㈠ 直升飞机的螺旋桨是如何引导其前行的
直升飞机的螺旋桨的学名叫做旋翼,旋翼作用是产生升力,由于旋翼的运动,上下方会由于气流流速的不同产生压强差,根据伯努利原理,产生的升力让直升机升空的。
注意:旋翼是另一种形式的机翼,而不是"桨",桨不产生升力,它才是靠作用力与反作用力工作的。
直升机用旋翼工作原理:
直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图2.5.1所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以ϕ表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2º~14º
气流V与翼弦之间的夹角即为该剖面的迎角α。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。
旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。
㈡ 直升机飞行原理
直升机的前飞
直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。 直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点 在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首 先说明这种飞行状态下直升机的力和旋翼的需用功率。
直升机的侧飞
侧飞是直升机特有的又一种飞行状态,它与悬停、小速度垂直飞行及后飞 一起是实施某些特殊作业不可缺少的飞行性能。一般侧飞是在悬停基础上实施 的飞行状态。其特点是要多注意侧向力 的变化和平衡。由于直升机机体的侧向 投影面积很大,机体在侧飞时其空气动 力阻力特别大,因此直升机侧飞速度通 常很小。由于单旋翼带尾桨直升机的侧 向受力是不对称的,因此左侧飞和右侧 飞受力各不相同。向后行桨叶一侧侧飞,旋翼拉力向后行桨叶一例的水平分量大于向前行桨叶一侧的尾桨推力,直 升机向后方向运动,会产生与水平分量反向的空气动力阻力Z。当侧力平衡时,水平分量等于尾桨推力与空气动力 阻力之和,能保持等速向后行桨叶一侧侧飞。向前行桨叶一例侧飞时,旋翼拉 力的水平分量小于尾桨推力,在剩余尾桨推力作用下,直升机向民桨推力方向一例运动,空气动力阻力与尾桨推力反向,当侧力平衡时,保持等速向前行桨叶一侧飞行。
http://airgeneral.blogchina.com/3992275.html
参考资料:http://www.modelspace.com.cn/bbs/dispbbs.asp?boardid=5&ID=227
㈢ 现实中的直升机为什么不能像科幻片里那样,主机翼两边用两个函道旋翼提供动力
其实目前的直升机设计,尤其是单旋翼带尾桨布局的直升机真的是巧妙之极。效率高,操纵灵活,尾桨一物两用,还能很高效的完成转向动作。
如果换成科幻片中的双涵道,会有以下的优缺点,我自己总结的供参考:
优点:
1.尺寸小,需要的飞行空间和停放空间都变小很多
2.安全,不容易像目前的直升机一样旋翼碰到东西是致命的,很可能有涵道保护轻微擦碰依然能维持飞行
3.没有尾桨,减少因为尾桨出问题而产生的事故。
4.可能能够简单的使用弹射座椅进行救生。
缺点:
1.旋翼小就需要高转速,会导致动力效率降低,更加耗油。
2.操控性降低,没有尾桨直升机的转向就要依靠两侧涵道的差动偏转,但是这个力臂很明显小于尾桨的力臂,会导致操作效率,反应速度降低。
3.对重心的前后移动更加敏感,所有重量会变化的部件,比如油箱,乘员舱,导弹舱 都要尽量安装在涵道风扇的正下方才能减少这种变化。除非在尾部增加第三个升力涵道用于控制姿态。传统的短翼挂载方式也就不能用了,因为涵道下方的短翼会阻挡下洗流,降低动力效率。
3.如果使用涵道,失去动力后的直升机几乎是完全不能控制的,无法像普通直升机一样自旋着陆,当然有可能改为弹射救生。
㈣ 求直升机尾桨结构设计!
专业级模型飞机的,通过齿轮传动
模型直升机尾桨结构 模型直升机的尾桨分为独立尾桨和联动尾桨。
独立尾桨为电动直升机专用,尾桨采用一只微型电动机带动,有直接驱动模式和通过减速齿轮驱动两种。多数采用减速齿轮驱动。市面上绝大多数电动微型直升机都采用独立电机驱动。不过也有一些电动直升机(主要是大型的)也有采用和主旋翼联动的尾桨驱动模式,它们一般都是为了飞3D动作而设计的。 油动直升机全部使用和主旋翼联动的可变桨距尾桨,这样在发动机转速不变的情况下,通过改变桨距,调整尾桨抵消主桨反扭距的大小,可使直升机做出摆头旋转动作,再配合发动机油门,可以做出更加灵敏复杂的动作。
另外,要将主轴的能量传递一部分到尾桨,都是通过尾杆(空心尾梁)来传动的,分为皮带传动和轴传动两种。 皮带传动采用的是同步齿带,发动机的能量通过一个齿形皮带轮,带动皮带,将能量传递给尾波箱内的从动齿形皮带轮,驱动尾旋翼桨毂带动尾桨旋转。如图所示。同步齿带传动的特点是噪音小,传动扭矩大,但是要求尾杆直径足够,因为皮带要穿过尾杆灵活无阻碍的传动,另外功率损失稍大,也不适合大型的模型直升机上,因为皮带太长将会传动不稳,皮带有跳动,容易在尾杆上打磨。由于模型直升机发动的布置方式是曲轴和旋翼主轴平行,而尾桨轴与主轴成90度交错,因此要使皮带绕了90度传动。
http://wenku..com/view/84b5fdd628ea81c758f57831.html
㈤ 请问共轴双桨直升机的原理和构造当然有图片是最好的
共轴双桨其实就是利用机械装置使动力源同时驱动两副方向相反的旋翼,至于你专想知道它属的具体原理,它的原理就是这样,或者你想知道的是如何使动力分配到两个独立的旋翼上去吧!这个转轴的机械构造无比复杂,具体情况还是要看图。我找了几张图片,估计你可以参考一下。
共轴双桨用套筒轴驱动上下两副反转的旋翼,同样有串列双桨的上下旋翼之间的间距问题,间距小了,上下旋翼有可能打架;间距大了,不光阻力高,对驱动轴的刚度要求也高,而大功率的套筒轴本来在机械上就难度很大。套筒轴不光要传递功率,还要传递上面旋翼的总距、周期距控制,在机械设计上有相当的难度。由于非对称升力的缘故,反向旋转的上下旋翼的旋转平面有在一侧“交会”的倾向,这进一步增加了对上下旋翼之间间距的要求,并且带来向交会一侧转弯必须比向另一侧转弯轻缓的要求。上旋翼处在“干净”空气中,下旋翼处在上旋翼的下洗气流中,这样,上下旋翼之间有相当的气动耦合,增加了气动设计的难度。
对了,如果你想知道更多关于这个机械构造的图片,不妨在谷歌图片中搜索coaxialrotor
这是共轴双桨的英文,用英语搜索图片估计结果会比在网络搜中文要多,很抱歉不能帮助你更多·········
㈥ 直升机一般都有两个发动机,我想知道两个发动机分别起什么作用
两个发动机的功能完全是一样的,并车工作带动同一个旋翼,一方面是两台发动机能够提高功率,另一方面作为安全冗余,当一台发动机故障时,仅用另一台还可以保证应急降落。留意一下前些日子有直升机单发着舰的报道。有的直升机甚至有三个发动机,如美国总统新选购的座机“陆战队一号”。
尾桨没有专门的发动机,是通过尾梁内的传动轴从发动机获取的功率。
直升机的前后左右运动是通过“旋转斜板”装置改变整个旋翼盘面的倾角来实现的。此控制方式称为“周期矩控制”。
双旋翼则是轴有内外两层,分别带动两个旋翼。
㈦ 共轴双旋翼技术的共轴式直升机的操纵系统
共轴式直升机与传统单旋翼带尾桨直升机的主要区别之一是航向操纵的形式和响应不同,其改变上下旋翼的扭矩的方式又分为:全差动、半差动、桨尖制动、磁粉制动。全差动方式是同时反向改变上下旋翼的桨叶角来实现直升机航向的操纵和稳定,俄罗斯卡莫夫系列共轴式直升机均采用此种控制方式。桨尖制动方式是在旋翼桨尖设置阻力板,通过改变阻力板的迎风阻力面积改变旋翼的扭矩以实现直升机的航向操纵和稳定,德国研制的无人驾驶直升机SEAMOS 采用了此种控制方式。磁粉制动是通过传统系统内部的磁粉离合器对上下旋翼轴进行扭矩分配,加拿大研制的无人直升机C L L227采用了此种形式。半差动方式一般是通过改变下旋翼桨叶角改变上下旋翼的功率分配,使其相等或不等来控制直升机的航向。
根据直升机的飞行原理可知,直升机的飞行控制是通过周期变距改变旋翼的桨盘锥体从而改变旋翼的总升力矢量来实现的,由于旋翼的气动输入(即周期变距)与旋翼的最大响应(即挥舞),其方位角相差90°,当旋翼在静止气流中旋转时,以纵向周期变距为例,上旋翼在90°时即前行桨叶处得到纵向周期变距输入,此时上旋翼为逆时针旋转,对上旋翼来说将在180°时得到最大响应,即挥舞最大。而对下旋翼而言,上旋翼的前行桨叶方位处是下旋翼的后行桨叶方位,此时下旋翼为顺时针旋转,其桨叶前缘正好与上旋翼相反,对上旋翼的最大输入恰好是对下旋翼的最小输入,下旋翼将在0°处达到最小挥舞响应。而在下旋翼的前行桨叶处(上旋翼的后行桨叶)达到最大输入,在180°处达到最大挥舞。因此,上下旋翼在纵向周期变距的操纵下的挥舞平面是基本平行的。类似的在给出横向周期变距操纵后,在上下旋翼的方位角0°、180°处对上下旋翼均给出同样的操纵输入,但由于两旋翼的转向相反,翼剖面的前后缘反向,因而,一个是最大输入对另一个是最小输入,两旋翼的最大响应和最小响应相差180°,其挥舞平面也是平行的。因此,共轴式直升机的上下旋翼的自动倾斜器是通过若干拉杆组成连杆机构,该机构使得上下旋翼的自动倾斜器始终保持平行。
直升机的两种典型的航向操纵结构形式即半差动和全差动形式。 目前国内研制的共轴式直升机采用的是半差动航向操纵形式,总距、航向舵机固联在主减速器壳体上,纵横向舵机固联在总距套筒上,随其上下运动。舵机输出量通过拉杆摇臂、上下倾斜器和过渡摇臂变距拉杆传到旋翼上,使其转过相应的桨距角,以实现操纵的目的。
上下桨叶通过桨毂分别与内外转轴固联。在外轴的外面轴套上套总距套筒,其上又套航向操纵滑环、滑套式转盘和下倾斜器内环,它们之间可沿轴向相对上下滑动,但不能转动。上倾斜器内环通过滑键与内轴相联,它不仅可沿轴向上下相对运动,还随内轴一起转动。上下倾斜器外环通过扭力臂与上下桨叶同步转动,并有根等长撑杆将它们相联以实现使上下桨叶同步地偏转相同的桨距角。上倾斜器与上旋翼间摇臂支座直接夹固在内轴上,随内轴转动。而下倾斜器与下旋翼间摇臂支座套在轴套上,半差动航向操纵时可上下滑动,其外环随下旋翼一起转动。
半差动航向操纵的过程为:航向舵机的输出量通过航向杠杆带动航向操纵滑环,使滑环沿总距套筒上下滑动,滑环经两个撑杆带动过渡摇臂的支座。铰接在支座上的过渡摇臂借助两组推拉杆分别连接下倾斜器和下桨叶的变距摇臂。使下桨叶迎角变化,导致由下旋翼气动力对机体所产生的反扭矩变化,此值就是航向操纵力矩。再根据该力矩的大小和符号,决定航向速率和转弯方向,实现航向操纵的目的。
上述的半差动航向操纵方案的总距操纵是通过上下移动自动倾斜器来实现的,即总距操纵除了克服上下旋翼的铰链力矩外,还要克服上下倾斜器、上下倾斜器连杆以及相关的套筒和零件的重量。因此,该半差动操纵系统机构比较适于小型共轴式直升机,因为,对于小型直升机来说,旋翼轴径相对较小。各种操纵线系只能从轴外走,上下旋翼的自动倾斜器以及相关零件的重量也相对较轻,采用该方案相对较易实现。而对于大型共轴式直升机如卡-50 直升机,其连接上下旋翼的传动系统、桨毂、操纵机构比人还高,要操纵如此巨大的机构上下移动是难以想象的。半差动方案只改变下旋翼总距,由此引起的垂向运动耦合较大。然而,通过总距补偿完全可以解决问题。 共轴式直升机全差动航向操纵方案是指在航向操纵时大小相等方向相反地改变上下旋翼的总距从而使得直升机的合扭矩不平衡,机体产生航向操纵的力矩。由于在操纵时上下旋翼的总距总是一增一减,因此航向操纵与总升力变化的耦合小,即用于由于差动操纵引起的升力变化所需的总距补偿较小。显然,该方案可减轻驾驶员的操纵负担。前苏联卡莫夫设计局研制的卡莫夫系列共轴式直升机均采用了此种方案。
该操纵机构分别在上旋翼轴内和下旋翼轴内设有可上下移动的套筒,该套筒随旋翼轴同步转动且可沿旋翼轴做上下相对运动。上下旋翼套筒在上下旋翼桨毂附近,套筒连接上下旋翼变距摇臂,变距摇臂在不同距离处与旋翼变距拉杆和自动倾斜器外环支杆铰接形成杠杆摇臂,通过上下移动套筒实现变距运动。两套筒的内部设有变距装置,该装置与设在主减速器底部的总距手柄和航向手柄相连,总距手柄通过垂直拉动变距装置实现上下旋翼总距的同步增减,达到改变直升机升力的目的。航向手柄通过正反转动变距装置实现上下旋翼总距一增一减的运动,进而实现航向操纵。
由于操纵拉杆装置设在轴内,使得整个外部操纵机构简单、干净,上下自动倾斜器在轴向没有运动。这种结构方案比较适合于大型直升机,因为轴的内径相对较大,为安装操纵装置提供了较大的空间。而对于轻小型直升机,由于尺寸的限制,采用这样的方案会有些困难。