下游,流程的安排为气化后脱硫,变换后脱碳。与林德低温甲醇洗相比,以前鲁奇低温甲醇洗在变换前脱硫,脱硫气量少、设备小,变换处于脱硫和脱碳之间,原料气热而复冷,换热次数多,能量损失大,设备数量多,流程较长,投资较高。此设计的优点在于与变换气脱硫的装置相比,气量可少40%~60%,送硫回收装置酸气中的H2S浓度高,有利于克劳斯硫回收,同时CO变换系统腐蚀小、变换可采用廉价的铁-铬系催化剂,脱碳时CO2回收率高。但是“冷热病”严重,能耗较高。
6. SHF20-25型锅炉低硫烟煤烟气旋风除尘湿式脱硫系统设计
1.设计题目 SHL10-25型锅炉高硫无烟煤烟气旋风除尘湿式脱硫系统设计
2.设计原始资料
锅炉型号:SHL10-25 即,双锅筒横置式链条炉,蒸发量10t/h,出口蒸汽压力25MPa
设计耗煤量:1.25t/h
设计煤成分:CY=69% HY=2% OY=4% NY=1% SY=3% AY=18% WY=3% ;
VY=8% 属于高硫无烟煤
排烟温度:160℃
空气过剩系数=1.3
飞灰率=16%
烟气在锅炉出口前阻力700Pa
污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度100m,90°弯头20个。
3.设计内容及要求
(1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。
(2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。
(3)除尘设备结构设计计算
(4)脱硫设备结构设计计算
(5)烟囱设计计算
(6)管道系统设计,阻力计算,风机电机的选择
(7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A4图,并包括系统流程图一张。
有做过的话发个到[email protected]
感激不尽。
7. 合成氨关于脱硫的方法,工艺原理,发展水平以及方向
克劳斯脱硫。效果好,脱得彻底。得到的硫纯度好,可直接作成品卖。
硫磺回收装置的设计目的是对合成氨装置产生的酸性气体进行硫回收。
其工艺设计基于改良克劳斯和采用“绝热-等温反应器”进行的直接氧化工艺,从含 H2S的酸性气体中回收元素硫。
硫磺回收装置由一个热反应段组成,在此过程中,部分 H2S 在空气(氧气)中燃烧;接下来是一个 Claus 催化段以及一个直接氧化段,最后阶段是尾气送至锅炉烟气脱硫。
8. 湿法脱硫技术的硫回收及副盐回收
0.序言
湿式氧化法脱硫较为完整的工艺过程可分为:脱硫、再生、硫回收与副盐回收四个控制单元,四者之间相对独立且有密切关联。从总体上看四者的发展并不同步,就其工艺技术及相应设备的配置,工艺管理及工艺要求等方面来看,硫回收特别是副盐回收,均明显滞后,这又反向影响了脱硫与再生的正常进行,因此,不少企业已将硫回收及副盐回收,做为重点控制的工艺过程。
1.氧化再生的概念与过程
从传统上讲,氧化再生单是指在催化剂的作用下,脱硫富液中的HS—被氧化析出生成单质硫。其实从过程的完整性讲,上述过程只是氧化再生的一部分,而只有将析出的单质硫从液相中分离出去,才可称过程的终结。析出硫后的高质量贫液再进入又一个吸收过程,并如此周而复始,脱硫液方可保持良性的循环,脱硫生产方可长周期的正常进行。
2.硫回收与副盐回收的重要性
氧化再生与硫回收是富液氧化成贫液并保持贫液高质量的两个重要环节。脱硫贫液质量差,悬浮硫含量高,除直接影响脱硫净化度外,其积硫以及硫盐等混合物还会造成填料脱硫塔堵塞,塔系阻力增大,塔拦液及夹带液,以及物料损耗增多等多种危害,直接影响着脱硫生产的正常进行,进而影响整个系统的安全和稳定生产。
3.几种不同的硫回收装置
3.1转鼓式真空过滤机
结构:由机座、料槽、转鼓、分配头、搅拌器、加液管、正压空气管、负压系统、冲洗管等部件构成。
工作原理:真空过滤机分配头的抽真空区间与真空泵负压系统联接,吹风区间与正压空气联接,过滤机的转鼓在料槽中转动时,其下半部分浸泡在硫悬浮液中,转鼓每运行一周,其内腔的各分室,先后与上述两区间相联通,其外表面则依次完成过滤、干燥、吹风卸料、滤布再生等工作程序,转鼓的连续不间断旋转运行,保证了过滤生产的连续进行。
3.2戈尔膜过滤器
结构:由缸体、反冲缸、管道、过滤元件、自控系统、气动控制系统及脱水器等组成,并分进液、过滤、反冲、排渣等过程。
工作原理:过滤时脱硫泡沫通过薄膜滤袋,清液经上腔排出,脱硫液中的悬浮硫及其它物理杂质被全部截留在滤芯表面形成滤饼。当其达到一定厚度时,过滤器系统进入反冲洗状态,使滤饼脱离滤袋,并沉降在过滤器锥形底部,系统重新进入工作状态。该过程脱硫液没有化学变化是纯物理过程。
3.3上悬式离心机
结构:立式主体框架、敞口内腔式转鼓、外鼓腔,变速电机、滤饼料斗、滤液收集装置、停车手闸、加液管、冲洗管等。外鼓腔焊接在立式主体框架下半部,转鼓的主轴与框架上方的电机垂直联接,吊在外鼓主腔内,转鼓内侧附着的滤布有开口的钢圈固定。
操作:起动电机待转鼓运行正常后,人工手动均匀的加液,滤液穿过滤布汇集鼓外腔流至地下槽,单质硫及其它物理杂质截留在滤布上,滤饼达一定的厚度,停车,而后人工将滤饼铲下至料斗回收。过程中一但加液不均匀或加液过快,造成晃车,主体框架晃动,硫膏飞溅,需要紧急停车。其劳动强度大,生产环境差,国内基本已停用。
3.4三足离心机半封闭或全封闭式硫回收
结构:由转鼓、外鼓腔、加料管、冲洗管、滤液收集回硫装置,料斗、控制系统、动力电机等构成。鼓外腔由弹性装置的三足固定,转鼓中心主轴由地面支撑,与电机三角带联接。
操作:转鼓运转正常后均匀加硫泡沫液至鼓内腔,滤液穿滤布收集排至地下槽,滤布截留单质硫及其它杂质,滤饼由刮刀自动卸料至料斗。滤饼可直接回收或送熔硫器,间歇式熔硫。该装置劳动强度小,工作环境干净,工作效率高。该装置脱硫液无化学变化,系纯物理过程。
3.5DS型硫泡沫专用过滤机
设备概述:DS型硫泡沫专用真空过滤机是集纳米无机膜技术、超声波技术、自动化控制为一体的新型、高效、节能、环保的固液分离设备,它依据脱硫液组分以及各组分特殊的物化性质采用不同的超微细孔在不影响溶液组分的情况下将硫泡沫中单质硫过滤出来,形成的滤饼可直接装袋销售或进熔硫器进行熔硫;因使用纳米过滤,过滤后的脱硫液含硫极低(单质硫的去除率可达99、9%以上),过滤后的溶液清亮透彻浊度低(固形物总含量〈50PPm),且由于是物理性过滤,过滤后溶液的物化性质均没有发生变化,可直接回脱硫系统使用。因此极大节约了能耗、减少了对环境的污染和对系统的危害。
工作原理:DS脱硫真空过滤机过滤介质利用纳米陶瓷技术,在真空力的作用下,只能让脱硫液通过超微陶瓷膜孔,而溶液中的机械杂质和单质硫以及气泡却无法通过,保证无真空损失的原理,极大地降低了真空过滤机能耗和过滤液的固形物含量。
工作流程:DS脱硫真空过滤机主要包括过滤板、转子、料浆斗、真空系统、清洗系统、控制系统。工作时浸没在料斗的过滤板在真空力和毛细作用下,表面吸附成一层物料,滤液通过滤板至排液罐,干燥区滤饼继续在真空力的作用下脱水。滤饼干燥后通过刮刀卸料,卸料后进入反洗区,通过循环水清洗滤板,从而完成一个工作循环。在过滤机运行7小时后采用超声波和碱水清洗,以保持过滤机的高效运行。形成的滤饼装袋处理或去熔硫釜熔硫。滤饼含水量30%左右。
3.6格栅板过滤
此外也有些小企业或脱硫量少的装置,直接将再生槽的硫泡沫溢流至格栅板上铺设的麻袋上回收硫膏,格栅下槽内的滤液再循环送至脱硫塔,该方法从上世纪60年代延用至今,可称我国的硫回收装置原始之最。
3.7熔硫釜
作用与结构:熔硫釜是硫回收装置中的关键设备,它对回收系统硫膏,避免硫堵降低阻力,减少设备管线腐蚀,起到了积极作用。主要包括进料口、脱硫液出口、釜体、加热套、蒸汽进口、冷凝水出口,其结构为:釜体的底部装有管状加热器,加热器外套管上装有高压蒸汽进口、蒸汽出口,加热器末端装有保温截止阀。釜体和夹套两个压力容器腔体上,均配置压力表、安全阀、温度计等安全附件,以便于操作控制。制造及安装均符合一类受压容器的安全要求。
操作:将压力P≤0. 45MPa的低压饱和水蒸汽,引入到熔硫釜的夹套及盘管内作为热源,加热釜体及盘管,再传热给釜内硫膏,当温度140℃—150℃熔融成硫黄,因釜内硫膏含水,当液温达到140℃—150℃也将产生饱和水蒸气。设备在此条件下运行安全正常。过段时间后开熔硫釜下部的排液阀,连续排液,而后排渣。此过程可连续进行,也可间歇式进行,过程结束后停蒸汽,而后卸压,待用。
总之,采用何种方法进行硫回收,应因厂而置,不搞一个模式。但戈尔膜过滤器工艺复杂,操作环境差也有不少企业弃用。连续熔硫蒸汽消耗量大,大量残液需进行冷却降温,沉淀处理,且高温熔硫,负反应加快,副盐成倍增长(在某厂分析Na2S2O3结果:硫泡沫液采样Na2S2O3分析含量:15.3g/1,熔硫残液采样Na2S2O3分析含量: 31.8g/1),所以是选择连续熔硫还是间断熔硫,也应根据各厂的实际工况而定。
4.副盐回收装置
湿式氧化法脱硫工艺过程,在脱除工艺气体中硫化氢的同时,也伴随着Na2S2O3 Na2SO4 NaCNS三种副盐的生成。副盐总量的增长,不但直接影响气液传质过程,影响单质硫的浮选,使贫液质量下降,最终导致脱硫效率下降,且物料损耗增多。所造成盐类混合物堵塔也时常发生。
在基本相同的工艺条件下,要达到基本相同的脱硫效果,如果Na2S2O3含量60—120g/1则碱耗增加8%左右;如果Na2S2O3含量为120—160g/1,则碱耗增加10%左右。不仅如此,随着Na2S2O3含量的增长,Na2SO4含量也会增加,装置腐蚀也会加快。因此,对过量副盐的回收,也应在脱硫工艺装置的配备之列。以保持三盐的总量在200g/1之内。
在实际生产中,如何更好的控制副盐的产生,有关文献中多有报道,这儿不再讨论。对于溶液中已经很高的副盐,以前多采取以下两种方法:一是直接排放部分脱硫液,进行溶液置换;二是引旁路对脱硫液加热析盐。前者不仅会造成一定的浪费,而且由于环保的压力越来越大,大多企业已不允许排放;后者多采用蒸汽间接加热,使脱硫贫液蒸发而增浓,而后再降温冷却,脱硫液中的副盐含量过饱和而结晶析出,再进行过滤回收。电加热对副盐回收的原理也基本相同,但装置需要大量投资。总之,为保持脱硫贫液的高质量,脱硫工艺的正常运行,不管采用何种方法对超量副盐的回收都是必要的,唯独简单的排放脱硫液的方法不可取。
5.结语
湿式氧化法脱硫虽然工艺较为简单,但是在日常操作管理中却比其它工序要烦琐的多。所以无论是脱硫与再生,还是硫回收和副盐回收,都必须放在同等的高度认真对待。任何一个环节出现问题都会影响到整个工况。尤其是加强对相对薄弱的硫回收和副盐回收的控制和管理,在实际生产中是有着重要意义的。
9. 锅炉烟气脱硫设计(浮阀塔)
硫技术
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。
1.1脱硫的几种工艺
(1)石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
(2)旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。
喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。
(3) 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。
肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。
(4)炉内喷钙尾部增湿烟气脱硫工艺
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。
(5)烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。
典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。
(6)海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。
(7) 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。
(8)氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
1。2燃烧前脱硫
燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。
燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。
煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。
1.3 燃烧中脱硫,又称炉内脱硫
炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB炉内喷钙技术
早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。
(2) LIFAC烟气脱硫工艺
LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。
加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。
1.4 燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)
燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。
1.3.1干式烟气脱硫工艺
该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。
(1) 喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。
(2) 粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。
1.3.2 湿法FGD工艺
世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占39.6%,石灰石法占47.4%,两法共占87%;双碱法占4.1%,碳酸钠法占3.1%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。
石灰或石灰石法主要的化学反应机理为:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。
传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。
湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。
在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。
1.5等离子体烟气脱硫技术
等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:
(1) 电子束辐照法(EB)
电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2和NO进行氧化,分别变成SO3和NO2或相应的酸。在有氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。
(2) 脉冲电晕法(PPCP)
脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。
1.6 海水脱硫
海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。
10. 硫回收工艺原理
硫磺回收装置硫磺回收指将含硫化氢等有毒含硫气体中的硫化物转变为单质硫,从而变废为宝,保护环境的化工过程。
硫磺回收通常采用一种叫做“克劳斯”的工艺来实现。含硫原料气通常称为酸气。首先将酸气与空气或氧气在一台称为燃烧炉的设备中燃烧。严格控制空气或氧气量,使燃烧产物中硫化氢与二氧化硫气体体积比为2:1。之后燃烧气体被冷却,气体中的硫磺冷凝回收。剩余气体经加热后进入一台克劳斯反应器进行反应。反应主要是硫化氢与二氧化硫生产硫磺和水。这一反应需使用催化剂才能实现。反应完后的气体同样需冷却回收硫磺。然后剩余气体在经二级、三级反应。通常硫磺回收装置的硫回收率可达95~98%。
如果需要进一步提高硫磺回收率,则需在装置后附加尾气处理装置。目前最好的SCOT类尾气处理装置可将硫回收率提高到99.9%。
Sulsim是Sulphur Experts公司全流程硫回收模拟软件。
Sulsim采用交互式的图形界面使我们能够对硫回收的全流程和改进的克劳斯过程常用的单元操作,包括焚烧炉和其他一些尾气处理单元,做出完整的设定。交互式的设定功能允许我们在软件所支持的过程中增加或删除操作单元,通常这些过程包括改进克劳斯过程、亚露点克劳斯过程、选择性氧化以及多种尾气处理过程。然后我们所确定的脱硫流程就能够以图形的方式显示在屏幕上。这种高度的灵活性使得我们能很好的模拟与气体处理厂和炼厂相关联的所有的硫回收过程。
在程序中克劳斯反应炉以及下游工艺的任何点都支持多股进料,同时程序也支持工艺气体的循环操作。这使得我们能够对多种进料进行处理,如酸水脱除气、胺厂再生气、燃气以及尾气循环物流。软件采用序贯计算法严格计算从反应炉到焚烧炉或尾气处理单元的物料衡算和热量衡算。
Sulsim支持在一个模拟文件中运行多个并行计算过程(最多4个)以模拟整个硫回收过程。Sulsim也支持全流程的某个局部以模拟过程中的一个单元或若干个单元的任意组合。