㈠ 闭环伺服系统的位移监测装置装在哪儿
位置模式,靠的是伺服驱动器的脉冲数来实现的呀,不存在监测装置。
㈡ 数控机床对位置检测装置的要求有哪些 详细
直接测量和间接测量
1.直接测量
直接测量是将检测装置直接安装在执行部件上,如光栅、感应同步器等用来直接测量工作台的直线位移,位置检测装置安装在执行部件(即末端件)上直接测量执行部件末端件的直线位移或角位移,可以构成闭环进给伺服系统。测量方式有直线光栅、直线感应同步器、磁栅、激光干涉仪等测量执行部件的直线位移。由于此种检测方式是采用直线型检测装置对机床的直线位移进行测量,因此,其优点是直接反映工作台的直线位移量;缺点是要求检测装置与行程等长,对大型的数控机床来说,这是一个很大的限制。
2.间接测量
间接测量装置是将检测装置安装在滚珠丝杠或驱动电动机轴上,通过检测转动件的角位移来间接测量执行部件的直线位移。
位置检测装置安装在执行部件前面的传动元件或驱动电动机轴上,测量其角位移,经过传动比变换以后才能得到执行部件的直线位移量,这样可以构成闭环伺服进给系统,如将脉冲编码器装在电动机轴上。
间接测量使用可靠、方便,无长度限制;其缺点是,在检测信号中加入了直线转变为旋转运动的传动链误差,从而影响测量精度。一般需对数控机床的传动误差进行补偿,才能提高定位精度。
除了以上位置检测装置,伺服系统中往往还包括检测速度的元件,用以检测和调节发动机的转速。常用的元件是测速发电机。
位置检测装置是数控机床伺服系统的重要组成部分。它的作用是检测位移和速度,发送反馈信号,构成闭环或半闭环控制。数控机床的加工精度主要由检测系统的精度决定。不同类型的数控机床,对位置检测元件,检测系统的精度要求和被测部件的最高移动速度各不相同。现在检测元件与系统的最高水平是:被测部件的最高移动速度高至240m/min时,其检测位移的分辨率(能检测的最小位移量)可达1μm,如24m/min时可达0.1μm。最高分辨率可达到
0.01μm。
数控机床对位置检测装置有如下要求:
(1)受温度,湿度的影响小,工作可靠,能长期保持精度,抗干扰能力强。
(2)在机床执行部件移动范围内,能满足精度和速度的要求。
(3)使用维护方便,适应机床工作环境。
(4)成本低。
㈢ 三坐标测量机组成分为哪几部分求答案
三坐标测量机一般由以下几个部分组成:
1、主机机械系统(X、Y、Z三轴或其它);
2、 测头系统;
3、 电气控制硬件系统;
4、 数据处理软件系统(测量软件);
三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟,大幅度提升测量效率。
三坐标测量机被广泛应用于模具行业、汽车行业、发动机制造等众多行业,全球著名的三坐标代表厂商有德国的蔡司ZEISS,其在各行业得到了广泛的应用。
(3)位移同步检测驱动装置扩展阅读
原理:
几何量测量是以点的坐标位置为基础的,它分为一维、二维和三维测量。三坐标测量机的基本原理是将被测零件放入它容许的测量空间,精密地测出被测零件在 X、Y、Z 三个坐标位置的数值。
根据这些点的数值经过计算机数据处理,拟合形成测量元素,如圆、球、圆柱、圆锥、曲面等,经过数学计算得出形状、位置公差及其他几何量数据。
㈣ 数控机床各组成部分的功能、作用及特点(答案要求1500字以上,条理清晰) 谢谢大家了
首先说明一点 功能即作用,至于特点,有时也是指功能特点,所以我认为都可以归结到讲述功能。
数控机床有由以下部分组成
一、程序编制及程序载体
数控程序是数控机床自动加工零件的工作指令。在对加工零件进行工艺分析的基础上,确定零件坐标系在机床坐标系上的相对位置,即零件在机床上的安装位置;刀具与零件相对运动的尺寸参数;零件加工的工艺路线、切削加工的工艺参数以及辅助装置的动作等。得到零件的所有运动、尺寸、工艺参数等加工信息后,用由文字、数字和符号组成的标准数控代码,按规定的方法和格式,编制零件加工的数控程序单。编制程序的工作可由人工进行;对于形状复杂的零件,则要在专用的编程机或通用计算机上进行自动编程(APT)或CAD/CAM设计。
编好的数控程序,存放在便于输入到数控装置的一种存储载体上,它可以是穿孔纸带、磁带和磁盘等,采用哪一种存储载体,取决于数控装置的设计类型。
二、输入装置
输入装置的作用是将程序载体(信息载体)上的数控代码传递并存入数控系统内。根据控制存储介质的不同,输入装置可以是光电阅读机、磁带机或软盘驱动器等。数控机床加工程序也可通过键盘用手工方式直接输入数控系统;数控加工程序还可由编程计算机用RS232C或采用网络通信方式传送到数控系统中。
零件加工程序输入过程有两种不同的方式:一种是边读入边加工(数控系统内存较小时),另一种是一次将零件加工程序全部读入数控装置内部的存储器,加工时再从内部存储器中逐段逐段调出进行加工。
三、数控装置
数控装置是数控机床的核心。数控装置从内部存储器中取出或接受输入装置送来的一段或几段数控加工程序,经过数控装置的逻辑电路或系统软件进行编译、运算和逻辑处理后,输出各种控制信息和指令,控制机床各部分的工作,使其进行规定的有序运动和动作。
零件的轮廓图形往往由直线、圆弧或其他非圆弧曲线组成,刀具在加工过程中必须按零件形状和尺寸的要求进行运动,即按图形轨迹移动。但输入的零件加工程序只能是各线段轨迹的起点和终点坐标值等数据,不能满足要求,因此要进行轨迹插补,也就是在线段的起点和终点坐标值之间进行“数据点的密化”,求出一系列中间点的坐标值,并向相应坐标输出脉冲信号,控制各坐标轴(即进给运动的各执行元件)的进给速度、进给方向和进给位移量等。
四、驱动装置和位置检测装置
驱动装置接受来自数控装置的指令信息,经功率放大后,严格按照指令信息的要求驱动机床移动部件,以加工出符合图样要求的零件。因此,它的伺服精度和动态响应性能是影响数控机床加工精度、表面质量和生产率的重要因素之一。驱动装置包括控制器(含功率放大器)和执行机构两大部分。目前大都采用直流或交流伺服电动机作为执行机构。
位置检测装置将数控机床各坐标轴的实际位移量检测出来,经反馈系统输入到机床的数控装置之后,数控装置将反馈回来的实际位移量值与设定值进行比较,控制驱动装置按照指令设定值运动。
五、辅助控制装置
辅助控制装置的主要作用是接收数控装置输出的开关量指令信号,经过编译、逻辑判别和运动,再经功率放大后驱动相应的电器,带动机床的机械、液压、气动等辅助装置完成指令规定的开关量动作。这些控制包括主轴运动部件的变速、换向和启停指令,刀具的选择和交换指令,冷却、润滑装置的启动停止,工件和机床部件的松开、夹紧,分度工作台转位分度等开关辅助动作。
由于可编程逻辑控制器(PLC)具有响应快,性能可靠,易于使用、编程和修改程序并可直接启动机床开关等特点,现已广泛用作数控机床的辅助控制装置。
六、机床本体
数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化。这种变化的目的是为了满足数控机床的要求和充分发挥数控机床。
㈤ 数控车床G94的用法
在FANUC数控车床系统中,G94格式如下:
执行G94之后,刀尖移动的轨迹是矩形或梯形(4条边),2条边是快速移动,另外2条边是G01的速度(切削加工)。
箭头所指的方向为刀尖移动的方向,对角点的坐标为G94后面的X、Z坐标。
1、程序编制及程序载体。数控程序是数控机床自动加工零件的工作指令。程序载体是用于存放编好的程序以便于输入到数控装置的一种存储载体。
2、输入装置。输入装置的作用是将程序载体(信息载体)上的数控代码传递并存入数控系统内。
3、数控装置。数控装置是数控机床的核心。其作用是:从内部存储器中取出或接受输入装置送来的一段或几段数控加工程序,经过数控装置的逻辑电路或系统软件进行编译,运算处理后,输出几种控制信息和指令,控制机床各部分的工作,使其进行规定的有序运动和动作。
4、驱动装置和位置检测装置。驱动装置的作用是:接受来自数控装置的摊信息,经功率放大后,严格按照指令信息的要求驱动机床移动部件,以加工出符合图样要求的零件。位置检测装置的作用是:将数控机床各坐标轴的实际位移检测出来,经反馈系统输入到。
(5)位移同步检测驱动装置扩展阅读:
数控机床是按照事先编制好的加工程序,自动地对被加工零件进行加工。我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数以及辅助功能。
按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这程序单中的内容记录在控制介质上,然后输入到数控机床的数控装置中,从而指挥机床加工零件。
程序的构成:由多个程序段组成。
O0001;O(FANUC-O,AB8400-P,SINUMERIK8M-%)机能指定程序号,每个程序号对应一个加工零件。
N010G92X0Y0;分号表示程序段结束。
N020G90G00X50Y60;
...;可以调用子程序。
N150M05;
N160M02;
程序段格式:
①字地址格式:如N020G90G00X50Y60;
最常用的格式,现代数控机床都采用它。地址N为程序段号,地址G和数字90构成字地址为准备功能,...。
②可变程序段格式:如B2000B3000BB6000;
使用分割符B各开各个字,若没有数据,分割符不能省去。常见于数控线切割机床,另外,还有3B编程等格式。
③固定顺序程序段格式:如00701+0;
西门子系统控制的机器人误,上面程序段的意思是:N007G01X+02500Y-13400F15S30M02;
㈥ 角位移检测元件有哪些
角位移测量是线位移测量和角位移测量的总称,它直接影响着伺服运动控制的控专制属精度,位移测量在伺服运动控制系统中的应用十分广泛,这不仅因为在各种机械加工中对位置确定和加工尺寸的需要,而且还因为速度、加速度等参数的检测都可以借助测量位移的方法。一般的位移检测元件有:电感传感器、电容传感器、感应同步器、光栅传感器、磁栅传感器、旋转变压器和光电编码器等。其中,旋转变压器和光电编码器只能测试角位移,其它几种传感器既有直线型位移传感器,又有角度型位移传感器。
㈦ 数控机床驱动装置的作用是什么
数控机驱动装置是数控机床执行机构的驱动部件,包括主轴驱动单内元、进给单元、主轴电机及进容给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。
驱动装置的用途是带动具有挠性牵引构件的输送机的牵引构件和工作构件或者将无牵引构件输送机的工作构件带动。
㈧ 机床的驱动装置包括哪些驱动部件
据我所知,驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单回元、主轴电答机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。数控技术也叫计算机数控技术(CNC,Computerized Numerical Control),它是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存贮的控制程序来执行对设备的运动轨迹和外设的操作时序逻辑控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入操作指令的存储、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成,处理生成的微观指令传送给伺服驱动装置驱动电机或液压执行元件带动设备运行。
㈨ 函授毕业,需要英语教育论文
现代微机电技术的研究与应用现状
http://www.59167.net/fileshow.asp?id=6316
【相关摘要】微机电技术是20世纪60年代发展起来的一项新兴技术,它将微型机械技术和微电子控制技术相结合,产生了以微型化、集成化和电子化为主要特征的微机电系统。微机电系统不但在民用领域具有巨大的应用潜力,而且其军用前景也相当看好并在不断拓展,预计未来几年这种器件将如同现在的微处理器一样在军事装备中得到普及。一、制导、导航和控制以传统机械、环形激光、光纤陀螺和加速度计为基础的惯性测量装置,在炮弹发射时会因震
需要付费10元的。
机电一体化
http://www.happycampus.com.cn/pages/2004/07/14/D145308.html#
需要登陆
数控机床高精度轨迹控制的一种新方法
摘要:针对数控技术和装备向高速高精度发展的需求,研究开发了一种新的高精度轨迹控制技术。其核心内容是以高频高分辨率采样插补生成刀具运动轨迹,通过新型转角—线位移双位置闭环控制保证希望轨迹的准确实现,并以信息化轨迹校正消除机械误差和干扰对轨迹精度的影响,从而保证所控制的机床可在生产环境中长期高精度运行。由此构成的新型数控系统已在多种国产数控机床上进行了应用,取得了良好效果。
叙词:数控机床高精度轨迹控制
0前言
数控机床是实现先进制造技术的重要基础装备,它关系到国家发展的战略地位。因此,立足国内实际,加速发展具有较强竞争能力的国产高精度数控机床,不断扩大市场占有率,逐步收复失地,便成为我国数控机床研究开发部门和生产厂家所面临的重要任务。
为完成这一任务,必须攻克若干关键技术,但其中最关键的一项是数控机床的高精度轨迹控制技术。因此,我们近年来结合生产实际,从高速高精度插补、高速高精度伺服控制和信息化轨迹校正等诸方面,对高速高精度轨迹控制技术进行了系统研究,并以此为基础加强了新型数控系统和高精度数控机床的开发。本文将介绍所取得的部分结果。
1数控机床高精度轨迹控制的基本思想
随着科学技术的进步和社会经济的发展,对机床加工精度的要求越来越高。如果完全靠提高零部件制造精度和机床装配精度的传统方法来设计制造高精度数控机床,势必大幅度提高机床的成本,在有些情况下甚至不可能。面对这一现实,我们对以低成本实现高精度的途径进行了探索,提出一种通过信息、控制与机床结构相结合实现数控机床高精度轨迹控制的方法,其核心思想是:①采用具有高分辨率和高采样频率的新型插补技术,在保证速度的前提下大幅度提高轨迹生成精度;②通过新型双位置闭环控制,有效保证希望轨迹的高精度实现。③以信息化轨迹校正消除机械误差和干扰对轨迹精度的影响,从而保证所控制的机床可在生产环境中长期高精度运行。
2高速高精度轨迹生成
高精度轨迹生成是实现高精度轨迹控制的基础。本文以高分辨率、高采样频率和粗精插补合一的多功能采样插补生成刀具希望轨迹。
2.1基本措施
由采样插补原理可知,插补误差δ(mm)与进给速度vf(mm/min)、插补频率f(Hz)和被插补曲线曲率半径ρ(mm)间有如下关系
screen.width-400)this.style.width=screen.width-400;">
(1)
由上式可知,为既保证高的进给速度,又达到高的轨迹精度,一种有效的办法就是提高采样插补频率。考虑到在现代数控机床上将经常碰到高速高精度小曲率半径加工问题。为此,我们在开发新型数控系统时,发挥软硬件综合优势将采样插补频率提高到5kHz,即插补周期为0.2ms。这样,即使要求进给速度达到60m/min,在当前曲率半径为50mm时,仍能保证插补误差不大于0.1μm。
2.2数学模型
常规采样插补算法普遍采用递推形式,一般存在误差积累效应。这种效应在高速高精度插补时将对插补精度造成不可忽视的影响。因此,我们在开发高速高精度数控系统时采用新的绝对式插补算法,其要点是:为被插补曲线建立便于计算的参数化数学模型
x=f1(u),y=f2(u),z=f3(u)
(2)
式中u——参变量,u∈〔0,1〕
要求用其进行轨迹插补时不涉及函数计算,只需经过次数很少的加减乘除运算即可完成。
例如,对于圆弧插补,式(2)的具体形式为
screen.width-400)this.style.width=screen.width-400;">
(3)
式中M——常数矩阵,当插补点位于一、二、三、四象限时,其取值分别为
screen.width-400)this.style.width=screen.width-400;">
2.3实时插补计算
在参数化模型的基础上,插补轨迹计算可以模型坐标原点为基准进行,从而可消除积累误差,有效保证插补计算的速度和精度。其实现过程如下:
首先根据当前进给速度和加减速要求确定当前采样周期插补直线段长度ΔL。然后,按下式计算当前采样周期参变量的取值
screen.width-400)this.style.width=screen.width-400;"> (4)
式中ui-1——上一采样周期参变量的取值
screen.width-400)this.style.width=screen.width-400;">——参变量的摄动量
screen.width-400)this.style.width=screen.width-400;">——与screen.width-400)this.style.width=screen.width-400;">对应的x,y,z的摄动量
最后将ui代入轨迹计算公式(2),即可计算出插补轨迹上当前点的坐标值xi,yi,zi。不断重复以上过程直至到达插补终点,即可得到整个离散化的插补轨迹。
需说明一点,按式(4)计算ui时允许有一定误差,此误差仅会对进给速度有微小影响,不会对插补轨迹精度产生任何影响。这样,式中的开方运算可用查表方式快速完成。
2.4算例分析
表1给出了第一象限半径为50mm圆弧的插补计算结果。表中第一行为插补点序号,u行为各插补点处参变量的取值,x、y行为各插补点的坐标值。为分析插补误差,将各插补点处的圆弧半径和插补直线段长度的实际值也一同列于表中的r行和ΔL行。
由表可见,虽然插补过程中计算ui时产生的误差对插补点沿被插补曲线前后位置的准确性有一定影响(ΔL值约有小于1%的误差),但各插补点处的r值总是50.000,这说明插补点准确位于被插补曲线上,不存在轨迹误差。
表1圆弧插补计算结果(x,y,r,ΔL的单位为mm)
插补点 1 2 3 4 5 6 7 8 9 10 u 0.079 0.159 0.241 0.326 0.415 0.511 0.614 0.728 0.855 1.000 x 49.383 47.543 44.526 40.410 35.297 29.319 22.625 15.385 7.782 0.000 y 7.831 15.482 22.747 29.446 35.413 40.502 44.588 47.574 49.391 50.000 r 50.000 50.000 50.000 50.000 50.000 50.000 50.000
50.000 50.000 50.000 ΔL 7.855 7.869 7.866 7.863 7.858 7.851 7.842 7.832 7.818 7.806
3实现高精度轨迹控制的双闭环控制方案
通过高速高精度插补获得精确的刀具希望轨迹后,下一步的任务便是如何保证刀具实际运动轨迹与插补产生的希望轨迹一致。为此需首先解决各运动坐标的高精度位置控制问题。
3.1系统组成
常规全闭环机床位置控制系统的动态结构如图1所示。其设计思想是在速度环的基础上加上位置外环来构成全闭环位置控制系统。根据电力拖动系统的工程设计方法,设计此类系统时,位置控制器应选用PI或PID调节器,以使系统获得较快的跟随性能。然而,因这类系统为高阶Ⅱ型系统,其开环频率特性将与非线性环节的负倒幅曲线相交,从而使系统出现非线性自持振荡而无法正常工作。这就使得这类系统难以在实际中广泛应用。
screen.width-400)this.style.width=screen.width-400;">
图1常规全闭环位置控制系统的动态结构
ni,no——调速系统输入指令和输出转速
Ki——传动机构增益
为了克服常规全闭环位置控制系统存在的缺陷,必须打破以速度内环为基础构造全闭环位置控制系统的传统理论的束缚,寻求新的在保证可靠稳定性的基础上获得高精度的途径。经过多年探索,我们研究出一种新的转角-线位移双闭环位置控制方法,由其构成的位置控制系统的动态结构如图2所示。该系统的特点是:整个系统由内外两个位置环组成。其中内部闭环为转角位置闭环,其检测元件为装于电机轴上的光电编码盘,驱动装置为交流伺服系统,由此构成一输入为θi输出为θo的转角随动系统。外部位置闭环采用光栅、感应同步器等线位移检测元件直接获取机床工作台的位移信息,并以内环的转角随动系统为驱动装置驱动工作台运动。工作台的位移精度由线位移检测元件决定。
screen.width-400)this.style.width=screen.width-400;">screen.width-400)this.style.width=screen.width-400;">
图2转角—线位移双闭环位置控制系统的动态结构
该系统的设计思路是,内外环合理分工,内环主管动态性能,外环保证稳定性和跟随精度。为提高系统的跟随性能,引入由Gc(s)组成的前馈通道,构成复合控制系统。
3.2稳定性与误差分析
(1)稳定性分析
由于内部转角闭环不包含间隙非线性环节,因此通过合理设计该局部线性系统,可使其成为一无超调的快速随动系统,其动态特性可近似表示为
screen.width-400)this.style.width=screen.width-400;"> (5)
式中Kθ——转角闭环增益
Tθ——转角闭环时间常数
系统外环虽然包含了非线性环节,但设计控制器使
screen.width-400)this.style.width=screen.width-400;"> (6)
式中Kp——积分环节时间常数
将系统校正为Ⅰ型并合理选择系统增益,可避免系统的频率特性曲线与非线性环节的负倒幅曲线相交或将其包围,从而保证系统稳定工作〔2〕。显然当Tθ较小时θo(s)/θi(s)≈Kθ,系统将具有更强的稳定性。
(2)跟随误差分析
采用上述方案可保证图2系统稳定工作,因此可忽略非线性因素的影响,求出该系统的传递函数
screen.width-400)this.style.width=screen.width-400;"> (7)
系统设计时使反馈系数Kf=1,前馈通道
screen.width-400)this.style.width=screen.width-400;"> (8)
有
Φx(s)≡1 (9)
上式说明,双闭环系统具有理想的动态性能和跟随精度。
4信息化轨迹误差校正
在双位置闭环控制下,机床坐标运动的精度主要取决于检测装置获取信息的准确程度。因此,进一步通过信息补偿有效提高检测装置的精度并使其不受外部环境的影响,将为进一步提高坐标运动精度提供一条新的途径。为此采取以下措施:对检测装置的误差及其与系统状态的关系进行精确测定并建立描述误差关系的数学模型,加工过程中由数控系统根据有关状态信息(如工作台实际位置、检测装置的温度等)按数学模型计算误差补偿值,并据此对检测装置的测量值进行实时校正,从而保证机床运动部件沿各自的坐标轴具有很高的运动精度。
为在高精度坐标运动的基础上,获得高精度的多坐标合成轨迹,进一步采用几何误差信息化校正方法。例如,对于机床x、y工作台的不垂直度误差,可通过以下过程进行校正:
将一精密测头装入机床主轴,对固定于工作台上的标准样件(圆弧轮廓)进行测量。当机床的x、y坐标间存在不垂直度误差时,所测的轨迹将不是一个准确的圆。将此实测轨迹与标准轨迹相比较,即可求出x、y坐标间不垂直度误差值。按该误差值对x、y坐标的运动进行校正,即可使x、y合成运动轨迹达到更高的精度。
将此原理用于其他几何误差的校正,即可有效提高多坐标运动的合成轨迹精度。若在加工过程中插入上述校正过程,还可对温度变化引起的热变形误差进行有效补偿。
5应用实例
以高速高精度轨迹控制技术为基础,开发了一种新型计算机数控系统〔3〕。某用户用该系统控制SKY1632数控铣床,其加工性能有了明显提高。例如,有一种复杂模具零件,被加工表面不但曲率变化剧烈,而且许多部位的曲率半径值很小,过去用老型号系统控制机床进行加工时,必须采用很低的进给速度才能保证加工精度,生产率很低。采用新型数控系统后,由于其对大曲率和曲率变化的高度适应能力,使得进给速度提高数倍后,仍能加工出合格的零件,从而大幅度提高了生产率。此外,通过新型系统的控制,有效地抑制了机械传动误差、时变切削力和温度变化等因素对加工精度的影响,较好解决了大程序量、长时间(连续几十小时以上)加工中所存在的轨迹跑偏问题,提高了复杂零件的加工质量。
6结论
本文针对开发高精度数控机床的需求,研究出一种新的高精度轨迹控制方法,并以此为基础开发了新型数控系统。在这类新型系统中,以高频高分辨率绝对式插补算法生成刀具希望轨迹,为实现高精度轨迹控制奠定了信息基础。通过对机床运动部件进行双位置闭环控制,既有效抑制了非线性因素的影响,保证了机床可靠稳定工作,又可获得较高的动态性能,并使各坐标的位移精度由检测装置决定,彻底排除了传动误差对刀具运动轨迹精度的影响,有效保证了实际轨迹与希望轨迹一致。在此基础上,通过信息化误差校正,有效提高了检测装置的精度并抑制了几何误差对轨迹精度的影响,从而使由此构成的新型机床可在生产环境中长期高精度运行。实际应用证明,由新型控制系统控制的数控机床在复杂精密零件加工方面具有良好的效果。该项成果为提高数控机床的加工精度与速度探索出一条有效的途径。(需要自己加参考文献目录)
㈩ 数控机床中按伺服系统可以分为哪三种
数控机床中按伺服系统可以分为开环控制、半闭环控制和闭环控制三种。
开环控制:不带位置反馈装置的控制方式。加工精度一般在0.02-0.05mm精度左右。
半闭环控制:在开环控制伺服电动机轴上装有角位移检测装置,通过检测伺服电动机的转角间接地检测出运动部件的位移反馈给数控装置的比较器,与输入的指令进行比较,用差值控制运动部件。加工精度一般在0.01-0.02mm精度左右。
闭环控制:在机床的最终的运动部件的相应位置直接直线或回转式检测装置,将直接测量到的位移或角位移值反馈到数控装置的比较器中与输入指令移量进行比较,用差值控制运动部件,使运动部件严格按实际需要的位移量运动。加工精度一般在0.002-0.01mm精度左右。
(10)位移同步检测驱动装置扩展阅读
伺服系统为数控机床的重要组成部分,用于实现数控机床的进给伺服控制和主轴伺服控制。伺服系统的作用是把接受来自数控装置的指令信息,经功率放大、整形处理后,转换成机床执行部件的直线位移或角位移运动。
由于伺服系统为数控机床的最后环节,其性能将直接影响数控机床的精度和速度等技术指标,因此,对数控机床的伺服驱动装置,要求具有良好的快速反应性能,准确而灵敏地跟踪数控装置发出的数字指令信号,并能忠实地执行来自数控装置的指令,提高系统的动态跟随特性和静态跟踪精度。
伺服系统包括驱动装置和执行机构两大部分。驱动装置由主轴驱动单元、进给驱动单元和主轴伺服电动机、进给伺服电动机组成。步进电动机、直流伺服电动机和交流伺服电动机是常用的驱动装置。
测量元件将数控机床各坐标轴的实际位移值检测出来并经反馈系统输入到机床的数控装置中,数控装置对反馈回来的实际位移值与指令值进行比较,并向伺服系统输出达到设定值所需的位移量指令。