导航:首页 > 装置知识 > v1在空分装置中的作用

v1在空分装置中的作用

发布时间:2023-01-18 02:09:04

❶ 空分装置中富氧液空节流阀的作用

空分最终目的是在下塔顶部或者上塔顶部得到纯度合格的氮气及液氮,在上内塔底部得到纯容度合格的液氧或氧气。而氧氮是来自于空气,下塔底部的富氧液空是需要倒至上塔来进一步分离,才能得到氧氮产品。而下塔压力表压一般在0.4~0.5Mpa,上塔压力则很低,约30~40Kpa。所以液空进入上塔必须经过节流,一方面降低压力,使上塔工况不至于受太大冲击,另一方面也可以通过节流产生一部分冷量。

❷ 高压上电过程中电流传感器v1v2v3的作用是一样的

高压上电过程中电流传感器v1v2v3的作用是一样的。根据查询相关公开信息:传感器是一?种检测装置?,能感受到被?测量的信息?,并能将检测?感受到的信?息,按一定规律?变换成为电?信号或其他?所需形式的?信息输出,因此v1v2v3的作用是一样的。

❸ 空分设备V1 V2和V11的作用是什么

V1液空进上塔阀调节下塔液空液位。V2液氮进塔阀抽取液氮参与上塔精馏,V11液氮回下塔阀抽取液氮参与下塔精馏。V2和V11共同调节下塔液空纯度的

❹ 啥叫空分空分装置和系统流程大揭秘

大家对各类压缩机、汽轮机并不陌生,但是他们在空分环节的作用,你是否真正了解?工厂里的空分车间,你知道是什么样的吗?空分,简单地说,就是用来把空气中的各组份气体分离,生产氧气、氮气和氩气的一套工业设备。还有稀有气体氦、氖、氩、氪、氙、氡等。

空分设备

空分设备是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备,广泛应用于传统的冶金、新型煤化工、大型氮肥、专业气体供应等领域。

简单来说就是空分的系统流程包括:

压缩系统

预冷系统

纯化系统

换热系统

产品送出系统

膨胀制冷系统

精馏塔系统

液体泵系统

产品压缩系统

我们按照空分系统流程对设备进行一一介绍:

压缩系统

有 自洁式空气过滤器 、 汽轮机 、 空压机 、 增压机 , 仪表压缩机 等。

(1)自洁式过滤器一般随着气量的增大,滤筒数增多,层数也越高,一般2.5万等级以上双层,6万等级以上三层布置;一般单台压缩机需要单独布置过滤器,同时布置在上风口。

(2)汽轮机是高压蒸汽进行膨胀做功,带动同轴叶轮转动,从而实现进行对工质做功的型式。汽轮机一般常用的有三种形式:全凝、全背压和抽凝,较为常用的是抽凝。

(4)空压机一般大型空分装置投资均为单轴等温型离心压缩机,进口较国产能耗低2%左右,投资高80%;空压机采用出口放空,不设置回流管路,一般有最小吸入流量防喘振要求,采用入口导叶进行流量调节,进口国产机组均是四级压缩三级冷却(末级不冷却)。主空压机配备一套水洗系统,用以冲洗各级叶轮和蜗壳表面沉积物。该系统随主机成套。

(5)增压机一般大型空分装置投资采用单轴等温型离心压缩机和齿轮式离心压缩机两种,其中齿轮式在能耗上占较大优势,尤其压比较大的工况。

(6)仪表气压缩机一般有三种形式:无油螺杆机,活塞式和离心式。由于活塞式和离心式天然无油,所以不需要除油装置,只需要配套干燥装置(除水)和精密过滤器(除固体颗粒)即可;而螺杆机一般有有油和无油然后除油两种,喷油螺杆机需要设置除油装置,同时需要设置精度非常高的除油过滤器,以满足工艺要求,这种机型的优势是价格较便宜;无油螺杆采用干转子或者水润滑,这种机型优点是绝对不含油,缺点是价格较贵。气量500Nm³/h以下适合选活塞式;气量在2000Nm³/h以下适合选螺杆机或活塞机;气量在2000Nm³/h以上即三种机型都可以选,气量大时离心式压缩机较有优势,其易损件较少,同时好维护,性价比较高。

仪表压缩机在开车时使用,正常运行后由分子筛纯化器后抽取。

预冷系统

预冷系统空冷塔有两种形式: 闭式循环 (空冷塔分为上下两段,冷冻水在空冷塔上段和水冷塔之间循环)和 开式循环 (进循环水系统),闭式循环主要应用于水质不好的化工厂,需要补充新鲜水及药剂;开式循环应用较广,但是循环水系统同样也需要定期补充新鲜水,预冷系统还需要考虑夏天工况。

空冷塔 一般设计为底部为1米φ76不锈钢鲍尔环(耐高温),3米φ76增强型聚丙烯鲍尔环(大通量),4米φ50增强型聚丙烯鲍尔环。

水冷塔 也有两种:两段式(无外加冷源时,干燥污氮气的冷量回收充分,使之预冷系统有保障,但是阻力大一倍,(7米+7米φ50聚丙烯鲍尔环)和一段式(有外加冷源时,8米φ50聚丙烯鲍尔环)。

此外,预冷系统一般所有进水均要设置过滤器(一般6台:4台水泵,水冷塔进水,冷水机组蒸发侧进水),防止杂质带入系统。预冷系统的效果检测为:下段4米填料段出口气比进水低1℃;上段8米填料段出口气比水高1℃,一般在空冷塔中部设置测温计(伸入内部)。

纯化系统

纯化系统采用的的 吸附器 有立式轴向流,卧式双层床和立式径向流三种。

立式轴向流 主要用于1万等级(直径已经到4.6m)以下空分设备的配套,床层厚度1550∽2300mm,双层单层均可布置,立式轴向流吸附器的气流分布最好。

卧式双层床 主要用于大中型空分设备的配套,床层厚度1150mm(分子筛)+350mm(铝胶)。

立式径向流 吸附器可以有效利用容器内部空间,使得同直径吸附层面积扩大1.5倍左右,这样可以有效降低塔器高度,同时立置方式占地面积较小。由于气流分布均匀,不像卧式吸附器气流不均,使得分子筛用量减少20%,再生能耗也节省20%。

但是立式径向流缺点是气流中心集中(扇形区),使得其比卧式穿透时间要快(要求CO2<0.5ppm)。床层厚度1000mm+200mm,立式径向流可以满足2万等级以上的空分设备的配置。

再生加热 有电加热器和蒸汽加热器两种方式。

蒸汽加热器有卧式(4万等级以下),立式(4万等级以上),立式高效蒸汽加热器(蒸汽利用率高,节能20%)布置方式有:一台蒸汽加热器(有H2O泄漏测点);电加热器(两用一备或者一用一备)并联(高温低流量联锁停设置,防止烧坏,加热管材质为1Cr18Ni9Ti);电加热器(满足活化再生,250∽300℃)与蒸汽加热器并联;电加热器与蒸汽加热器串联(蒸汽温度低时,不过造成再生阻力较大)。

对纯化系统还需要设置节流再生管路以满足开车需要。另外再生气侧设置安全阀,蒸汽加热器侧设置安全阀,防止设备或者阀门压力高侧泄漏或者超压,以及节流超压。

再生流路配置手动蝶阀来调配阻力,以使得主塔运行稳定(或者不设置,采用总管设置调节阀时序调节)。

换热系统

换热系统严格来说多股流混合介质设计在同一换热器里,让各介质传热自动平衡,能耗最低,但是这样对于内压缩流程会造成全部换热器均为高压换热器,会造成投资的积聚增加,所以2万等级以上内压缩换热器组织还是采用高低压分开的办法,更为经济些,2万等级以下采用全部高压换热器配置。

产品送出

低压氧氮产品 ,设置产品调节阀与放空流路,放空进消音器(氮气内件为碳钢,氧气内件为不锈钢)。污氮气设置去水冷塔放空(起污氮气放空作用、调配再生气以及调整上塔压力的作用,要求水冷塔塔径能够满足泄放要求,尤其有氮气也通入的场合,不能使上塔压力憋高,水冷塔阻力6kPa(8米高填料),管路及阀门4kPa,对大气放空压差2kPa,总共12kPa)。

高压氧气产品 ,放空采用两级节流,先是高压产品气节流至10barG,经过偏心异径管,中间设置蒙乃尔降噪板,再通过偏心异径管扩大管路直径,氧气介质流速控制在10m/s以下,再通入消声塔节流放空,消声元件不锈钢;高压氮产品,氮气产品先节流至10bar,通过不锈钢降噪板,再通入消声塔节流放空,消声元件碳钢;氧气阀门要求不得人去操作(调节阀禁带手轮,手动阀放置防爆墙内)。

消声塔还可以与压缩机系统放空合二为一,空压机增压机降噪(按照空压机量计算),通入消声塔,以及纯化系统泄压空气,增压机打回流,泄放部分。

膨胀制冷系统

膨胀机一般有三种,即 低压膨胀机 , 中压膨胀机 和 液体膨胀机 。

对于一定类型的气体膨胀机来说,工质体积流量越大,效率越高。一般流量8000Nm³以上的低压膨胀机效率为85∽88%,流量小于3000∽8000Nm³效率会低至70∽80%。

中压膨胀机一般采用一台进口一台国产(备用)。气量8000Nm³/h以上进口膨胀机效率82∽91%(增压端少4个点);国产膨胀机效率78∽87%(增压端少5个点)。

膨胀机启动前需要先吹扫(除去管系杂质,膨胀机蜗壳内杂质),再通密封气(正常时由增压端提供),然后进行油系统外循环,内循环,做完联锁测试然后方能启动,冷试合格后冷紧;冷启动需要启动油箱加热器,正常运行后不需要,此时轴承的冷热已经平衡。

液体膨胀机本质是利用高压液体的压力头来进行水力做功(同时液体焓值降低,但是与气体相比,相差甚远),一般4万等级以上内压缩空分设备均可用液体膨胀机代替高压液空节流阀。它的优势为利用液体膨胀机制冷和膨胀功发电达到节能目的,一般可实现节能2%左右,但是其投资达千万元。

精馏塔系统

下塔1.5∽5万等级采用筛板塔较多,环流塔板在1.5万等级以下直径塔较有优势(液体流程较对流长,但是制造复杂),对流3万等级以下应用较多,1.5万等级以上较占优势,四溢流在3万等级以上大塔较占优势,填料塔能耗较低,不过下塔高度要增加5米左右。5万等级以上空分较占优势,尤其上下塔平行布置的情况。

上塔、粗氩塔及精氩塔采用填料塔,厂家一般为苏尔寿或天大北洋,对粗氩塔冷源配置一般是富氧液空,同时可将废气放散入污氮气管路,氩系统停运时能耗低;精氩塔热源为富氧液空,或下塔氮气,冷源可以是贫液空或者液氮,进料有液相和气相两种。需要注意的是粗氩塔冷凝器板式的密封性要求较高,否则会导致氩产品不合格。

主冷有单层,立式双层、卧式横列双层,立式三层和降膜主冷(液氧与气氧向下,与氮气同流向)。

精馏塔系统的布置有6种方式:

(1)上下塔垂直布置,为常规布置方式,高度较低,无下塔液体难以进入上塔或者粗氩塔冷凝器的状况(管路全液相上行背压能够满足,此时管径不能小);

(2)上下塔垂直布置,为常规布置方式,高度适中,下塔液体难以进入上塔或者粗氩塔冷凝器采用设置汽提管路带液体去上塔(要求管路出口满足ρυ²>3000,ρ为密度,υ为流速,进气位置在管路汽化率为1%高度处,此时需要适当缩小管径,同时液体过冷度不能大);

(3)上塔自氩馏分段落地布置,采用两台循环氧泵连接,降低上塔高度可以解决下塔液体无法进入上塔或者粗氩塔冷凝器的状况;

(4)上塔自氩馏分段落地布置,采用循环泵连接,粗氩塔最上段座在上塔上部,这样可以使冷箱空间缩小;

(5)上塔自主冷落地布置,采用循环泵连接,主冷在下塔顶部,优点是主冷可以做的很大;

(6)上塔自主冷落地布置,采用循环泵连接,粗氩塔最上段座在上塔上部,优点是主冷可以做的很大,同样可以使冷箱空间缩小。

液体泵系统

卧式泵 水平布置(进液管低于排液管),需要设置加温气(设置在泵后,或者泵前过滤器前,防止杂质进入),密封气,排液排气阀(低处排液,高处排气)和回流管路(回液进气相),卧式泵转速不能太高,一般排压30barG以下,卧式泵由于水平布置,冷态收缩轴承受力较好,但是转速高转子动平衡不好满足。

立式泵 采用轴承悬挂式布置(进液管高于排液管),承受向下拉力较大,转子重心与轴重合,转速可以很高;一般30bar以上,需要设置:泵前回气(注意卧式泵无),加温气(设置在泵过滤器前,高处进气), 密封气,排液排气阀(低处排液,高处排气,预冷时看是否冷透)和回流管路(回液进气相)。立式泵一般均是多级,回气管路要求不得向下(平出,或者倾斜向上),否则会造成气体不能排出,易导致泵汽蚀。另外低温泵电机需要设置吹风管路,防止夏天过热,冬天结霜。

液氧泵液氮泵 在线冷态备用,其中液氮泵密封气密封气压力7barG以上;氧泵密封气压力4barG(下塔压力氮气即可满足);循环液氩泵,一用一备,密封气一般采用液氩汽化密封,要求流量有20%的余量。一般液氩泵自身回流阀压力-旁通控制,出口阀流量-液位控制,采用双回路控制。

产品压缩系统

氮透一般压缩空气的均可满足, 氮气透平压缩机 压力较高采用齿轮式较为节能。

氧透根据排压有单缸(压力低)和双缸(高压缸和低压缸)(8级压缩至30bar),一般30barG以下,需要设置5barG的密封气(压力氮气可满足),同时由于氧气介质有高压高温火患原因,所有过流部分均采用铜合金,需要设置保安氮气,一般由工程设计院考虑;进口氧透价格较高,为国产2倍左右,一般不采用,目前一般均杭氧氧透,排压3∽30barG,流量8000Nm³/h以上均可满足。但是流量小,氧透效率较低,一般8000Nm³/h(55%)∽80000Nm³/h(68%)。

氧透一般应用于外压缩流程,从3∽30barG均有,不过一般要和带增压机的内压缩流程(效率一般70%以上,也有流量限制,效率要较氧透高10个点以上,这样甚至可以抵消外压缩较内压缩少复热附加能耗损失的优势,但是内压缩用于钢厂排压需要提高,以免换热系统波动)进行能耗比较,最后确定方案。

❺ 空分装置中富氧液空节流阀的作用

空分最终目的是在下塔顶部或者上塔顶部得到纯度合格的氮气及液氮,在上塔底部得到纯度合格的液氧或氧气。而氧氮是来自于空气,下塔底部的富氧液空是需要倒至上塔来进一步分离,才能得到氧氮产品。而下塔压力表压一般在0.4~0.5Mpa,上塔压力则很低,约30~40Kpa。所以液空进入上塔必须经过节流,一方面降低压力,使上塔工况不至于受太大冲击,另一方面也可以通过节流产生一部分冷量。

❻ 空分装置有什么用吗

1、空分装置就是用来把空气中的各组份气体分离,生产氧气、氮气的一套工业设备。简单地说,空分装置指的是化工厂中的各种空气成分的分离装置,具体从空气中分离出氮气、氧气、氩气等气体以及其他一些气体。
2、具体流程为:自空压机来的压缩空气,经分子筛除去水份、二氧化碳、碳氢化合物等杂质后,一部分空气被直接送往精馏塔的上塔,另一部分则进入膨胀机经膨胀制冷后,被送往下塔。精馏塔中,上升蒸汽和下落液体经热量交换后,在上塔的顶部可得到纯度很高的氮气,在上塔底部可得到纯度很高的氧气。
更多关于空分装置有什么用,进入:https://www.abcgonglue.com/ask/7393bb1616086268.html?zd查看更多内容

❼ 空分塔的V1、V2、V3充气阀的作用是什么

增加汽化量,当液体汽化、气体往上升的时候,就会推动液体向上移动,称作气泡泵(原理)

❽ 化工热力学对生产作用

。 化工热力学中从生活中来到 生产中去的实例 3 冯 新,陆小华,吉远辉,钱红亮 (南京工业大学材料化学工程国家重点实验室,江苏南京210009) [摘要]生动的实例是改变化工热力学枯燥、抽象局面的良药。本文列举了多个“从生活中来到生产中 去”与热力学原理密切相关的实例,以期激发学生的兴趣,使他们体会到化工热力学的魅力。 [关键词]化工热力学;实例;pVT性质;偏摩尔性质;节能减排 FengXin,LuXiaohua,JiYuanhui,QianHongliang Abstract:tract,.However,vividexampleswillexcitethem.Inthispaper,manyexamples,,’amics.Keywords:;Practicalexamples;pVTproperty;Partialmolarproperty; 众所周知,化工热力学是化学工程的精髓。然而,该课程是枯燥的、难学的,抽象的概念和多 而繁琐的公式往往令众多学子望而生畏。 [122] 理解是走向真知必不可少的阶段。[2] 作者认 为,生动的实例是改变该局面的良药。考虑到学生对生产没有感性认识,课程教学应尽可能用“从生活中来到生产中去”的实例,并精心设计。编制鲜活实例是不易的,这也是一线教师最大的苦恼。本文愿意与大家共享作者编写、收集的多个例子,也许它们还不够成熟和准确,但以期能起到抛砖引玉的作用,希望更多的教师加入这个队伍,以便 更多的人能共享他的智慧和成果。 一、流体的pVT性质 临界温度Tc是过程安全最重要、最普遍的基本概念之一。因此,作者在设计pVT例题时,始终围绕着这个知识点。 【例1】pVT行为与液化气成分选择的关系液化气是理想的气体燃料。对家庭用液化气的要求是加压后变成液体储于高压钢瓶里,打开减压阀后即汽化,以便燃烧。现有如表1所示的6种物质作为液化气成分的候选气体。 (1)请根据对液化气储存和使用的要求来选 2 4择液化气成分。 (2)请解释以下现象:到冬天,有时钢瓶内还有较多液体却不能被点燃。 表1 各种气体的Tc、pc以及正常沸点Tb[3] 物质Tc,℃pc,atmTb,℃燃烧值,kJ/g 甲烷-82.5545.36-161.4555.6乙烷32.1848.08-88.6552.0丙烷96.5941.98-42.1550.5正丁烷151.937.43-0.549.6正戊烷196.4633.3236.0549.1正己烷 234.4 29.80 68.75 48.4 解:(1)根据液化气候选成分Tc、pc的范围画成p2T示意图,见图1。 图1 例1中液化气候选成分的p2T图 设厨房室温为10~40℃,压力为1atm。从图1中可以看出,甲烷在室温下始终是气体,若不把 甲烷的温度降至Tc即-82.55°C以下,则无论施加多高压力都不能使其液化———因此甲烷不适合做液化气成分;乙烷的Tc为32.18°C,到了夏天一旦超过32.18°C,则压力升高会引起爆炸———因此乙烷也不适合做液化气成分;正己烷在室温下就是液体,不需要压缩,但它的正常沸点Tb为68.75°C,无论春夏秋冬,打开减压阀它都不会气 化———不适合;正戊烷室温下能液化,但在大多季节不能气化———不适合;因此,只有丙烷和正丁烷符合要求。 (2)多数液化气会含有少量戊烷等C5、C6成分,冬天室温较低,戊烷等高级烷烃不能气化导致残液产生。 【例2】pVT行为与汽车新燃料压缩天然气间的关系 随着汽油不断涨价,既经济又环保的天然气已成为汽车发动机的新燃料,越来越多的公交车 和出租车改烧天然气(主要成分为甲烷)。为了使单位气量能行驶更长的里程,天然气加气站需要将管道输送来的0.2MPa、10℃的天然气压缩灌装到储气罐中,制成压缩天然气,其压力为20MPa,由于压缩机冷却效果在夏天要差,所以气 体的温度在冬天为15℃,夏天为45℃。已知储气罐体积为70L,每kg甲烷可行驶17公里,问: (1)如果将20MPa,15℃压缩天然气当做理想气体,则与RK状态方程相比,它计算出来的一罐压缩天然气的行驶里程多了还是少了,相差多少公里?(按冬天算)。试问:此时的压缩天然气能否当做理想气体? (2)如果将管道输送来的0.2MPa、10℃的天然气不经压缩直接装入储气罐中,一罐天然气能行驶多少公里? (3)为了行驶更长的里程,在其他条件均不变的情况下,是否可以通过再提高压力使压缩天然气变成液化天然气来实现?你有什么好的建议? (4)据出租车司机说“同样一罐压缩天然气,夏天跑的里程比冬天要短”,为什么?请说出理由,并估算出同样每天行驶300公里,夏天比冬天要多花多少钱?(一罐压缩天然气约50元。必要 的数据可以自己假设)。 解:(1)①由理想气体状态方程可得 V= RT p=1.198×10-4m3・mol-1;n=V总V =584.31mol; 行驶里程S理想=584.31×16×10-3×17=158.93km ②根据RK方程 求得V=0.0000980m3・mol-1 n=V总 V =714.29mol 行驶里程为:SRK=714.29×16×10-3×17=194.29km VS=SRK-S理想=194.29-158.93=35.36km 由此可见,如此高压下的压缩天然气不能当做理想气体。 (2)用RK方程计算得: 3 4 化工热力学中从生活中来到生产中去的实例V=0.0192909m3 ・mol-1 ;n= V总 V =3.63molS=3.63×16×10 -3 ×17=0.987公里 由此可见,作为汽车燃料,管道输送来的天然 气必须经压缩机压缩成高压天然气才有实际意义。 (3)不可以。因为,“其他条件均不变”意味着温度也不变,由例1可知,当温度在10℃左右,大于Tc时,无论施加多大的压力都不能使之液化。因此,只有必须将其温度降低至-82.55°C以下,再加压才行。 理论上,温度降至-82.55°C,即可能加压液化,但压力极高为4.60MPa,由流体的p2V2T关系可知,温度越低,所需压力越低,因此实际上液化天然气的温度常降至-162℃,这样在常压下即能变成液体。 (4)①由(1)可知,冬天气体温度为15℃时,每罐压缩天然气行驶194.29公里,那么每公里花 费50194.29=0.257元;②同样方法计算夏天气体温度为45℃时,每 公里花费50 163.94 =0.305元 因此,同样每天行驶300公里,夏天比冬天要多花的钱为300×(0.305-0.257)=14.4元/天;一个季度要多花1300元。 这是因为V∝T,当夏天温度增大后气体的摩尔体积V增大,由于储气罐的总体积是一定的,因此装入的压缩天然气摩尔数n=V总/V变小,随之行驶的里程数减小。所以同样一罐气夏天跑的里程比冬天要短。 【例3】汽车轮胎里的压力与胎内空气的温度相关。当胎内空气温度为25℃时,压力表显示210kPa。如果轮胎的体积为0.025m3,当夏天胎 内空气升至50℃时,压力表应显示为多少?为了轮胎的安全使用,需要轮胎恢复到原来的压力,此时轮胎内应该放掉多少空气?假定大气压为 100kPa,空气的成分21wt%O2;79wt%N2。[4] 请给出解题思路。 解:解题思路见图2。需注意的是:压力表显示210kPa,则实际压力应为210+100(当地大气压)=310kPa 图2 例3解题思路 44化工热力学中从生活中来到生产中去的实例 答:(1)25℃,V1=0.0079854m3・mol-1;n1 =0.025/0.0079854=3.13mol (2)当夏天胎内空气升至50℃时,压力表应显示为336.15-100=236.15kPa。 (3)50℃,V3=0.00866m3・mol-1;n3=0.025/0.00866=2.887mol 故放掉3.13-2.887=0.243mol的空气。 二、偏摩尔性质 偏摩尔性质是一个比较抽象的概念,很难举例。以下两个例子均是用人与人之间的相互作用来比喻。 【例4】现今世界最著名的热力学权威,美国总统奖获得者、美国三院院士、加州大学伯克利分校化工系J.M.Prausnitz教授是这样描述的:[5] 分子之间的力通常是十分特殊的,在这种情况下,遗憾的是不可能用纯组分的性质来预测(即使是近似地预测)混合物的性质。如果我们考虑下面一个牵强的类比,这一点就不奇怪了。设想一个在俄罗斯的社会学家,仔细地研究俄罗斯人的行为,观察了若干年后知道了关于他们的一切。然后他到中国对中国人进行了相似的透彻的研究。那么凭借这些知识,他能否预言由俄罗斯人和中国人任意混合所形成社会的行为呢?大概是不可能的。这种类比是高度极端的,但它能提醒我们,分子不是盲目地在空间移动的惰性粒子,相反,它们是复杂的“个人”,其“个性”对它们的环境是敏感的。 【例5】中国有一句俗话:“男女搭配干活不累”! 男生女生之间会产生相互作用,不能拿他们单独时的行为来描述男女生在一起时的行为,即“男女生一起的力量≠男生力量+女生的力量”。 三、Henry定律【例6】高山反应与Henry定律 由于高山上压力很小,大气中的氧分压 pO2=p・y空气中O2 (1) 而血液中的氧溶量为: pO2=kO2x血液中O2 (2) 由(1)式知,因为氧气在大气中的比例恒定保 持y空气中O2=21wt%,因此,当高山上总压变小(海拔3000米时,p=0.701×105Pa)则导致pO2变小;由(2)式知,当pO2变小,则x血液中O2变小,大脑由于缺氧就发生了高山反应。 【例7】高压氧舱与Henry定律 高压氧治疗是将患者置于1.4atm以上的治疗舱内,并间歇性吸入100wt%氧气的治疗方式。原理同【例6】,一方面提高了总压p,另一方面提高了y空气中O2,两者使pO2增大。根据(2)式, x血液中O2随着高压氧舱内pO2的提高而提高,提高 7221倍,从而使大脑组织得到充分氧供。 【例8】用表2来解释:空气比CO2更廉价和无毒,为何不能用来制作苏打和冒泡香槟?[6] 表2 25℃下溶解在水中的各种气体的Henry常数[6]气体H/bar 气体H/bar气体H/bar 乙炔1350乙烷30600硫化氢550空气72950乙烯11550甲烷41850二氧化碳1670氦气126600氮气87650一氧化碳 5400 氢气 71600 氧气 44380 解:因为空气的Henry常数较CO2大,则在香槟或雪碧中的溶解度就较小,形成的气泡就少,所以不适合用来制作苏打和冒泡香槟。 四、节能减排【例9】重庆长风化工厂连续亏损15年,依靠科技创新半年获利润2000万元,实现了从巨额亏 损到巨额利润的质的飞跃。 [7] 解决方法:全厂所有生产过程中的化学反应热和工艺余热进行排序。将每套生产装置的产热过程和用热过程进行联动集成,将不同装置的产热和用热过程进行跨装置集成,使热能供需的双方不仅在数量上相符,同时在质量上相配,并努力用低档余热换出较高品质的能量。燃煤锅炉没了,该厂每年节约燃煤成本1000万元。【例10】液化天然气冷能利用成了循环经济热项目。 液化天然气(LNG)具有热值高、污染小等特点。使用过程中须耗费大量的热能使其转化为常温天然气。通常的做法是以海水作为热源。按返回的海水温度降低5℃计算,则气化300万吨LNG一年约需1.2亿m3的海水吸收冷能。 如果利用其冷能建设一套3万m3/hr的空分装置,则可年产气氧28.6万吨,实现产值2亿多元。该装置与传统生产液态产品的空分装置比较,由于有效回收和利用了LNG中的冷能,可节电50%—60%,节水70%—90%,(下转第66页) 5 4 化工热力学中从生活中来到生产中去的实例沟通协调的局面必须打破,建立以过程为对象的 管理机制和协调机制则是实现过程管理的当务之急。 (四)经常永续地改善系统“改善”不是一件一劳永逸的工作。环境的变化要求我们必须将现有工作过程的改善不断推向深入。决不能认为“到目前为止我们已经实现了工作过程的最优化,目前的状态在一定时间内缓释经得起考验!”因为这种想法只会使我们产生懈怠心理,从而放松发现工作过程中潜在问题出现的警惕性。对于过程的改善应永远保持进行状态,这样,我们的系统才会有可能处于高效的 状态。 (文字编辑:吴文水)参考文献: [1]汪应洛.工业工程[M].西安:机械工业出版社,1996.5. [2]刘广第.质量管理学[M].北京:清华大学出版社,1996.2. [3]詹姆斯・W・沃克.人力资源战略[M].北京:中国人 民大学出版社,2001.4. [4]樊耘.管理学[M].西安:陕西人民出版社,2001.8.[5]赵涛.发现戴明[M].北京:北京工业大学出版社,2002.6. (上接第45页)同时减轻海域环境冷污染。 另外,利用LNG冷能发展循环经济拓展旅游资源。如“冰雪大世界”项目是将LNG气化过程中的冷能,通过载冷剂传输至冰雪世界换热站,将冷量梯级利用于冰雪旅游世界的不同功能区,为滑雪场、滑冰场、酒店等梯级提供冷能,实现LNG冷能的综合利用。这不仅可以让市民在夏 天享受到赏雪滑冰的乐趣,还能有效控制大量冷能对环境的破坏。 五、制冷与供热【例11】热棒技术解决了青藏铁路冻土问题。青藏铁路建设的1110公里新线中,有550公里要经过多年冻土地段。冻土是一种对温度极为敏感的土体介质。冬季,冻土在负温状态下随温度的降低体积发生剧烈膨胀,顶推上层的路基、路面;在夏季,冻土随着温度升高而融化,体积缩小后使路基发生沉降,这种周期性变化往往很容易导致路基和路面塌陷、下沉、变形、破裂。 现在每隔15米就竖立的热棒技术解决了冻土问题。热棒(又叫无芯重力式热管、热虹吸管)是一种高效热导装置,长7米,路基下5米,地面上2米,整个棒体罐有液氨。当路基温度上升时,液态氨受热发生气化,上升到热棒的上端,通过散热片将热量传导给空气,气态氨由此冷却变成了液态氨,又沉入了棒底,这样周而往复,热棒就相当于一个永动的天然制冷机,不断地将冻土层中的热量排出,使其永久冻结。 爱因斯坦说过:虽然物理学的大部分理论都 会随时间而改变,但热力学是普适而永恒的。[5] 化工热力学是枯燥和抽象的,但我们相信通过努力,使学生透过熟悉的现象看到科学的本质,那学生们一定能体会到化工热力学的魅力所带来的快乐!因为“了解事物的本质是令人愉快的!” (文字编辑:吴文水) 参考文献: [1]冯新,陆小华.以学生为本的化工热力学课程教学改 革[J].化工高等教育,2006,(4):30234. [2]张楚廷.科学课程的改造[J].中国大学教学,2004,(9):15218. [3]陈钟秀,顾飞燕编.化工热力学(第二版)[M],北京: 化学工业出版社,2001.2952297. [4]YunusA.CengelandMichaelA.Boles.Thermody2namics:AnEngineeringApproach(6th)[M].McGraw2Hill,2006.1592160. [5](美)普劳斯尼茨等著,陆小华,刘洪来译.流体相平衡 的分子热力学(原著第三版)[M].北京:化学工业出版社,2006.1142115. [6](美)史密斯等著,刘洪来,陆小华等译.化工热力学导 论(原著第七版)[M].北京:化学工业出版社,2008. 2182219. [7]邓经国.从巨额亏损到巨额利润———重庆长风化工厂 科技创新纪实[N].中国化工报,200628222.

❾ 空分是用做干什么的

空分就是将空气中的氧气和氮气进行分离,或同时提取氦气、氩气等稀有气体。

氧气、氮气及氩气、氦气等稀有气体用途很广,所以空气分离装置广泛用于冶金、化工、石油、机械、采矿、食品、军事等工业部门。

空气压缩、空气净化、换热、制冷与精馏是空分的五个主要环节。一般先将空气压缩,并冷至很低温度,或用膨胀方法使空气液化,再在精馏塔中进行分离。



(9)v1在空分装置中的作用扩展阅读

空气分离三种技术方法:吸附法、膜分离法及低温法。

吸附法:利用分子筛对不同分子的选择吸附性能来达到最终分离目的,该技术流程简单,操作方便,运行成本低,但获得高纯度产品较为困难,而且装置容量有限,所以该技术有其局限的应用范围。

膜分离法:利用膜渗透技术,利用氧、氮通过膜的速率的不同,实现两种组分的粗分离。这种方法装置更为简单,操作方便,投资小但产品只能达到28%--35%的富氧空气,且规模只宜中小型化,只适用于富氧燃烧及医疗保健领域应用。

低温法:利用空气中各组分沸点的不同,通过一系列的工艺过程,将空气液化,并通过精馏来达到不同组分分离的方法。这种方法较前两种方法可实现空气组分的全分离、产品精纯化、装置大型化、状态双元化(液态及气态),故在生产装置工业化方面占据主导地位。

目前工业应用最为广泛的就是低温空气分离技术。

❿ 空分装置的介绍

空分装置就是用来把空气中的各组份气体分离,生产氧气、氮气的一套工业设备。

阅读全文

与v1在空分装置中的作用相关的资料

热点内容
机床十字滑台用的什么伺服电机 浏览:313
阀门管道图片 浏览:799
摄影器材抛物线怎么折叠 浏览:940
天津商业大学制冷装置设计慕课 浏览:15
岩心钻机钻杆自动装卸装置图片 浏览:879
机械3d建模多少钱 浏览:753
楼道排气阀门可以关吗 浏览:648
机械硬盘只读文件怎么修改 浏览:503
冷风机的电机轴承什么型号 浏览:442
净水装置中鹅卵石的作用 浏览:305
离合坏了仪表盘会亮什么灯 浏览:204
河南大米加工设备哪里的好 浏览:87
源泉工具箱中线型设置方法 浏览:486
半机械键盘怎么调灯 浏览:757
超声波探头短接会怎么样 浏览:652
哪个设备无法接入互联网 浏览:626
轴承半圆螺帽整圆怎么安装 浏览:13
配电装置隔离墙的作用 浏览:565
免疫室都有哪些仪器 浏览:877
机械装置手动线性有哪些 浏览:345