『壹』 建筑结构应该怎么简化为力学模型
建筑结构简化成力学模型大概分为两个步骤:
第一步,分析结构的受力类型,比如如果是桁架,则受力构件为二力杆,也就是只受轴向拉压。如果是框架结构则为梁或者是柱,此类构件一般只考虑剪力与弯矩,不考虑轴向变形。梁不考虑轴力,柱则要考虑轴力。如果是楼板或者剪力墙,则是壳单元。考虑受弯矩与剪力,不考虑轴力。
第二步,对不同类型的构件进行力学模型化处理,比如二力杆,则在两端加铰接。梁或者柱则刚接,板或者剪力墙的壳单元则根据实际情况加自由、简支、固支等约束。然后用轴线或者平面在图中画出来就可以了。
『贰』 桥梁荷载试验观测点怎么布置
桥梁荷载试验观测测点布置应当遵循必要、适量、方便观测的基本远侧,并使观测数据尽可能地准确、可靠。测点布置可按照以下几点进行:
1、测点的位置应具有较强的代表性,以便进行测试数据分析。桥梁结构的最大挠度与最大应变,通常是最能放映结构性能的,也是试验者最感兴趣的,掌握了这些数据就可以比较宏观地了解结构的工作性能及强度准备。例如简支座桥跨中截面的挠度最大,改截面上下缘混凝土的应力也最大,这种很有代表性的测点必须设法予以量测。
2、测点的设置一定要有目的性,避免盲目设置测点。在满足试验要求的前提下,测点不宜设置过多,以便使荷载试验工作重点突出,提高效率,保证质量。
3、测点的布置也要有利于仪表的安装与观测读数,并便于操作。为了便于测试读数,测点布置适宜适当集中;对于测试读数比较困难危险的部位,应有妥善的安全措施或采用无线传输设备。
4、为了保证测试数据的可靠性,尚可布置一定数量的校核性测点。在现场检测过程中,由于偶然因素或外界干扰,会有部分测试元件、测试仪器不能处于正常工作状态或发生故障,影像量测数据的可靠性。因此,在量测部位应布置一定数量的校核性测点,如一个对称截面,再同一截面的同一高度应变测点不应少于2个,同一截面应变测点不应少于6个,以便判别量测数据的可靠程度,舍去可疑数据。
5、在荷载试验时,有时可以利用结构对称互等严厉来进行数据分析校核,适当减少测点数量,例如简支座梁在对称荷载作用下,L/3、L/4截面的挠度相等,两截面对应位置的应变也相等,利用这一点可适当布置一些测点,进行测试数据校核。
『叁』 请教10kv变电所设计步骤
10kv变电所设计步骤
1一次接线部分
1.1电气主接线方案
电气设备主要通过电气主接线进行连接,按照其功能的要求组成电能接受与分配的电路,从而成为传输电流及高电压的网络,因此又被称作一次接线或者电气主系统。另一种是表示用来控制、指示、测量和保护主接线及其设备运行的接线图,称为二次接线图或称二次回路图。主接线电路图是指采用电气设备相关规定的图形符号及文字符号,按照工作顺序进行排列,把电气设备或者其它成套装置的基本构成及连接关系表现出来的单线接线图。主接线所代表的是发电厂或者变电站的电气部分主体结构,属于电力网络结构的一个重要组成部分,其对电力系统运行可靠性、灵活性有着直接的影响,并且决定着电器的选择、配电装置的布置以及继电保护和自动装置、控制方式等等,所以要正确、合理的设计主接线,把各方面因素进行综合处理,经过相关的技术及经济论证比较才可以最终确定。
主接线采用分段单母线或者双母线的配电装置,如果断路点无法停电检修,则需另设旁路母线。变电站的电气接线如果可以满足运行要求,其高压侧尽可能的不用或者少用断路器接线,比如桥形接线或者线路一变压器组等,如果可以满足继电保护的要求,也可以通过线路分支接线。在选择主接线方案时要按照实际负荷和变压器的参数,来确定变电所的主接线方式,即:高压采用单母线,低压则采用单母线。
1.2继电保护的选择
对于高压侧为10kV的变电所主变压器来说,通常装设有带时限的过电流保护;如过电流保护动作时间大于0.5~0.7s时,还应装设电流速断保护。容量在800kVA及以上的油浸式变压器和400kV·A及以上的车间内油浸式变压器,按规定应装设瓦斯保护(又称气体继电保护)。容量在400kV·A及以上的变压器,当数台并列运行或单台运行并作为其它负荷的备用电源时,应根据可能过负荷的情况装设过负荷保护。过负荷保护及瓦斯保护在轻微故障时(通称“轻瓦斯”),动作于信号,而其它保护包括瓦斯保护在严重故障时(通称“重瓦斯”),一般均动作于跳闸。
在设计中,应根据要求装设过电流保护、电流速断保护和瓦斯保护。对于由外部相间短路引起的过电流,保护应装于下列各侧:(1)对于双线圈变压器,装于主电源侧;(2)除主电源侧外,其他各侧保护只要求作为相邻元件的后备保护,而不要求作为变压器内部故障的后备保护;(3)保护装置对各侧母线的各类短路应具有足够的灵敏性。相邻线路由变压器作远后备时,一般要求对线路不对称短路具有足够的灵敏性。相邻线路大量瓦斯时,一般动作于断开的各侧断路器。
1.3低压配电柜内元件的选择
低压断路器的选择:(1)按工作环境选择。根据使用地点的条件选择,如户内式、户外式,若工作条件特殊,尚需选择特殊型式(如隔爆型);(2)按额定电压选择。低压断路器的额定电压,应等开或大于所在电网的额定电压;(3)按额定电流选择。低压断路器的额定电流,应等于或大于负载的长时最大工作电流。
电压互感器的选择:电压互感器一次额定电压应与接入电网的电压相适应。低压隔离开关的选择:它的主要用途是隔离电源,保证电气设备与线路在检修时与电源有明显的断口。隔离开关无灭弧装置,和熔断器配合使用。隔离开关按电网电压、长时最大工作电流及环境条件选择,按短路电流校验其动、热稳定性。
2二次接线部分
二次接线及其配套设备对于二次回路来说,起到控制二次设备投或退的作用,如果有必要可以对二次回路进行可靠的隔离。一些诸如保护闭锁量输入、开关的失灵保护、启动母差或者开关失灵保护启动远跳等比较重要的回路,要在输出端装设相应的隔离点。假如二次回路的设置合理、科学,那么对于提高二次设备的运行、检修的安全性非常有利。二次回路是利用二次电缆连接来实现的,二次回路的安全性能也受二次电缆布置的影响。
二次回路中配套的设备对其安全性也有直接的影响,因此在选择时也要科学、合理,在选择时要注意以下两点:首先要确定所选设备质最的可靠性;第二要看选择的设备参数是否合理、适用。出口中间继电器要选择不容易被误碰的继电器,最好不要采用带试验按钮的型号。而且要注意和同屏的其它继电器做明显的区分,在选择跳闸和合闸继电器、自动重合闸出口中间继电器及与其相串联的信号继电器,还有电流启动电压保持的防跳继电器时,要注意满足以下两个条件:其一,电压线圈额定电压可以和供电母线额定电压相等,如果采用电压较低的继电器进行串联电阻来降压时,继电器线圈中的压降要和继电器的电压线圈额定电压相等,并且串联电阻一端要与负电源连接。其二,处于额定电压工况条件下。选择电流线圈的额定电流时,要注意和跳合闸线圈或者合闸接触器线圈的额定电流互相配合,继电器电流保持线圈额定电流不能超出跳合闸线圈额定电流的一半。
3其他注意事项
3.1防雷设计
避雷器的接地端应与变压器低压侧中性点及金属外壳等连接在一起。在每路进线终端和每段母线上,均装有阀式避雷器。如果进线是具有一段引入电缆的架空线路,则在架空线路终端的电缆头处装设阀式避雷器或排气式避雷器,其接地端与电缆头外壳相联后接地。
3.2接地设计
凡是与架空线路相连的进出线,在入户处的电线杆进行接地,可以达到重复接地的目的,每个电缆头均要接地。
按规定10kV配电装置的构架,变压器的380V侧中性线及外壳,以及380V电气设备的金属外壳等都要接地,其接地电阻要求不大于4Ω。
使用6根直径50mm的钢管作接地体,用40mm×4mm的扁钢连接在距变电所墙脚2m,打入一排Φ=50mm,长2.5m的钢管接地体,每隔5m打入一根,管间用40mm×4mm的扁钢链接。接地装置所用材料见表1:
4结语
本文结合实际设计经验,论述了变电所设计中的主接线方案选择、继电保护、低压配电柜内元件的选择以及二次回路几个方面,最后对防雷和接地等容易忽视的问题做了分析。
『肆』 单桩水平静载试验
桩所受的水平荷载有多种形式,如:风力、制动力、地震力、船舶撞击力及波浪力等等。
近年来,单桩水平静载试验是采用接近于水平受荷桩实际工作条件的试验方法,来确定单桩水平临界荷载和极限荷载,推定土抗力参数。
一、单桩水平静载试验装置(图2-26,图2-27)
1.水平推力加载装置
宜采用卧式液压千斤顶,加载能力不得小于最大试验荷载的1.2倍,采用荷重传感器直接测定荷载大小,也可用并联液路的液压表或液压传感器测量液压,根据千斤顶率定曲线换算荷载。
图2-26 单桩水平静载试验装置立面示意图
图2-27 单桩水平静载试验装置平面布置示意图
试验的水平力作用点,宜与实际工程的桩基承台底面标高一致;如果高于承台底标高,试验时在相对承台底面处会产生附加弯矩而影响测试结果,应予以修正。在千斤顶与试桩接触处,宜安置一球形铰座,以保证千斤顶作用力能水平穿过桩身轴线。
2.量测装置
水平位移测量宜采用大量程位移计。在水平力作用平面的受检桩两侧,应对称安装两个位移计测量地面处的桩水平位移;当需测量桩顶(旋)转角时,应在水平力作用平面以上50cm处受检桩两侧,对称安装两个位移计,利用上、下位移计差与位移计距离的比值,可求得地面以上桩的转角。固定位移计的基准点宜设置在试验影响范围之外。
二、单桩水平静载试验方法
单桩水平静载试验宜根据工程桩实际受力特性,选用单向多循环加载法或慢速维持荷载法。对长期承受水平荷载作用的工程桩,宜采用慢速维持荷载法的加载方式。对需测量桩身应力或应变的试验桩,不宜采取单向多循环加载法,因为它会对桩身内力的测试带来不稳定因素,因而应采用慢速或快速维持荷载法。
1.加、卸载方式和水平位移测量
(1)单向多循环加载法的分级荷载,应取预估水平极限承载力的1/10~1/15作为每级荷载的加载增量。根据桩径大小并适当考虑土层软硬,对于直径300~1000mm的桩,每级荷载增量可取2.5~20kN;每级荷载施加后,恒载4min后可测读水平位移,然后卸载为零;再停2min测读残余水平位移,至此完成一个加、卸载循环。如此循环5次便完成一级荷载的位移观测。试验不得中间停顿。
(2)慢速维持荷载法的具体做法是:按一定要求将荷载分级加到试桩上,每级荷载维持不变直到桩的测点变形量达到某一规定的相对稳定标准(每小时的水平变形量不超过0.1mm,并连续出现2次),然后继续加下一级荷载。当达到规定的终止试验条件时,停止加荷。
2.变形观测
每级加载后,间隔5min、10min、15min各测读一次,以后每隔15min测读一次,累计1h后每隔30min测读一次;卸载观测的每级卸载值为加载值的两倍。卸载时,每级荷载维持1h,按第15min、30min、60min测读测点水平变形量后,即可卸下一级荷载;卸载至零后,应测读残余水平变形量,维持时间为3h,测读时间为第15min、30min,以后每隔30min测读一次。
3.变形相对稳定标准
连续2h每小时内的水平变形值不超过0.1mm,认为已达到该级荷载作用下的相对稳定,可加下一级荷载。测量数据应及时填写到单桩水平静载试验记录表中(表2-12)。
表2-12 单桩水平静载试验记录表
在进行循环载荷试验时,对卸荷的要求是:每级卸载值为加载值的二倍。卸载后,每隔15min测读一次,读两次后,隔半小时再读一次,即可卸下一级荷载。全部卸载后,隔3~4小时再测读一次。
4.终止加载条件
当出现下列情况之一时,即可终止加载:
(1)桩身折断。对长桩和中长桩,水平承载力作用下的破坏特征是桩身弯曲破坏;
(2)水平位移超过30~40mm(软土取40mm)(据《建筑桩基技术规范》(JGJ 94—94));
(3)水平位移达到设计要求的水平位移允许值。
试验记录表格式见表2-11。
三、资料整理与成果分析
对单向多循环加荷、卸荷试验,应绘制水平力—时间—位移(H0-t-Y0,见图2-28)、水平力—位移梯度(H0-ΔY0/ΔH0)或水平力—位移双对数(lgH0-lgY0)曲线;当测量桩身应力时,应绘制应力沿桩身分布和水平力与最大弯矩截面钢筋应力的(H0-σs)等相关曲线。
图2-28 单向多循环加荷试验水平力—时间—位移(H0-t-Y0)曲线
采用慢速维持荷载法时,应绘制水平力—时间—力作用点位移(H0-t-Y0)的关系曲线;水平力—位移梯度(H0-ΔY0/ΔH0)的关系曲线;力作用点位移—时间对数(Y0—lgt)的关系曲线;和水平力—力作用点位移双对数(lgH—lgY0)关系曲线;绘制水平力、水平力作用点位移与地基土水平抗力系数的比例系数的关系曲线(H—m、Y0—m)。当桩顶自由且水平力作用位置位于地面处时,m值可根据试验结果按下列公式确定:
土体原位测试与工程勘察
土体原位测试与工程勘察
式中:m为地基土水平力抗力系数的比例系数(kN/m4);α为桩的水平变形系数(m-1);νy为桩顶水平位移系数(表2-13);H为作用于地面的水平力(kN);Y0为水平力作用点的水平位移(m);EI为桩身抗弯刚度(kN·m2);b0为桩身计算宽度(m)。
表2-13 桩顶水平位移系数νy
注:h为桩的入土深度。
对于圆形桩:当桩径D≤1m时,b0=0.9(1.5D+0.5);当桩径D>1m时,b0=0.9(D+1)。
对于矩形桩:当边宽B≤1m时,b0=1.5B+0.5;当边宽B>1m时,b0=B+1。
对桩的换算埋深αh>4.0的弹性长桩,可取αh=4.0的值即νy=2.441;而对于2.5<αh<4.0的有限长度中长桩,应根据上表调整νy,重新计算m值。
1.单桩水平临界荷载的确定
对中长桩,水平力临界荷载Hcr值在桩身产生开裂时所对应的水平荷载,为单桩水平临界荷载;
取单向多循环加载法时的H—t—Y0曲线,或慢速维持荷载法时的H—Y0曲线在出现拐点的前一级水平荷载值,为单桩水平临界荷载;
取H0—ΔY0/ΔH0曲线或lgH-lgY0曲线上第一拐点所对应的水平荷载值,为单桩水平临界荷载;
取H-σs曲线第一拐点为单桩水平临界荷载。
2.单桩水平极限承载力的确定
单桩水平极限承载力是对应于桩身折断或桩身钢筋应力达到屈服时的前一级水平荷载值。它有下列确定方法:
(1)取单向多循环加载法时的H—t—Y0曲线,或慢速维持荷载法时的H—Y0曲线产生明显陡降的起始点对应的水平荷载值,为单桩水平极限承载力;
(2)取慢速维持荷载法时的Y0—lgt曲线尾部出现明显弯曲的前一级水平荷载值,为单桩水平极限承载力;
(3)取水平力-位移梯度(H0—ΔY0/ΔH0)曲线或水平力与力作用点位移双对数(lgH—lgY0)曲线上第二拐点对应的水平荷载值,为单桩水平极限承载力;
(4)取桩身折断或受拉钢筋屈服时的前一级水平荷载值,为单桩水平极限承载力。
3.单桩水平承载力特征值的确定
单位工程同一条件下的单桩水平承载力特征值的确定,应符合下列规定:
(1)当水平承载力按桩身强度控制时,取水平临界荷载统计值作为单桩水平承载力特征值;
(2)当桩受长期水平荷载作用且桩不允许开裂时,取水平临界荷载统计值的0.8倍作为单桩水平承载力的特征值;
(3)当水平承载力按设计要求的水平允许位移控制时,可取设计要求的水平允许位移对应的水平荷载,作为单桩水平承载力特征值。但应满足有关规范抗裂设计的要求。
『伍』 设计一个实验装置,可以测量燃烧器的阻力。找出第二自模化区。 (1)画出实验系统各部分简图(10分)
这么复杂的,要打好多字,分太少。
『陆』 什么是建筑结构计算模型
在工程实践和理论研究中,结构试验的对象大多是实际结构的模型。对于工程结构中的构建或结构的某一局部,如梁、柱、板、墙,有可能进行足尺的结构试验。但对于整体结构,除进行结构现场静动载试验外,受设备能力和经济条件的限制,实验条件下的结构试验大多为缩尺比例的结构模型试验。关键词:相似理论,静力结构模型设计,动力结构模型设计,热力结构模型设计模型一般是指按比例制成的小物体,它与另一个通常是更大的物体在形状上精准的相似,模型的性能在一定程度可以代表或反映与它相似的更大物体的性能。 模型试验的理论基础是相似理论。仿照原型结构,按相似理论的基本原则制成的结构模型,它具有原型结构的全部或部分特征。通过实验,得到与模型的力学性能相关的测试数据,根据相似理论,可有模型实验结果推断原型结构的性能。 对于结构模型试验,工程师和研究人员最关心的问题是结构模型试验结果在多大程度上能够反映原型结构的性能。而模型设计是结构模型试验的关键环节。一般情况下,结构模型设计的程序为: (1) 分析实验目的和要求,选择模型基本类型。缩尺比例大的模型多为弹性模型,强度模型要求模型材料性能与原材料性能较为接近。 (2) 对研究对象进行理论分析,用分析方程或量纲分析法得到相似判据。对于复杂结构,其力学性能常采用数值方法计算,很难得到解析的方程式,多采用量纲分析法确定相似判据。 (3) 确定几何相似常数和结构模型主要部位尺寸。选择模型材料。 (4) 根据相似条件确定各相似常数。 (5) 分析相似误差,对相似常数进行必要的调整。 (6) 根据相似第三定理分析相似模型的单质条件,在结构模型设计阶段,主要关注边界条件和荷载作用点等局部条件。 (7) 形成模型设计技术文件,包括结构模型施工图,测点布置图,加载装置图等。 在在上述各步骤中,对结构模型设计和试验影响最大的是结构模型尺寸的确定。通常,模型尺寸确定后,其他因素如模型材料、模型加工方式、试验加载方式、测点布置方案等也基本确定了。