A. 现代的科技发明有哪些
现代的科技发明:全超导托卡马克核聚变实验装置、机器人、太阳帆、3D打印机、自动驾驶汽车。
一、全超导托卡马克核聚变实验装置
国家大科学装置——全超导托卡马克核聚变实验装置东方超环(EAST)实现了稳定的101.2秒稳态长脉冲高约束等离子体运行,创造了新的世界纪录。这一重要突破标志着,我国磁约束聚变研究在稳态运行的物理和工程方面将继续引领国际前沿。
东方超环是世界上第一个实现稳态高约束模式运行持续时间达到百秒量级的托卡马克核聚变实验装置,对国际热核聚变试验堆(ITER)计划具有重大科学意义。由于核聚变的反应原理与太阳类似,因此,东方超环也被称作“人造太阳”。
该成果将为未来ITER长脉冲高约束运行提供重要的科学和实验支持,也为我国下一代聚变装置——中国聚变工程实验堆的预研、建设、运行和人才培养奠定了基础。
二、机器人
机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。
三、太阳帆
太阳帆(英文名:Solar sails)是利用太阳光的光压进行宇宙航行的一种航天器。由于这种推力很小,所以航天器不能从地面起飞,但在没有空气阻力存在的太空,这种小小的推力仍然能为有足够帆面面积的太阳帆提供 10e-5~ 10e-3g左右的加速度。
四、3D打印机
3D打印机(3D Printers)简称(3DP)是一位名为恩里科·迪尼(Enrico Dini)的发明家设计的一种神奇的打印机,不仅可以“打印”一幢完整的建筑,甚至可以在航天飞船中给宇航员打印任何所需的物品的形状。但是3D打印出来的是物体的模型,不能打印出物体的功能。
2016年2月3日讯,中国科学院福建物质结构研究所3D打印工程技术研发中心林文雄课题组在国内首次突破了可连续打印的三维物体快速成型关键技术,并开发出了一款超级快速的连续打印的数字投影(DLP) 3D打印机。
该3D打印机的速度达到了创记录的600 mm/s,可以在短短6分钟内,从树脂槽中“拉”出一个高度为60 mm的三维物体,而同样物体采用传统的立体光固化成型工艺(SLA)来打印则需要约10个小时,速度提高了足足有100倍!3D打印实现太空工业化。
五、自动驾驶汽车
自动驾驶汽车(Autonomous vehicles;Self-piloting automobile )又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。
谷歌自动驾驶汽车于2012年5月获得了美国首个自动驾驶车辆许可证,预计于2015年至2017年进入市场销售。
自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。
B. 超导托卡马克的“HT-7U超导托卡马克装置建设”介绍
HT- 7U超导托卡马克以其具有低温超导的纵场磁体系统和极向场超导磁体系统而受到国内外聚变界的广泛关注。我们等离子体物理研究所的全体员工为我们所能承担这样一个国家级的重大科学研究工程项目而感到无比荣幸,为使我所广大科研人员特别是未能直接承担这个科研任务的同志们能较为全面的了解该科研项目的情况,进而也为完成该项目献计献策,特在此简要介绍有关该项目的立项、预研、设计等情况。我们非常欢迎所内外的广大科研人员都来关心、关注HT-7U工程项目的设计和建造,为顺利完成这一重大科学工程项目而努力。 近年来,我国的核聚变研究伴随着全面改革开放和国家的综合国力的增强从而对科学技术研究及教育投入的逐步增加而得到长足的发展,多年来陆续建成的一批核聚变实验研究装置都取得了极好的实验研究成果。其中建在我所的HT-7超导托卡马克尤其以其具有低温超导纵场磁体系统而倍受国内外聚变界的关注。为了更进一步发展、推进我国的聚变科学研究事业,探索非圆、大拉长截面、稳态的等离子体实验控制技术,更深入研究全低温超导托卡马克实验装置的设计、建造和实验技术,从而全面掌握托卡马克类核聚变实验装置各种技术,我所在HT-7投入运行并取得良好实验结果的同时,适时提出建造HT-7的升级装置“HT-7U全超导托卡马克装置”的计划。所谓全超导意为构成托卡马克装置的全部纵场系统和极向场系统都采用低温超导磁体组成。这个计划得到了世界聚变科学研究专家们的极大支持,我所为该计划的顺利实现作了大量的先期预研和设计计算工作。
下面简要回顾一下HT-7U全超导托卡马克装置的立项历程:
1993年10月,以欧共体聚变部名誉主任帕仑布教授为首的来自国际上各大核聚变实验室的12位著名聚变科学家,对我所当时正在建设的HT-7超导托卡马克装置和中国科学院等离子体所的聚变研究发展战略进行了评议。这是我所第一次提出分三阶段实施聚变科学研究的计划。
1994年底,科学院基础局邀请了6位两院院士和8位专家在合肥召开了“HT-7U超导托卡马克计划座谈会”,这是HT-7U计划首次较正式提出。
1996年初,部分两院院士在京西宾馆对“九五”国家重大科学工程项目进行初步评估,HT-7U装置建设第一次得到国家级专家的赞同并被列入前十位项目中。
1997年6月,国家科技领导小组批准中国科学院关于“HT-7U大科学工程项目立项”的申请,该项目正式进入国家重大科学工程项目的立项操作程序。
1997年10月,由国家计委委托中国科学院主持召开“HT-7U工程项目建议书专家评估会”;该项目的建设方案和计划获得与会专家的好评。
1998年4月,正式通过国家计划发展委员会委托中国国际工程咨询公司主持召开的“HT-7U工程项目建议书专家评估会”的评估论证,这表明该项目的科学目标和技术参数及方案都得到专家们的赞许。
1998年7月,国家发展计划委员会正式批复“HT-7U工程项目建议书”(批文中同意“由中科院等离子体所承担建设”,“具有超导纵场和极向场线圈,具有D形非圆截面,包括托卡马克、低温致冷等9个子系统”。批文规定“在2003年6月完成建设工作并进行鉴定验收。项目总投资控制在1.65亿元”)
1998年10月,HT-7U工程项目可行性研究报告在北京获得中国科学院基建局主持的专家评估会一致通过,至此,该项目的设计方案和工程经费基本确定,国家发展计划委员会和财政部依此拨出专项经费。 受控热核聚变的实验和研究,经过50多年核聚变界科学家们的不懈努力,终于在常规Tokamak类型的装置上取得了突破性的进展。但是按照常规托卡马克装置建堆,不仅体积大、效率低,而且是脉冲运行。但是,一个经济实用的商用堆必须是高效、紧凑和稳态运行的。超导托卡马克正是在这一点有着极大的优势,即可以稳态运行。如果在超导托卡马克上实现了稳态运行又在稳态运行条件下大大改善了约束,则将为未来稳态、先进聚变反应堆奠定工程技术和物理基础,意义十分重大。
HT-7U不仅是一个全超导托卡马克而且具有会改善等离子体约束状况的大拉长非圆截面的等离子体位形,它的建成将使我国在2003年左右成为世界上少数几个拥有这种类型超导托卡马克装置的国家,从而使我国磁约束核聚变研究进入世界前沿。在装置建成后的10~15年期间,能在装置上对建造稳态先进的托卡马克核聚变堆的前沿性物理问题开展探索性的实验研究。HT- 7U的建成将使中国在人类开发清洁而又无限的核聚变能的领域内做出自己应有的重大贡献。因此,HT-7U的建造具有十分重大的科学意义。
本项国家级重大科学工程的主要工程目标是必须建设:
可稳态运行的超导托卡马克HT-7U装置主机,该实验装置应达到如下主要设计参数:
超导纵场场强BT = 3.5T
等离子体大半径R = 1.78m
等离子体小半径a = 0.4m
等离子体拉长比K = b/a = 1.6 ~ 2
加热场最大磁通变化能力△Φ = (8-10)V-S
等离子体电流IP = 1 MA
可稳态运行的低混杂波驱动等离子体电流系统(LHCD),该系统主要工程参数应达到:
总 功 率 P = 3.5 MW
工作频率 f0 = 2.45 GHz,3.7 GHz
可连续运行的离子回旋波加热系统(ECRF),该系统主要工程参数应达到:
总 功 率 P = 3 ~ 3.5 MW
工作频率 f0 = 30 ~ 110 MHz
可保证HT-7U基本运行和实验的其它工程系统:如低温、诊断、电源、真空、计算机控制、数据采集和处理、水冷系统等,这些子系统的也都毫无疑问必须满足HT- 7U超导托卡马克装置稳态运行的要求。
HT-7U不是一个聚变堆,它是针对目前建造托卡马克核聚变堆尚存在的前沿性物理问题,进行探索性的实验研究,为未来稳态、安全、高效的先进商业聚变堆提供物理和工程技术基础。 HT-7U项目的最高管理机构是由中国科学院任命的“HT- 7U项目管理委员会”,中国科学院副院长白春礼任管委会主任,安徽省常务副省长汪洋任副主任,组成人员有中国科学院秘书长竺玄、副秘书长钱文藻、计财局长顾文琪、基建局长薛钟灵、基础局长金铎和合肥分院院长王绍虎以及国家发展计划委员会一人、科学技术部一人。
HT-7U项目完全按照国家基建项目实施总经理负责制的组织管理,中国科学院任命的工程指挥部组成人员如下:
万元熙为项目总经理(项目法人),翁佩德、谢纪康、李建刚任副总经理,
翁佩德兼任总工程师;
王孔嘉任总经济师;
高大明任总工艺师。
中国科学院还任命了HT-7U项目科技委员会的组成人员,赵仁恺院士任科技委员会主任,徐至展院士、严陆光院士和石秉仁研究员任任副主任,组成人员有阮可强院士、贺贤土院士、赵凯华教授、余昌旋教授、舒炎泰教授、陆全康教授和我所的邱励俭研究员。
为便于切实抓紧、抓好HT-7U项目的建设工作和有关改项目的各项管理工作,所领导决定:
1、设立HT-7U项目总经理办公会来协调、决定有关HT-7U项目的重大管理方面的决策;
2、成立HT-7U工程总体组(副总工程师、副总工艺师、副总经济师等组成);任命了各分项技术负责人,设立由以上人员组成的总工程师办公会议来研究、解决HT-7U工程建设中的有关设计方案和实施方案方面的重要技术问题;还设立了依邱励俭为首王绍华、季幼章、许家治等参加的工程顾问组。
工程总体组及各分项技术负责人如下:
副总工程师: 武松涛(主机设计)
毕延芳(低温系统、超导导体)
高秉钧 (超导实验)
李建刚(第一壁及真空系统)
刘正之(电源及控制)
副总工艺师: 王永诚、 孙世洪
副总经济师: 黄贵、 姜桂萍
总控制、数采及处理系统 罗家融
真空抽充气及加料、第一壁处理等 辜学茂
水冷系统(包括去离子水冷却系统) 张祥勤
电网设计及供电系统 孙世洪、周士国
诊断系统 万宝年
基建(包括冷、暖) 孙世洪
环保分析及安全监控 吴宜灿
LHCD系统 匡光力
ICRH系统 赵燕平
ECRH系统 刘保华
我所目前已介入HT-7U项目建设工作的科研人员大约有近200人,主要有一室和三室的全部人员,二室、五室、六室、七室、八室、十室、十一室、技术中心和研制中心以及管理部门的部分人员。
目前,HT-7U项目的所有设计人员都实行严格的岗位责任制,发放岗绩津贴,全所上下都对于HT-7U项目的设计和研制倾注了满腔热情,提供了各方面的支持。 在所领导和HT-7U工程指挥部的强有力的领导下,在所有参加HT-7U项目的设计和预研工作的同志们的共同努力下(其中也包括有所外的有关工厂和研究部门的大力协作),HT-7U项目的工程设计和预研已经取得了多方面的进展,我们在此简要介绍如下:
1、HT-7U装置超导磁体所使用的CICC超导导体的研制取得了重大进展,装置设计室在合肥电缆厂和西北有色金属研究院等工业部门的协作下,顺利研制出一根长度为200米的模拟CICC导体和两根总长为600米的全尺寸CICC超导导体,这是我国第一次研制出大电流的低温超导导体,继以上的包管焊管制造CICC超导导体后,装置设计室又在合肥电缆厂和所研制中心的协作下,顺利研制出穿管制作的CICC超导导体,这为降低CICC超导导体的造价和减小制造的技术难度起到了决定性的作用。
2、所研制中心已经成功地研制出专用于HT- 7U装置CICC超导导体绕制的绕线机,并且已经使用该绕线机和模拟CICC导体绕制出2:3尺寸的D形纵场模拟双饼工艺试验磁体,这标志着我所研制中心具备了绕制具有较高精度的复杂D形磁体的加工能力。
3、装置主机设计方案初步完成,其中超导纵场系统已经按两种超导导体的方案进行了技术方案设计,即基于采用美国SSC电缆的浸泡式超导磁体方案和基于CICC导体的迫流内冷超导磁体方案;极向场电磁参数特别是加热场参数的优化设计计算取得了比较好的设计计算结果;真空室、内外冷屏、外真空室以及装置的支撑结构等方案也已初步确定,现正在进行有关的工程设计和工艺技术方面的调研、讨论。
4、装置设计室完成极向场中心螺管模拟线圈的设计,目前正在所研制中心利用自行研制的两根总长为600米的CICC超导导体进行绕制,这将是我国的第一个大电流低温超导磁体。
在进行并完成以上工作的同时,为确保HT-7U装置设计既具有参数先进又稳妥可靠,有选择地将有关的设计工作作为国际合作项目征求国外专家的意见,其中对于装置的总体设计参数和装置的工程方案设计已经召开了有世界核聚变领域的著名专家参加的国际讨论会。与有着丰富超导托卡马克设计制造经验的俄罗斯库尔恰托夫研究院核聚变所和叶夫列莫夫所开展了较为广泛的合作,对有关的设计计算参数、电磁场分析计算、等离子体的平衡位形设计计算、传热和超导移能等进行了分析校核。关于装置的极向场物理设计和等离子体平衡位形的设计计算方面还与美国GA开展了合作,用美国的程序对HT-7U的设计计算进行了进一步的校核。
目前,除各子系统都在进行紧张的扩大初步设计外,有关的研制工作也在紧张进行中。主要有:
1、通过国际合作,对已经研制出的CICC超导导体进行超导性能方面的综合测试试验,以便为CICC超导导体的最终设计提高必要的数据,也为我们自己建立超导导体、超导磁体测试实验室提供借鉴和经验。该项工作今年必须完成。
2、装置设计室完成了低温超导试验所必需的试验大杜瓦的设计,目前正在进行加工制造的询标、议标工作,今年力争基本完成加工并进行组装调试。
3、中心螺管模型磁体必须完成绕制、绝缘处理等全部制造工序,装置设计室完成的大电流的CICC超导导体的接头的研制必须在上半年完成,以便确定模型磁体所采用的超导导体接头形式。
4、单根长度达600米的CICC超导导体穿管生产线今年完成建造,进行试制生产。
全部的装置设计资料、参考资料、设计计算报告等技术资料都已经在总师办归档保存,已经可以从网络上查阅资料名称,也可以很方便地去总师办借阅。有关项目的文件和技术合同、合作协议类资料在项目办公室保存。 承担“HT-7U超导托卡马克装置建设”项目是对我所的核聚变实验装置工程设计能力和技术加工能力以及超导托卡马克装置运行实验的检验和挑战,应该看到尽管我所有着一定的托卡马克设计、制造、运行和控制的经验,但对于HT-7U超导托卡马克装置这样的全超导托卡马克装置,非但是我们所,即便是世界上的核聚变大国(美国、西欧、日本、法国、俄罗斯等),也都未曾有这样的经历和经验,所以,可以毫不夸张地说HT-7U超导托卡马克装置的建成之日,也一定是我国进入世界核聚变研究大国的行列之日。
正因为如此,HT-7U超导托卡马克装置的设计建造以及实验运行是必然的给我们带来了巨大的挑战,我们必须对此有一个清醒的认识。其中最为核心的具有挑战性的工程技术方面的难点有:
HT-7U装置所使用的CICC超导导体的设计、研制和试验测试技术;
较大电流变化、较高磁场变化的超导极向场磁体的设计、制造和试验测试及实验运行技术;
非圆、大拉长截面、稳态的等离子体控制技术;
从HT-7U超导托卡马克装置建设的立项可以看出,我国的核聚变科学研究工作已经得到国家的大力支持,该项科学研究已经有着广泛的国际合作的基础。随着我国综合国力的提高,相信国家对聚变研究的支持强度肯定会不断增加,在此基础上,中国开发聚变能的研究一定会进入世界先进行列并为人类社会的可持续发展做出重大贡献。
努力做好我们的工作,把HT-7U装置早日建成,为把我国建成科技强国而奋斗,为我国的技术进步而努力。 :
课题号
课题名
负责人
U1010000
主机设计
武松涛
U1020000
低温系统
毕延芳
U1030000
电源系统
刘正之
U1040000
真空系统
辜学茂
U1050000
超导实验
高秉钧
U1060000
第一壁材料
李建刚
U1070000
环保与防护
吴宜灿
U2010000
物理设计
虞清泉
U2020000
低混杂波
匡光力
U2030000
离子回旋波
赵燕平
U2040000
数采
罗家融
U2050000
控制
罗家融
U2060000
诊断
万宝年
U2070000
电子回旋波
刘保华
U3010000
高大明
U3020000
孙世洪
U3030000
孙世洪
U3040000
水冷系统
张祥勤
U3050000
高大明
U3060000
高大明
U4010000
王孔嘉
U4020000
王孔嘉
U4030000
翁佩德
U4040000
王孔嘉
U4050000
王孔嘉
U4060000
高大明
U4070000
王孔嘉
C. 第五届科学仪器 实验设备及教育装备博览会专业搭建商
第五届科学仪器 实验设备及教育装备博览会专业搭建商
第五届科学仪器 实验设备及教育装备博览会专业搭建商,贝美展示工程(大连)有限公司成立于1998年,性质为有限责任公司,注册资金50万元,员工人数60人,年营业额约600万元,制作车间面积3000平方米并取得由大连城乡建设委员会颁发的一级资质证书。十年来,以专业的高素质员工,满意优质的后期服务奠定了企业坚实的发展基础,也因而赢得了国内外客户多年来的信赖与支持。 我们是以策划、设计、制作服务于一体的专业公司,业务范围包括,展览会场、商场、销售中心、展示厅、展览馆、专卖店、办公室、写字间、酒店、饭店、商业会所、电影院、售楼处、公建、室内装修、演出活动等的设计与承建。客户:资生堂丽源化妆品日本丸美 MODA时装(VERO MODA、ONLY 大连地区)大连百年城大商集团(新玛特、麦凯乐)大连友谊集团(友谊商城、外商俱乐)伊藤忠商社大连大杨集团大连软件园西安软件园大连电力电器集团大连机床集团大连起重集团 ABB(中国)有限公司大连丰田汽车销售有限公司大连雨生集团青岛啤酒集团裕景兴业有限公司大连东达环境集团万科房地产有限公司大连房地产发展集团 友谊合升地产国泰地产润德君城房地产开发有限公司上品堂 ……
第五届科学仪器 实验设备及教育装备博览会专业搭建商
2007 年5月25日
D. 中科院的全超导的“人造太阳”——托克马克核聚变试验装置的调试运行成功,使我国在该领域的研究处于世界
可控核聚变俗称人造太阳,因为太阳的原理就是核聚变反应。(核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境)人们认识热核聚变是从氢弹爆炸开始的。科学家们希望发明一种装置,可以有效控制“氢弹爆炸”的过程,让能量持续稳定的输出。科学家们把这类装置比喻为“人造太阳”。
为实现磁力约束,需要一个能产生足够强的环形磁场的装置,这种装置就被称作“托克马克装置”——TOKAMAK,也就是俄语中是由“环形”、“真空”、“磁”、“线圈”的字头组成的缩写。早在1954年,在原苏联库尔恰托夫原子能研究所就建成了世界上第一个托卡马克装置。貌似很顺利吧?其实不然,要想能够投入实际使用,必须使得输入装置的能量远远小于输出的能量才行,我们称作能量增益因子——Q值。当时的托卡马克装置是个很不稳定的东西,搞了十几年,也没有得到能量输出,直到1970年,前苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,Q值大约是10亿分之一。别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,欧洲建设了联合环-JET,苏联建设了T20(后来缩水成了T15,线圈小了,但是上了超导),日本的JT-60和美国的TFTR(托卡马克聚变实验反应器的缩写)。这些托卡马克装置一次次把能量增益因子(Q)值的纪录刷新,1991年欧洲的联合环实现了核聚变史上第一次氘-氚运行实验,使用6:1的氘氚混合燃料,受控核聚变反应持续了2秒钟,获得了0.17万千瓦输出功率,Q值达0.12。1993年,美国在TFTR上使用氘、氚1:1的燃料,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,Q值达到了0.28。1997年9月,联合欧洲环创1.29万千瓦的世界纪录,Q值达0.60,持续了2秒。仅过了39天,输出功率又提高到1.61万千瓦, Q值达到0.65。三个月以后,日本的JT-60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1。后来,Q值又超过了1.25。这是第一次Q值大于1,尽管氘-氘反应是不能实用的(这个后面再说),但是托卡马克理论上可以真正产生能量了。在这个大环境下,中国也不例外,在70年代就建设了数个实验托卡马克装置——环流一号(HL-1)和CT-6,后来又建设了HT-6,HT-6B,以及改建了HL1M,新建了环流2号。有种说法,说中国的托卡马克装置研究是从俄罗斯赠送设备开始的,这是不对的,HT6/HL1的建设都早于俄罗斯赠送的HT-7系统。HT-7以前,中国的几个设备都是普通的托卡马克装置,而俄罗斯赠送的HT-7则是中国第一个“超脱卡马克”装置。什么是“超脱卡马克装置”呢?回过头来说,托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻。托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场。托卡马克貌似走到了尽头。幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超脱卡马克。目前为止,世界上有4个国家有各自的大型超脱卡马克装置,法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U,和中国的EAST。除了EAST以外,其他四个大概都只能叫“准超托卡马克”,它们的水平线圈是超导的,垂直线圈则是常规的,因此还是会受到电阻的困扰。此外他们三个的线圈截面都是圆形的,而为了增加反应体的容积,EAST则第一次尝试做成了非原型截面。此外,在建的还有德国的螺旋石-7,规模比EAST大,但是技术水平差不多。
E. 超导托卡马克的HT-7实验系统
HT-7是一个宠大的实验系统,它包括HT-7超导托卡马克装置本体,大型超高真空系统,大型计算机控制和数据采集处理系统,大型高功率脉冲电源及其回路系统,全国规模最大的低温液氦系统,兆瓦级低杂波电流驱动和射频波加热系统,以及数十种复杂的诊断测量系统。几年来, HT-7超导托卡马克装置经过不断的改造,成功地进行了十几轮实验运行,取得若干具有国际影响的重大科研成果。为了实现HT-7超导托卡马克装置的高功率、稳态运行,2001年,科技人员对HT-7的实验系统进行了数项重大改进,在工程上向着 迈出了一大步:
1)极向场的稳态供电及控制;
2)利用钒钢实现稳态条件下纵场波纹度的大幅度改善;
3)1MW稳态低杂波电流驱动系统;
4)高性能水冷石墨限制器及粒子排除系统;
5)新型射频天馈系统;
6)海量数据实时与连续采集系统;
7)数项先进等离子体诊断系统。
在物理上,HT-7紧紧围绕稳态高约束等离子体运行这一当今世界磁约束聚变最具挑战性的前沿课题展开全面深入地研究。为达到这个目的所 如下:
1)低杂波电流驱动及改善约束;
2)离子伯恩斯坦波加热及改善约束;
3)边界湍流及输运研究;
4)等离子体参数精细分布控制;
5)先进壁处理;
6)稳态运行及控制。
随着物理实验的不断深入,2001年冬季实验又获重大进展,创造了许多令世人瞩目的 1)实现了在低杂波驱动下电子温度超过五百万度、中心密度大于1.0×1019m-3、长达20秒可重复的高温等离子体放电;
2)实现大于10秒、电子温度超过一千万度、中心密度大于1.0×1019m-3的高参数等离子体放电,这是世界上第二个放电长度达到1000倍能量约束时间高参数准稳态等离子体;
3)在离子伯恩斯波和低杂波协同作用下,实现放电脉冲长度大于100倍能量约束时间、电子温度二千万度的高约束稳态运行;
4)最高电子温度超过三千万度。
迄今,HT-7超导托卡马克达到的 1)等离子体参数:放电时间20秒,电子温度 >3000万度,电子密度6.5X1019m-3 ,等离子体电流240仟安;
2)装置运行参数:磁场强度2.2特斯拉,本底真空4×10-6Pa,储能≤10仟焦;
3)低杂波系统指标:最大注入功率700仟瓦,环电压降至0,并向变压器反充电;
4)离子回旋波加热和IBW指标:最大注入功率330仟瓦,等离子体电子温度和离子温度明显升高;
5)等离子体和壁相互作用:RF清洗及RF硼化和硅化效果明显,有效Zeff接近1;
6)诊断技术及所达指标:总诊断35种,400多路诊断信号;
7)加料技术:弹丸注入和IBW协同实验,发现芯部约束改善;Laval喷嘴实验已取得初步结果;
8)等离子体控制:多变量控制,等离子体电流、位移反馈,实现等离子体参数灵活调节,较高放电重复率。
以上指标充分说明,HT-7超导托卡马克装置已步入世界上为数不多的可进行高参数稳态条件下等离子体物理研究的先进装置行列。
HT-7在未来几年里, 1)向更高参数冲击,在2-3年内奠定HT-7在国际受控界不可取代的地位;
2)全面开展国家九五大科学工程“HT-7U”托卡马克的先行实验。
力争进入世界托卡马克五大装置,完成在稳态先进运行领域不可取代(前两名)地位。
拟进行的物理研究内容如下:
通过实验计划的科学实施可在以下方面达到国际领先水平,做出突破性贡献。建立有创新性和适合国家能源体系的 “稳态、先进模式”的 1)稳态模式的研究:在HT-7超导托卡马克上实现30秒级的等离子体,存在时间约为能量约束时间的2000倍,等离子体各项参数均达到稳态。研究等离子体电流密度和参数分布的驰豫过程。
2)高约束模式的研究:在100倍于能量约束时间的尺度,利用低杂波,射频波及两波的协同和其它实验手段(如加料方式,MHD抑制等)控制电流和压强分布参数,实现先进的,自洽的高约束等离子体。提高能量约束时间(1-2倍)和电子温度(>五千万度)。
3)高磁比压和运行极限的研究:实现具有约束改善的兆瓦级功率电流驱动和加热,研究高磁比压(高b N)条件下等离子体稳定性。
4)加料、排灰、排热研究:研究准稳态条件下(100倍于粒子循环时间尺度)等离子体边界行为和粒子再循环,实现加料、排灰、排热的控制,使等离子体密度和壁的再循环达到稳态。
(汪舒娅供稿/02年11月)
此网页最近更新于02年11月19日 。
“九五”国家重大科学工程项目
F. EAST的EAST科研团队
[科学时报 郑千里 报道]继2006年9月首次成功放电后,我国“人造太阳”实验装置——位于合肥的全超导非圆截面核聚变实验装置(EAST)1月14日23时01分至15日1时连续放电4次,单次时间长约50毫秒,从而标志着第二轮物理实验的开始。 本报记者 保婷婷/摄
聚变曙光耀东方
一位长者,清癯,精瘦。然而,他的言辞却让人感受到其中的睿智与分量。2007年3月1日,为超导托卡马克核聚变实验装置EAST在合肥进行国家工程竣工验收的就是这位长者万元熙。他代表EAST工程指挥部作了报告:与国外同类装置相比,我们已建成的装置使用资金最少、建设速度最快、自主创新最多。完全可以乐观地预见,EAST的成功建造和运行,将为中国磁约束核聚变研究的下一步计划奠定物理、工程技术和人才队伍的坚实基础!
“未来高效聚变堆必须稳态运行,因此实现托卡马克稳态运行的工程和物理问题成为托卡马克的前沿研究领域;全超导托卡马克是实现稳态运行最必要的工程技术基础之一;世界上还没有全超导托卡马克;我们及时向国家提出了建造先进全超导托卡马克计划。” 万元熙追溯。
他的报告获得热烈的掌声。莅临的国家发改委副主任张晓强称EAST的建设成功,“是向和平利用聚变能迈出的重要一步,也是中国科技工作者对世界科技发展作出的重要贡献!”
“十年磨剑终成器,聚变曙光耀东方”,中国科学院常务副院长白春礼在致词里,更是言简意赅地作了点题。
太阳发出的能量来自氢原子核。氢原子核相互作用,发生核聚变,释放出光和热。如果发明一种装置,它不仅能承受上亿摄氏度的高温,还能控制氘和氚聚变稳定持续输出能量,无异于发明“人造太阳”,为人类提供无限清洁的能源。受控热核聚变反应的途径之一,就是制造托卡马克磁容器。科学家在该装置上研究发现,可以把氘氚的聚变燃料加热到几亿摄氏度的高温区,然后发生大量聚变反应。
“称我们的EAST是人造太阳,可能会造成公众的曲解。EAST进行的与未来聚变堆相关的工程和物理问题的探索性实验研究,是要为未来稳态、安全、高效先进聚变堆的物理和工程技术基础作贡献,但要建造在地球上的受控热核聚变反应堆或核聚变电站,能像太阳一样通过核聚变反应放出能量,进而实现商业化发电,那大约是50年后的事。”万元熙实事求是地解释。
EAST是英文Experimental Advanced Superconcting Tokamak(实验的、先进的超导托卡马克)的缩写,原意“东方”。它从1998年国家批准立项到今天通过验收,如吸收天地山川之精华,今天才喷薄于东方的地平线。中科院等离子体物理研究所的团队通过10年顽强拼搏,正在托起和明天一样辉煌的太阳。
万元熙:老骥引领“新潮流”
虽然年龄68,万元熙心态依然年轻,“我提出很多大胆的改革思路,年轻人说我不像是位老同志。我引领‘新潮流’,是所里第一个贷款买车的。”
天柱山,“自己开车想上哪就上哪,多自由、多潇洒呀!”
早年所里分房,万元熙废除了领导加分的老规定,根据所里未来的发展需求,把全所人员分成不同的群组,按其对所里的贡献打分,谁分数高谁就优先挑选房子,“群众有自己辨别是非的能力,比如李建刚所长当时还只是个小年轻,打分下来他排队很靠前,自然就分到了房子,现在也确实证明了他是研究所的中坚力量”。
万元熙认为骨干队伍的稳定和凝聚牵一发而动全身,要靠感情动人、待遇留人、事业凝人。“1995年,所里遴选出15位大家公认的学科和技术带头人,给他们每人发一张银行卡,每个月打进1000元钱。当时研究所经济拮据,造成一些人才因囊中羞涩而流失,我们采取这一措施是痛下决心。一些骨干拿到这1000元钱,说这样要‘玩命’时在老婆孩子面前也硬气了。”
和谐社会,应该人尽其才,才得其酬。“既然我是所长,就得对决策承担责任。关键岗位上的熟练技工收入能否比研究员还高?关键要看他对研究所发展的贡献。谁要吊儿郎当我也会拍桌子,当然事后我也会道歉。‘上山下乡’那年月我啥苦头没吃过?我与任何人都可以很好地沟通。”
“理论物理讲究做事出发点不能错,工程要为物理研究服务,不要本末倒置,因强调工程的难度而影响实验。所有工作都要落到实处,二级项、三级项,谈得再漂亮也不行,先跟我谈零级项。一定要先判断出最清晰的需求。”听万元熙这么“强硬”的口气,谁能相信他是胃切除4/5,至今还留有心肌梗塞病灶的人?
“很多决策包含着风险,如果硬要给我上纲上线,可能我就犯错误了,若不给我上纲上线,人家就说我英明决策。” 万元熙笑曰。
早在20多年前,万元熙就参加过托卡马克的国际会议,“以前我们与发达国家有很大差距,出国口袋里没有一点钱,根本谈不上社交”。
2006年10月在成都举行的国际聚变能会议,万元熙作了开幕式上的第一个报告,题为Overview of Progress of EAST Project and Future Plan。按过去的惯例,这一般都是由世界上最先进的聚变研究所作报告。报告结束后大家热烈提问,第二个提问的是美国教授Goldstone,他过去参加国际大会都会坐在第一排,都会提出非常尖锐的问题,但他这次却站了起来说:“我建议我们全体起立,为中国的EAST热烈鼓掌祝贺!”
在国际聚变能的类似大会上,以前还没有发生过700多位与会代表一起,为某项科研成就的取得热烈鼓掌,这次大家却为EAST的成就共同鼓掌充分说明,我国科学家已成为该研究领域的VIP。
过去托卡马克装置多半是圆截面,但后来理论证明非圆截面的效果更好。万元熙生平作的“最冒险”决定,就是要做全超导、非圆截面托卡马克。“我的冒险有理论根据。一是世界上已经有模型线圈作了相关实验,证明托卡马克可以承受一定量的快速磁通变化;二是物理上也有其他可采用的办法,能够用来降低超导托卡马克对其快速磁通变化的要求。就像是走路,如果前头是一面墙,人肯定穿越不过,但即使前面只有一条小路,人也能够通过,如果这面墙是纸糊的,人就很容易穿越。”
武松涛:阳光十足地“修行”
武松涛是等离子体所副所长,EAST的装置主机负责人。“我1983年华中工学院毕业,专业是光学工程,如果始终停留在原有专业就走不到今天。大学只能是‘师傅引进门’,工作上‘修行’的道路更漫长,要在等离子体所干好就必须懂得聚变,到处找这方面的书自学。”
武松涛找到一本《受控热核聚变实验装置概论》。油印讲义因年代久远已卷边发毛,但扉页上“中国科学技术大学四系”“一九七九年十二月”字样尚清晰可辨,“不记得当时是向谁借的,它只有上本没有下本,我得到后如获至宝,通宵达旦地看了好几遍。”
武松涛参与聚变实验装置建设是在1990年。他写的《HT-7主机改造工程的组织、协调与管理》发表在《科研管理》上。HT-7装置建造成功后又及时提出建造超导托卡马克EAST装置。“中科院希望能有年轻的科研人员参与项目,所领导到院里汇报工作有年轻人他们就高兴,如果只是所领导自己,院领导就苦脸相对。我介入装置总体设计,跟着霍裕平、万元熙、翁佩德几位老领导跑,他们都比我大20岁左右。我参加了院里及国家组织的几十次项目方案论证,我作总体方案这部分报告。有关部委领导看了HT-7U(EAST原名)都说,项目本身不错,但工程要持续那么久能否做到后续有人?大科学工程给了我成长的机会,我感谢老同志对我的信任和培养。”
武松涛一步一个脚印走了过来。“我们脑子里已逐渐把装置各个关键部件的结构清晰化,从1998年到2001年,我们每年出一本装置设计的文集,既作为文献把工作记录下来,也给大家增加点压力,思考未来的发展战略。文集的序言都是我自己写。”
听说用2000万美元就要建造全超导核聚变装置,国外没人相信,国内质疑的声音也不绝于耳。每次方案汇报和论证都像是舌战群儒,就是在这样的不断磨砺中,武松涛得到了锻炼成长。
武松涛巧妙地借助国际合作平台,为承担EAST接着搞“热身”。为合作伙伴美国得克萨斯大学核聚变研究中心设计制造新型等离子体物理实验装置,他带领五人的一个小组,前后用了两年时间,圆满完成了经费125万美元的合作项目。“这是我国首次以技术方式向发达国家输出托卡马克聚变系统。美国能源部对这一成功合作也很满意,称它是中美核聚变合作的新型的方式。它也是迄今为止中美聚变界最大的国际合作项目,对提高我们的自信心起到很大作用。”
2002年12月,武松涛因为一天到晚不停地工作,突然嗓子疼得厉害,几天之后干脆成了“哑巴”,医生诊断患了急性扁桃体炎,要他立即住院动手术。那时EAST正处于建设的关键期,他除了到医院打点滴,每天照常上班。无可奈何的医生只好在他病历上作了“病人拒绝住院”的记录。
“这在我们团队根本算不了什么。‘保证星期六不休息,星期天休息不保证’是我们不成文的作息守则。”武松涛说,“平时我总给人很阳光的感觉,但记得EAST立项一年多时,有一次我召集每周一次的全体例会,因为项目推进得很慢而带来压力,我忍不住说:如果项目延缓进度或者出了差错,我们不但愧对前辈,也愧对国家!当时我不由自主地哽咽了。大家好几分钟不说话,都感到我的动情之处,会后对我说,他们能体会我的压力,大家会同舟共济。”
2006年9月28日,EAST首次成功获得高温等离子体放电向媒体开放,李建刚所长找了武松涛一下午,想把他推向“前台”接受采访,但武松涛却如同“蒸发”了一般,“我在办公室,把衣服叠作枕头就躺在沙发上睡着了。从吃午饭后一直睡到傍晚。我将手机关掉,哪里也不想去”。
“大学同学毕业后曾聚会过两次,他们大多都已改行,其中经商的居多,目前还在搞科研的除我之外可能仅有一位同学。同学聚会问我怎么搞到聚变工程上来,还调侃说我是最有可能当院士的人。”武松涛笑了笑说:“众所周知,大科学装置的建造周期一般都很长,如果一个人耐不住寂寞,干不了那么长时间,就像跑马拉松运动员没有毅力似的,中途就会自行被淘汰出局。”
潘皖江:关乎“大脑毛细血管”
在EAST团队中,潘皖江主要负责装置绝缘结构的设计以及绝缘子的研制。
武松涛等早年在外国参观过托卡马克的绝缘子,但外国根本不愿意透露研制技术,每个绝缘子报价高达1400~1600美金,如果EAST需要600个绝缘子,就意味着仅此一项的花费就需要约90万美金。
1997年夏天,由武松涛出面游说,校友潘皖江就被赶上了架。潘皖江1989年华中工学院金属材料及热处理专业毕业,在等离子体所研制中心工作的几年里,也参与过一些绝缘材料的研制。
从俄罗斯T-7上拆卸的绝缘子,陶瓷材料不符合EAST装置的要求,他们想在国内寻找合作伙伴做绝缘材料,但相关单位不是因为工艺不能解决,就是因为经济效益的考虑,都不愿拣超导体绝缘材料这个“烫手的山芋”。当时31岁的潘皖江虽然还缺乏历练,但逼上梁山,只好自己做复合材料。
“高大明老师去国外访问时拿回一个样品,我们把它当宝贝似的,小心翼翼地不敢动,充其量是用X光为其拍照,但后来测试出它是坏的。询问外国的绝缘子价格,不仅贵得吓人,还不让测试性能。”
万元熙打过一个形象的比方,EAST里用的绝缘子就相当于人体大脑的毛细血管,哪怕其中一个毛细血管破裂,人可能就会脑瘫痪。所以,600多个绝缘子都要严格要求质量、严格加以测试。
“绝缘子前后研发了3年,自己做了两年。我们只能自力更生,在实践中摸索着干。”潘皖江轻描淡写地,一句话就带过了10年的历史。
潘皖江原创的“金点子”,是提出“液态树脂低温氦密封电流引线”的办法。
EAST在2006年初第一次调试,所有引线都发现电流引线外漏的情况。问题如不及时解决,可能导致超导磁体损毁,从而导致整个装置失效。万元熙和武松涛认为潘皖江提出的想法很新颖,值得尝试。从下午五点钟开始做,到七点半就出效果,从根本上解决了EAST的真空问题。“其他人可能受所学专业局限,想用强度很高的材料将外头的引线固化住,我是求异思维。”潘皖江还是轻描淡写,“后来开总结大会,万元熙总经理说我的主意不错,应该‘重奖’,给了我1500元的额外奖励。”
EAST第二次调试低温超导出现了内漏,大家又想到了潘皖江。他采用真空管,两天就解决了问题。
在EAST的工作中,潘皖江等人摸索出的一些新工艺、新方法都在申请专利之中,“很多人在跟踪我们的技术。我们研制绝缘子的成功率也很高,对外说我们的成功率达到90%,人家一般不相信,怎么可能那么高呢?我还没好意思跟他们说,我们的成功率甚至高达99%呢!”
高大明:抓质量就是“抠问题”
EAST的主要构成部分是超导磁体,为了节省项目经费,本来已和美国的一个科研机构商谈提供超导或电缆,但因李文和事件的突发使得这一合作可能中断。考虑到苏联因为解体,大加速器项目暂时搁浅,于是合作的指向自然掉转到俄罗斯。主管设计的副总经理翁佩德与俄罗斯联系,对方说仓库里有很多超导股线,但是放置的时间很长了,性能究竟怎么样不好说,但可以便宜点卖。
“柳暗花明又一村”,让大家眼前一亮。时值2001年春节前夕,所里赶紧组织8个人兵分两路,一路由陈灼民带队,一路由高大明带队。
陈灼民等人在尘封的仓库里,除了要把所有超导股线一团一团地全部倒出,还要测试每团线的3R性能。超导丝团和车轮子差不多大,他们足足折腾了三四个月,总算挑出4500多根、20吨参数能匹配的超导股线。最后,高大明坐镇指挥另一路兵马,在电缆研究所将这些超导股线绞缆。运回国内的成型电缆都是600多米长,最终用较少的钱买回了EAST重要的也是合格的材料。
此前,高大明和EAST研究中心主任陈思跃考察俄罗斯电缆所发现,该所虽然生产过800米的铜缆,但仅仅是验证工艺,从来没有连续、满负荷地生产过批量的超导导体。由于穿管导体内部充满液氦才能实现超导,必须对套管焊缝质量提出严格要求。超导导体的钢管焊接需要很好的技术,没有焊透不行,若焊得太透钢管就会鼓出一团,按什么标准来控制呢?高大明来回抠问题,总算得到一些比较关键的技术标准。
2001年8月26日,600米穿管超导导体(CICC)生产线建成,并成功生产出第一根铜缆导体。EAST所有超导磁体需要的导体都由这条生产线生产。从俄罗斯高能所购买的0.85毫米直径的超导股线,按照设计绞制成直径约20毫米的超导电缆,在这条生产线上穿入用特种高强度不锈钢管焊接成的长达600米的套管。
在总工艺师高大明指导下建成的CICC生产线,为EAST的超导磁体绕制、超导磁体实验等奠定了基础。
“严格管理是我们团队的特点。搞大科学工程本身就有很大风险,必须建立严格的质量管理体系。ISO9000标准的核心就是要文件化,实行过程控制,防患于未然。2000年底我们终于建成了EAST的质量管理体系。”高大明说。
高大明1978年从东北第一机械厂调来,“那时正是‘科学的春天’,受我们这个年龄段的人的理想主义教育影响,我就想扎扎实实为国家作贡献。搞大科学工程不像是在居里夫人时代,两三个人在地下室晃一晃化学瓶子,或许就可以搞出成果,我们EAST团队最注重的是团结协作。”高大明介绍说,“现在参加国际ITER计划,因为我们有全过程搞超导托卡马克装置的经验和技术积累,在国际舞台上说话的声音也响亮了。”
“我们的学生在国外,别人问起EAST怎么做,他完全可以应答如流。过去发达国家与我们合作纯粹是为了省点加工费用,现在我们EAST的整套经验对它们有用。”高大明打了个比喻,“这就像一位研究生虽然考试只七八十分,但和一位小学生考试得一百分,水平肯定不在一个档次。”
吴杰峰:施工现场“魂牵梦绕”
在俄罗斯转移的T-7上作物理实验,必须作许多技术改造。如它要多开窗口,才能实现ECRH、离子回旋等辅助加热;要了解等离子体的参数,必须要有相应的诊断窗口、实现抽真空的抽气窗口。总共要开100多个窗口。
吴杰峰1988年7月华中理工大学机械工程系毕业,就被分配到等离子体所的研制中心,他早年当过焊接项目负责人,现为研制中心主任。“真空室窗口原来只有12个,要改造到48个。管道共有3000个接头需要焊接,有一个产生漏焊、虚焊都非常可怕,氦气就可能跑到真空里,使外杜瓦变成大冰块。为把好质量关,我经常要钻进真空室,744毫米的直径,操作的焊工在这狭小的空间里头,无论仰焊、侧焊、横焊,都比较困难。”
超导线圈绕制是全新课题,高大明1998年带着吴杰峰等出国考察线圈绕控,1999年就自主研发出了“替代材料管内电缆导体”,接着绕制出D型线圈。“铠装导体的无张力连绕技术”获得了发明专利,绕线机获得了新型设计专利。
2002年2月做出第一条真正的超导导体,2003年8月做完58根、总共34公里的铠装电缆导体,“我们在现场抓质量和进度,最初40天做成一根导体,后来5天就能做成一根,一是技术操作大家已经熟练,二是批量生产采用了计件式的管理。一年半做完全部58根导体,是目前在国际上做得最多、速度也最快的。”
做EAST的超导磁体非能等闲视之。首先要建特种绕线车间、绝缘子真空压力浸渍车间等。研制中心进行了诸多技术集成和工艺上的探索。超导磁体34公里共3500多个接头,研制中心一次焊接合格率达到98%,超过了一级焊缝的标准。“从确保质量考虑,我们每次焊前都要试焊3次,连刚换了瓶气体也要先试焊3次。”
低温容器的密封度要求高,研制中心采用了内窥镜、渗透、超声等6种检测技术,“容器绝对不能出现泄漏。我们能想到的检测方法基本都采用了,只要一个方法未通过就得重来。因为哪怕一个焊头出问题,就可能陷入和别国的托卡马克一样尴尬的情况:真空上不去,低温下不来” 。
吴杰峰说,“检测出了某些问题,无论是我还是焊接的工人,睡觉都不踏实,可能睡梦中会突然翻身起来,说:哦,问题是不是出在那里!就赶紧披衣从家里跑到现场。”
白红宇:科研路上的感情“流量”
EAST有两个大规模低温超导磁体系统,超导线圈有好几个流体通道,必须通过控制保证其流量的分配。超导磁体要在4.5K下运行,低温制冷系统是冷却超导磁体及保证磁体运行在工作温度不可或缺的子系统。该系统不仅体积庞大,而且工艺技术复杂,“委托国外公司制造不仅时间周期较长,而且报价也相当昂贵,我们只好自己动手做”。白红宇说。
白红宇“自己动手做”做得非常好。“低温流量计先是买了个美国的,发现用它测量数据并不准,我们也自己动手做出来。”
在EAST的低温下传统流量计已经“失灵”,也可以用超声波的办法做,但先前国内没有人做过,谁要做就要有条件去标定它。“因为EAST用的是循环的氦,在这样条件下的流量计用户太少,企业从经济效益考虑认为得不偿失,也就不愿意做。我们自己做出来,不但可以做些对比,还可以标定,做出来非常准确。现也有用户提出要我们为他们做这种低温流量计。”
白红宇1993年西安交大低温工程专业毕业,1997年考上在职研究生后刚上了一年,研究所联系到去德国进修低温超导的机会,就把白红宇作为“马普学者”派去。
正好赶上德国大型超导聚变实验装置的模型线圈测试,“本来我去那里可以专门学习德语,但我想参加装置测试的机会更难得,就放弃了”。“我从德国回来,是把德国的1.2千瓦制冷机经改造后用于EAST,还是自己研发大型制冷系统,大家最初有争议,我认为1.2千瓦的‘小马’拉不了EAST‘大车’,坚持要自己做制冷机。先是做到1.5千瓦,后来做到了2.4千瓦”。
除了要把制冷机做好,还要做好冷却对象,回路设计还要考虑到合理设计液氦流量。白红宇经过对国内外的多方考察,确定膨胀机从国外买;压缩机用国产的;换热器通过国内的招标,从3个生产厂家中寻找最优化的设计和价格。2.4千瓦的制冷系统最终只花了2000万元。
“全部交给国外做肯定要多花钱。现在我们这样做虽然成功了,但当时却冒了很大的风险和压力。特别是去年初对装置的降温实验,毕竟是第一次调试,低温系统涉及到的问题实在太多,大家对装置的性能也不熟悉。好在这一切我们都挺过来了。”
大学刚毕业时,白红宇还未曾听说家乡湖南鼎鼎大名的远大空调,“远大空调是后来才起步并且做普冷的。我们那届低温班的30多位同学毕业,后来真正从事低温的只有几个,很多同学都转到了空调方面。我和同学之间联系不多,一是合肥比较偏僻,二是我天性专注于搞研究,不太擅长交际。虽然北京、上海对人才有很大吸引力,但像EAST这么大的项目,才是适合我搞科研的大平台。我从2000年正式参加,到2006年EAST调试实验成功,我非常庆幸自己有机会参与,而且从头做到尾。”
正是这些献身科学的人们,托起了明天辉煌的太阳!
G. 低温超导磁悬浮实验
超导磁悬复浮
利用超导体的抗制磁性可以实现磁悬浮。图3是超导磁悬浮的示意图。把一块磁铁放在超导盘上,由于超导盘把磁感应线排斥出去, 超导盘跟磁铁之间有排斥力,结果磁铁悬浮在超导盘的上方。这种超导悬浮在工程技术中是可以大大利用的, 超导悬浮列车就是一例。让列车悬浮起来,与轨道脱离接触,这样列车在运行时的阻力降低很多,沿轨道“飞行”的速度可达500公里/小时。高温超导体发现以后,超导态可以在液氮温区(零下169度以上)出现,超导悬浮的装置更为简单, 成本也大为降低。我国的西南交通大学于1994年成功地研制了高温超导悬浮实验车。
H. 人造小太阳的我国“人造太阳”实验装置
继去年9月首次成功放电后,我国“人造太阳”实验装置——位于合肥的全超导非圆截面核聚变实验装置(EAST)14日23时01分至15日1时连续放电四次,单次时间长约50毫秒,从而标志着第二轮物理实验的开始。专家认为,全超导核聚变装置再次成功放电,标志着我国在全超导核聚变实验装置领域进一步站在了世界前沿。“虽然稍纵即逝,但是放电的可重复性,表明我们的装置在工程上是非常可靠的。”中国科学院等离子体物理研究所副所长武松涛介绍,这轮实验是从去年12月开始对装置进行调试的,实验计划将进行到今年2月10日左右。 “这轮实验的主要目标不是追求放电时间的长短,而是旨在去年获得圆形截面等离子体的基础上获得非圆截面等离子体,这具有重要意义。”武松涛说,随着进一步调试和各系统的磨合,“人造太阳”有可能绽放出更为璀璨的光芒。
根据设计,EAST产生等离子体最长时间可达1000秒,温度将超过1亿摄氏度。“我们将通过一次次调试和实验,获得时间更长、温度更高、参数更好的等离子体。”武松涛说。2006年9月28日中国科学院等离子体所的“人造太阳”实验装置首次建成并投入运行,在第一轮实验中,获得了电流超过500千安、时间近5秒的高温等离子体。
这个由我国自行设计、自行研制的“人造太阳”实验装置是世界上第一个同时具有全超导磁体和主动冷却结构的托卡马克。它的建成,使我国迈入磁约束核聚变领域先进国家行列。稳态运行的核聚变堆产生能量的方式和太阳相同,都是在超高温条件下氢(或氢的同位素)的原子核聚变产生巨大能量,因此相关的研究被比作“人造太阳”。
I. 超导技术的应用前景
超导技术的主体是超导材料,就是没有电阻、或电阻极小的导电材料,电能在流经过程中几乎不会损失。
实现超导常须将导体下降至一定温度(起码零下一百多摄氏度),电阻才突然趋近于零。具有这种特性的材料称为超导材料。近年来,随看材料科学的发展,超导材料的性能不断优化,实现超导的临界温度在提高。 目前科学家虽已合成出在室温下具有超导性能的复合材料,但这还仅限于实验室中。至于它的应用前景(作用),具代表性的有以下几方面:
(1)超导无电阻无损耗首先被想到用于长途输电线路中,但目前不可能,因为这不是一般的导线且需要降温。
(2)接着被想到的是用于大容量的电气设备中,如超导大容量发电机,发电机线圈超导无电阻无损耗,发电效率极高,功率更大。
(3)还有就是应用到需要产生强磁的装置中,如磁力悬浮列车,核磁共振装置等。因为强磁的产生依赖于电磁线圈中的大电流。超导线圈就有超大电流,产生超强磁场。
从实际出发,第(2)、(3)点才是今后超导技术应用的突破点。
望采纳。
J. 中科院等离子体物理研究所托马克实验装置用于什么实验
托卡马克是前苏联科学家于20世纪60年代发明的环形磁约束受控核聚变实验装置。经过近半个世纪的努力,在托卡马克上产生聚变能的科学可行性已被证实,但相关结果都是以短脉冲形式产生的,与实际反应堆的连续运行有较大距离。受控热核聚变能研究的一次重大突破,就是将超导技术成功地应用于产生托卡马克强磁场的线圈上,建成了超导托卡马克,使得磁约束位形的连续稳态运行成为现实。超导托卡马克是公认的探索、解决未来具有超导堆芯的聚变反应堆工程及物理问题的最有效的途径。因此,国际上正在建造的装置都属于超导装置。目前,全世界仅有俄、日、法、中四国拥有超导托卡马克。我国磁约束受控核聚变研究从五十年代末开始的小规模多途径原理性探索研究阶段已发展到近堆芯级大规模实验阶段,并逐渐形成了分工明确、优势互补、相互促进的良好核聚变研究体系。等离子体所主要从事高温等离子体物理、受控热核聚变技术的研究以及相关高技术的开发研究工作,担负着国家核聚变大科学工程的建设和研究任务,先后建成HT-6B、HT-6M等托卡马克实验装置。1994年底,等离子体所成功地建成我国第一台大型超导托卡马克装置HT-7(图2),使我国进入超导托卡马克研究阶段,研究成果引起了国际聚变界的广泛关注。“九五”国家重大科学工程超导托卡马克HT-7U计划的实施,标志着我国进入国际大型聚变装置(近堆芯参数条件)的实验研究阶段,表明中国核聚变研究在国际上已占有重要地位。
中科院等离子体所宣布,建成了世界上第一个全超导核聚变实验装置,由于其模拟太阳产生能量的方式而被形容为"人造太阳"。