1. 数控系统中开环,闭环,半闭环。三者区别和各自特点是什么
一、原理不同
1、开环系统:通过某种装置将能反映输出量的信号引回来去影响控制信号。
2、闭环:将系统输出量的测量值与所期望的给定值相比较,由此产生一个偏差信号,利用此偏差信号进行调节控制,使输出值尽量接近于期望值。
3、半闭环控制系统:在开环控制系统的伺服机构中装有角位移检测装置,通过检测伺服机构的滚珠丝杠转角,间接检测移动部件的位移,然后反馈到数控装置的比较器中。
二、检测位置不同
1、开环系统:不将控制的结果反馈回来影响当前控制。
2、闭环:闭环监控的是整个系统的最终执行环节,可以说对系统任何一处造成的误差都作出补偿。
3、半闭环控制系统:半闭环监控的是整个系统最终执行环节的驱动环节,对最终执行机构不作监控。
三、特点不同
1、开环系统:开环控制的特点是控制装置只按照给定的输入信号对被控对象进行单向控制,而不对被控量进行测量并反向影响控制作用。
2、闭环:闭环控制有反馈环节,通过反馈系统使系统的精确度提高,响应时间缩短。
3、半闭环控制系统:半闭环精度较高,控制灵敏度适中,使用广泛。
2. 数控系统中(开环)有没有检测装置
开环是没有检测装置的闭环有检测装置
3. 开环控制数控机床的检测原件在
答案:
官方提供
开环控制数控机床不带位置检测反馈装置。CNC装置输出的指令脉冲经驱动电路的功率放大,驱动步进电动机转动,再经传动机构带动工作台移动。这类数控机床工作比较稳定,反应快,调试方便,维修方便,但控制精度和速度都比较低,因此多为经济型。闭环控制数控机床带有位置检测反馈装置。位置检测元件安装在机床工作台上,用以检测机床工作台的实际运行位置,并与CNC装置的指令位置进行比较,用差值进行控制。这类数控机床由于能够减小,乃至于消除由于传动部件制造、装配所带来的误差,因而可以获得很高的加工精度。但是,环内包含的机械传动环节比较多,如丝杠螺母副、工作台等。丝杠与螺母间,工作台与导轨间的摩擦特性,各部件的刚性都是可变的,这些都直接影响伺服系统的调节参数,而且有一些参数是非线性的。如果设计、调整得不好,将会造成系统的不稳定。因此,这类数控机床伺服系统的设计和调试都有较大的难度,如果不是精度要求很高的数控机床,一般不采用这种控制方式。 半闭环控制数控机床将检测元件安装在电动机的端头或丝杠的端头。由于半闭环的环路内不包括工作台及丝杠螺母副,所以可以获得比较稳定的控制特性。它的控制精度虽不如闭环控制数控机床的高,但调试比较方便,因而被广泛采用。
4. 数控机床按控制方式分为哪几类,各方式什么场合
一般传统上不按照控制方式分类。按以下分类方法。
一、按加工工艺方法分类
1.金属切削类数控机床
与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。
在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。
2.特种加工类数控机床
除了切削加工数控机床以外,数控技术也大量用于数控电火花线切割机床、数控电火花成型机床、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。
3.板材加工类数控机床
常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。
近年来,其它机械设备中也大量采用了数控技术,如数控多坐标测量机、自动绘图机及工业机器人等。
二、按控制运动轨迹分类
1.点位控制数控机床
点位控制数控机床的特点是机床移动部件只能实现由一个位置到另一个位置的精确定位,在移动和定位过程中不进行任何加工。机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。
这类数控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位数控装置。
2.直线控制数控机床
直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。
直线控制的简易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算是一种直线控制数控机床。
数控镗铣床、加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加工的功能,这类机床应该称为点位/直线控制的数控机床。
3.轮廓控制数控机床
轮廓控制数控机床能够对两个或两个以上运动的位移及速度进行连续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅能控制机床移动部件的起点与终点坐标,而且能控制整个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。
常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。
现在计算机数控装置的控制功能均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。
三、按驱动装置的特点分类
1.开环控制数控机床
这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。
开环控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。
2.闭环控制数控机床
闭环控制数控机床是在机床移动部件上直接安装直线位移检测装置,直接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。
闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。
3.半闭环控制数控机床
半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。
半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。
4.混合控制数控机床
将以上三类数控机床的特点结合起来,就形成了混合控制数控机床。混合控制数控机床特别适用于大型或重型数控机床,因为大型或重型数控机床需要较高的进给速度与相当高的精度,其传动链惯量与力矩大,如果只采用全闭环控制,机床传动链和工作台全部置于控制闭环中,闭环调试比较复杂。混合控制系统又分为两种形式:
(1)开环补偿型。它的基本控制选用步进电动机的开环伺服机构,另外附加一个校正电路。用装在工作台的直线位移测量元件的反馈信号校正机械系统的误差。
(2)半闭环补偿型。它是用半闭环控制方式取得高精度控制,再用装在工作台上的直线位移测量元件实现全闭环修正,以获得高速度与高精度的统一。其中A是速度测量元件(如测速发电机),B是角度测量元件,C是直线位移测量元件。
5. 数控机床系统控制方法分类有哪些
主要分三种:
开环控制:这类数控系统不带检测装置,也无反馈电路,以步进电动机为驱动元件。
半闭环控制:反馈电机或丝杠的转动量,中间的配合间隙误差不能反馈补偿,常用伺服电机。位置检测元件被安装在电动机轴端或丝杠轴端,通过角位移的测量间接计算出机床工作台的实际运行位置。
闭环控制:通过光栅尺反馈工作台的位置信号,反馈精度比半闭环高,但是不稳定,中间环节间隙大的话将会有震荡。位置检测装置安装在机床工作台上,用以检测机床工作台的实际运行位置(直线位移)。
6. 数控机床测量装置的控制方式
在某种程度上可以说机床工作精度主要取决与闭环控制系统中的检测元件的精度。
西门子8M系统卧式加工中心正常运行时,机床突然停止工作,CRT出现NC报警104,操作者关断电源重新启动,报警消除,恢复正常工作,几十分钟后,故障又反复出现。
查询NC104报警,表示为:X轴测量闭环电缆折断短路,信号丢失,不正确的门槛信号不正确的频率信号。本机床的X、Y、Z三轴采用光栅尺对机床位移进行位置检测,进行反馈控制形成一个闭环系统。
检测元件如果受到灰尘油污的污染,就会发出错误的信号。检查读数头和光栅尺并没有受到油污和灰尘污染。随后检查差动放大器和测量线路板.也未发现不良现象,经过这些工作后。我们把重点放在反馈电缆上,测量反馈端子,发现13号线电压不稳,停电后测量发现随着电缆摆动电阻有较大变化,检查发现此线在X轴向随导轨运动的一段似接非接,造成反馈值不稳,导致电机失步,重新接线后,故障消除。
根据经验,导致脉冲编码器同步出错的主要原因是编码器零位脉冲不良或回参考点速度太低。由于检查参考点零位脉冲需要有示波器,维修时一般可以先检查回参考点速度和位置增益的设置,并确认系统的位置跟随误差值在1281xm以上。
若参数设置正确,可能的原因是“零脉冲”信号不良。由于零位脉冲的信号脉宽较窄,它对干扰十分敏感,因此必须针对以下几方面进行检查:
首先是编码器的供电电压必须在+5V+O.2V的范围内。当小于4.75V时,将会引起“零脉冲”的输出干扰。其次,编码器反馈的屏蔽线必须可靠连接,并尽可能使位置反馈电缆远离干扰源与动力线路。此外,编码器本身的“零脉冲”输出必须正确,满足系统对零位脉冲的要求。
经检查该机床在手动方式下工作正常,参考点减速速度、位置环增益设置正确,测量编码器+5V电压正常,回参考点的动作过程正确。初步判定故障是由于编码器零位脉冲受到干扰而引起的。检查发现,该轴编码器连接电缆的屏蔽线脱落,重新连接后,定位精度达到原机床要求。
经常有初学者问,数控机床为什么要回参考点呢?不回参考点不行吗?简单地讲,回参考点目的是为了每次上电开机后,在机床上建立一个唯一的坐标系。因为在机床加工完关断电源后。数控系统就失去了对各坐标位置记忆。在重新接通电源后,就得让各坐标回到机床一固定位置上,即坐标系的零点或原点,也称作基准点或者机床参考点。回参考点操作将直接影响
数控机床能否正常运行。
BTM-4000数控仿形铣床静态几何精度变化引起X轴运行不稳定。具体表现为×轴按指令停在某一位置时.始终停不下来。
BTM-4000系意大利进口的数控仿形铣床,系统采用意大利FEDIACNCl0系统.伺服采用了西门子公司产品。
机床在使用了一段时间后,X轴的位置锁定发生了漂移,表现为Z轴停在某一位置时,运动不停止,出现大约±0.0007m振幅偏差。而这种振动的频率又较低,直观地可以看到丝杠在来回转动。鉴于这种情况,初步断定这不是控制回路的自激振荡,有可能是定尺(磁尺)和动尺(读数头)之间有误差所致。经调整定尺和动尺配合间隙后,情况大有好转,后又配合调整了机床的静态几何精度,此故障消除。
卧式加工中心,采用SINU-MERIK840D系统.带EXE光栅测量装置。运行中出现114号报警,同时伴有113号报警。
从报警产生的原因看,由于114号的报警。引起113号报警,故障部位定位在位置测量装置。114号报警有两种可能:一是电缆断线或接地;二是信号丢失。前者可通过外观检查和测量来诊断。对后者主要是信号漏读,如果由于某种原因,使光栅尺输出的正弦信号幅度降低,在信号处理过程中,影响到被处理信号过零的位置,严重时会使输出脉冲挤在一起,造成丢失。因为光电池产生的信号与光照强度成正比,信号幅度下降无非是因为光源亮度下降或光学系统脏污所致。从尺身中抽出扫描单元,分解后看到,灯泡下的透镜表面呈毛玻璃状,指示光栅表面也有一层雾状物,灯泡和光电池上也有这种污物,这些污物导致了光源发光率下降和输出信号降低,通过对光栅的清洗故障消除。
只要电子元件不损坏,测量装置故障的几率很小,因此一般测量装置报警,主要原因是信号丢失,也就是“漏读”。测量信号在产生变换过程中容易造成丢失的环节。检测元件有问题,千万不要盲目拆卸,要研究明白后再动手。例如标尺光栅或指示光栅上有污物时要小心清除,清除前要检查尺面及周围有无切屑等硬质杂物,如有应清理干净,用脱脂棉和高纯度酒精进行擦洗,不能用手或一般擦布清擦,避免造成人为故障。
7. 闭环控制系统的特点是什么
它是直接对运动部件的实际位置进行检测。从理论上讲,可以消除整个驱动和传动环节的误差、间隙和失动量。具有很高的位置控制精度。
由于位置环内许多机械传动环节的摩擦特性、刚性和间隙都是非线性的,故很容易造成系统的不稳定,使闭环系统的设计、安装和调试都相当困难。该系统主要用于精度要求很高的镗床、超精车床、超精磨床以及较大型的数控机床等。
(7)数控机床有检测装置的控制环扩展阅读
因为开环系统的精度不能很好地满足数控机床的要求,所以为了保证精度,最根本的办法是采用闭环控制方式。闭环控制系统是采用直线型位置检测装置(直线感应同步器、长光栅等)对数控机床工作台位移进行直接测量并进行反馈控制的位置伺服系统。
木工加工中心|变压器绝缘件加工中心|环氧板加工中心闭环控制系统将数控机床本身包括在位置控制环之内,因此机械系统引起的误差可由反馈控制得以消除,但数控机床本身固有频率、阻尼、间隙等的影响,成为系统不稳定的因素,从而增加了系统设计和调试的困难。
故闭环控制系统的特点是精度较高,但系统的结构较复杂、成本高,且调试维修较难,因此适用于大型精密机床。
8. 位置检测装置安装在数控机床的伺服电机上属于什么系统
属于半闭环控制系复统。
1,开制环控制没有反馈环节,系统的稳定性不高,响应时间相对来说很长,精确度不高,使用于对系统稳定性精确度要求不高的简单的系统.
2,开环控制是指控制装置与被控对象之间只有按顺序工作,没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响,没有自动修正或补偿的能力。
3,闭环控制有反馈环节,通过反馈系统是系统的精确度提高,响应时间缩短,适合于对系统的响应时间,稳定性要求高的系统.
4,半闭环控制系统是在开环控制系统的伺服机构中装有角位移检测装置,通过检测伺服机构的滚珠丝杠转角间接检测移动部件的位移,然后反馈到数控装置的比较器中,与输入原指令位移值进行比较,用比较后的差值进行控制,使移动部件补充位移,直到差值消除为止的控制系统。这种伺服机构所能达到的精度、速度和动态特性优于开环伺服机构,为大多数中小型数控机床所采用。
9. 在数控机床的闭环控制系统中其检测环节的两个作用是什么
在数控机床的闭环控制系统中,其检测环节具有两个作用,一个是检测出被测信号的大小,另一个作用是把被测信号转换成可与指令信号进行比较的物理量,从而构成反馈通道。
10. 数控机床检测装置的种类有哪些
1)增量式检测方式
增量式检测方式单纯测量位移增量,移动一个测量单位就发出一个测量信号。其优点是检测装置比较简单,任何一个对中点均可作为测量起点;缺点是对测量信号计数后才能读出移距,一旦计数有误,此后的测量结果将全错;同时发生故障时(如断电、断刀等)不能再找到事故前的正确位置,事故排除后,这时必须将工作台移至起点重新计数才能找到事故前的正确位置。
2)绝对式测量方式
绝对式测量方式中,被测量的任一点的位置都以一个固定的零点作基准,每一被测点都有一个相应的测量值。这样就避免了增量式检测方式的缺陷,但其结构较为复杂。
2.数字式与模拟式
1)数字式测量方式
数字式检测是将被测量单位量化以后以数字形式表示,测量信号一般为电脉冲,可以直接把它送到数控装置进行比较、处理。数字式检测装置的特点是:
(1)被测量量化后转换成脉冲个数,便于显示和处理;
(2)测量精度取决于测量单位,与量程基本无关;
(3)检测装置比较简单,脉冲信号抗干扰能力强。
2)模拟式测量方式
模拟式检测是将被测量用连续的变量来表示,如用相位变化、电压变化来表示。主要用于小量程测量。它的主要特点是:
(1)直接对被测量进行检测,无需量化;
(2)在小量程内可以实现高精度测量;
(3)可用于直接检测和间接检测。
3.直接测量与间接测量
1)直接测量
对机床的直线位移采用直线型检测装置测量,称为直接检测。其测量精度主要取决于测量元件的精度,不受机床传动精度的影响。但检测装置要与行程等长,这对大型数控机床来说,是一个很大的限制。
2)间接测量
对机床的直线位移采用回转型检测元件测量,称为间接测量。间接检测使用可靠方便,无长度限制,缺点是在检测信号中加入了直线转变为旋转运动的传动链误差,从而影响检测精度。因此为了提高定位精度,常常需要对机床的传动误差进行补偿。