A. 有谁知道凯氏定氮的具体步骤,注意事项,!!
1、消化:精密称取大豆样品1.0g左右,放入干燥的250 ml消化管中,加入0.4g CuSO4 7g K2SO4 10ml H2SO4先200'C炭化,待泡沫停止后提高温度到450'C,加热至液体沸腾,待瓶内液体呈蓝绿色透明后,再继续加热0.5h。
冷却后加入20ml水,移入100ml容量瓶中,用少量水洗涤消化管2~3次,洗液合并于容量瓶中定容。
2、蒸馏:连接凯氏定氮装置,于水蒸气发生瓶内装水至2/3处,加甲基红指示剂数滴及数ml硫酸,保持水呈酸性。加入数粒玻璃珠以防暴沸,调节火力加热煮沸水蒸气发生瓶内的水。
3、向吸收瓶内加入20g/L硼酸溶液20ml及混合指示剂2滴,并使冷凝管下端插入液面以下,吸取10ml样品消化稀释液由进样口进入反应室,并以10ml水洗涤进样口使其流入反应室内,将400g/L NaOH溶液10ml倒入进样口,立即夹紧螺旋夹,并加入少量蒸馏水,密封进样口。
当蒸汽通入反应室时,准确计时,反应产生的氨气通过冷凝管进入吸收瓶,蒸馏5min,移动吸收瓶,使冷凝管下端离开液面,再蒸馏Imin,然后用少量水冲洗冷凝管下端外部,取下吸收瓶。
停止加热,使反应室内的液体进入汽水分离器,打开进样口的螺旋夹,将汽水分离器的液体放出。再向反应室内加入蒸馏水,夹紧螺旋夹,再次进行加热至水蒸汽放出,停止加热,使反应室内的水进入汽水分离器,进行洗涤。
4、滴定:用0.025mol/L硫酸标准溶液滴定吸收液至灰色。
5、计算:X= 2cVX 14X5.71/m
X为样品中蛋白质的含量,%;c为硫酸标准溶液的浓度,molL;V为样品消化液消耗硫酸标准溶液的体积,ml;m为样品的质量,g。
注意事项
(1) 样品应是均匀的。固体样品应预先研细混匀,液体样品应振摇或搅拌均匀。
(2) 样品放入定氮瓶内时,不要沾附颈上。万-沾附可用少量水冲下,以免被检样消化不完全,结果偏低。
(3) 消化时如不容易呈透明溶液,可将定氮瓶放冷后,慢慢加入30%过氧化氢(H2O2)2-3ml,促使氧化。
(4) 在整个消化过程中,不要用强火。保持和缓的沸腾,使火力集中在凯氏瓶底部,以免附在壁上的蛋白质在无硫酸存在的情况下,使氮有损失。
(5)如硫酸缺少, 过多的硫酸钾会引起氨的损失,这样会形成硫酸氢钾,而不与氨作用。因此,当硫酸过多的被消耗或样品中脂肪含量过高时,要增加硫酸的量。
(6)加入硫酸钾的作用为增加溶液的沸点,硫酸铜为催化剂,硫酸铜在蒸馏时作碱性反应的指示剂。
(7)混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色,在酸性溶液中呈红色。如果没有溴甲酚绿,可单独使用0.1%甲基红乙醇溶液。
(8) 氨是否完全蒸馏出来,可用PH试纸试馏出液是否为碱性。
(1)自动凯氏定氮仪消化装置扩展阅读:
凯氏定氮法原理
凯氏定氮法首先将含氮有机物与浓硫酸共热,经一系列的分解、碳化和氧化还原反应等复杂过程,最后有机氮转变为无机氮硫酸铵,这一过程 称为有机物的消化。
为了加速和完全有机物质的分解,缩短消化时间,在消化时通常加入硫酸钾、硫酸铜、氧化汞、过氧化氢等试剂,加入硫酸钾可以提高消化液的沸点而加快有机物分解,除硫酸钾外,也可以加入硫酸钠、氯化钾等盐类类提高沸点,但效果不如硫酸钾。
硫酸铜起催化剂的作用。凯氏定氮法中可用的催化剂种类很多,除硫酸铜外,还有氧化汞、汞、硒粉、钼酸钠等,但考虑到效果、价格及环境污染等多种因素,应用最广泛的是硫酸铜。
B. 凯氏定氮法的原理是什么
不知道你要问什么,你已经把原理写出来了。
如果再说仔细一点,就是有机物与浓硫酸共热,400摄氏度以上,此时的有机物中的N元素完全分解生成NH3,氨气挥发出来,通过一系列的反应测定氨气的量,即可计算有机物中的N元素含量。
C. 凯氏定氮仪消化炉是什么
凯氏定氮仪消化炉是在测定蛋白质含量时可以用得到的仪器。
凯氏定氮仪消化炉也叫分路数显消化炉,采用井式电加热方式,使样品在井式电加热炉内加热取得较佳热效应,提高消煮速度,消化管内逸出的SO2等有害气体,通过排污管经抽吸泵从水中排入下水道,有效地抑制有害气体的外逸。消化炉采用智能温度仪表数控电加热炉内温度,并直接显示温度值。配不锈钢排污罩使用方便采用四氟乙稀密封圈,无须更换。你说的这款托普云农凯氏定氮仪消化炉广泛用于食品、农作物、种子、土壤、肥料等样品的含氮量或蛋白质含量分析。
D. 测定蛋白质含量只有凯氏定氮法吗
当然不是
一、微量凯氏(kjeldahl)定氮法
样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:
nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1)
2nh3+h2so4——(nh4)2so4 (2)
(nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3)
反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。
为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。
计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白
氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。
二、双缩脲法(biuret法)
(一)实验原理
双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。
此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。
(二)试剂与器材
1. 试剂:
(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用h2o 或0.9%nacl配制,酪蛋白用0.05n naoh配制。
(2)双缩脲试剂:称以1.50克硫酸铜(cuso4•5h2o)和6.0克酒石酸钾钠(knac4h4o6•4h2o),用500毫升水溶解,在搅拌下加入300毫升10% naoh溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。
2. 器材:
可见光分光光度计、大试管15支、旋涡混合器等。
(三)操作方法
1. 标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。
2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。
三、folin—酚试剂法(lowry法)
(一)实验原理
这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。
folin—酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。以后在生物化学领域得到广泛的应用。这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。
进行测定时,加folin—酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。
此法也适用于酪氨酸和色氨酸的定量测定。
此法可检测的最低蛋白质量达5mg。通常测定范围是20~250mg。
(二)试剂与器材
1.试剂
(1)试剂甲:
(a)10克 na2co3,2克 naoh和0.25克酒石酸钾钠 (knac4h4o6•4h2o)。溶解于500毫升蒸馏水中。
(b)0.5克硫酸铜(cuso4•5h2o)溶解于100毫升蒸馏水中,每次使用前,将50份(a)与1份(b)混合,即为试剂甲。
(2)试剂乙:在2升磨口回流瓶中,加入100克钨酸钠(na2wo4•2h2o),25克钼酸钠(na2moo4•2h2o)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫 酸 锂(li2so4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。稀释至1升,过滤,滤液置于棕色试剂瓶中保存。使用时用标准naoh滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1n左右。
(3)标准蛋白质溶液: 精确称取结晶牛血清清蛋白或 g—球蛋白,溶于蒸馏水,浓度为250mg/ml左右。牛血清清蛋白溶于水若混浊,可改用0.9%nacl溶液。
2. 器材
(1)可见光分光光度计
(2)旋涡混合器
(3)秒表
(4)试管16支
(三)操作方法
1. 标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。再逐管加入0.5毫升试剂乙(folin—酚试剂),同样立即混匀。这一步混合速度要快,否则会使显色程度减弱。然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。
注意:因lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。每分钟测一个样品。
进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。
folin—酚试剂法实验表
管号 1 2 3 4 5 6 7 8 9 10
标准蛋白质 0 0.1 0.2 0.4 0.6 0.8 1.0
(250mg/ml)
未知蛋白质 0.2 0.4 0.6
(约250mg/ml)
蒸馏水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4
试剂甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
试剂乙 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
每管中蛋白质的量(mg)
吸光度值(a700)
2. 样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。通常样品的测定也可与标准曲线的测定放在一起,同时进行。即在标准曲线测定的各试管后面,再增加3个试管。如上表中的8、9、10试管。
根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。
注意:由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。
四、改良的简易folin—酚试剂法
(一)试剂
1. 试剂甲:碱性铜试剂溶液中,含0.5n naoh、10%na2co3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。2. 试剂乙:与前面的基本法相同。临用时加蒸馏水稀释8倍。
3. 标准蛋白质溶液:同基本法。
(二)操作步骤
测定标准曲线与样品溶液的操作方法与基本法相同。只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。在55℃恒温水浴中保温5分钟。用流动水冷却后,在660nm下测定其吸光度值。
改良的快速简易法,可获得与 folin—酚试剂法(即lowry基本法)相接近的结果。
五、考马斯亮兰法(bradford法)
(一)实验原理
双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。
1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。这一方法是目前灵敏度最高的蛋白质测定法。
考马斯亮兰g-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。
在595nm下测定的吸光度值a595,与蛋白质浓度成正比。
bradford法的突出优点是:
(1)灵敏度高,据估计比lowry法约高四倍,其最低蛋白质检测量可达1mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比lowry法要大的多。
(2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要5分钟左右。由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。因而完全不用像lowry法那样费时和严格地控制时间。
(3)干扰物质少。如干扰lowry法的k+、na+、mg2+离子、tris缓冲液、糖和蔗糖、甘油、巯基乙醇、edta等均不干扰此测定法。
此法的缺点是:
(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此bradford法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用 g—球蛋白为标准蛋白质,以减少这方面的偏差。
(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、 triton x-100、十二烷基硫酸钠(sds)和0.1n的naoh。(如同0.1n的酸干扰lowary法一样)。
(3)标准曲线也有轻微的非线性,因而不能用beer定律进行计算,而只能用标准曲线来测定未知蛋白质的浓度。
(二)试剂与器材
1. 试剂:
(1)标准蛋白质溶液,用 g—球蛋白或牛血清清蛋白(bsa),配制成1.0mg/ml和0.1mg/ml的标准蛋白质溶液。
(2)考马斯亮兰g—250染料试剂:称100mg考马斯亮兰g—250,溶于50ml 95%的乙醇后,再加入120ml 85%的磷酸,用水稀释至1升。
2. 器材:
(1)可见光分光光度计
(2)旋涡混合器
(3)试管16支
(三)操作方法
1. 标准方法
(1)取16支试管,1支作空白,3支留作未知样品,其余试管分为两组按表中顺序,分别加入样品、水和试剂,即用1.0mg/ml的标准蛋白质溶液给各试管分别加入:0、0.01、0.02、0.04、0.06、0.08、0.1ml,然后用无离子水补充到0.1ml。最后各试管中分别加入5.0ml考马斯亮兰g—250试剂,每加完一管,立即在旋涡混合器上混合(注意不要太剧烈,以免产生大量气泡而难于消除)。未知样品的加样量见下表中的第8、9、10管。
(2)加完试剂2-5分钟后,即可开始用比色皿,在分光光度计上测定各样品在595nm处的光吸收值a595,空白对照为第1号试管,即0.1mlh2o加5.0mlg—250试剂。
注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后立即用少量95%的乙醇荡洗,以洗去染色。塑料比色皿决不可用乙醇或丙酮长时间浸泡。
考马斯亮兰法实验表
管 号 1 2 3 4 5 6 7 8 9 10
标准蛋白质 0 0.01 0.02 0.04 0.06 0.08 0.10
(1.0mg/ml)
未知蛋白质 0.02 0.04 0.06
(约1.0mg/ml)
蒸馏水 0.1 0.09 0.08 0.06 0.04 0.02 0 0.08 0.06 0.04
考马斯亮蓝
g-250试剂 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
每管中的蛋
白质量(mg)
光吸收值
(a595)
(3)用标准蛋白质量(mg)为横座标,用吸光度值a595为纵座标,作图,即得到一条标准曲线。由此标准曲线,根据测出的未知样品的a595值,即可查出未知样品的蛋白质含量。
0.5mg牛血清蛋白/ml溶液的a595约为0.50。
2. 微量法
当样品中蛋白质浓度较稀时(10-100mg/ml),可将取样量(包括补加的水)加大到0.5ml或1.0ml, 空白对照则分别为0.5ml或1.0ml h2o, 考马斯亮蓝g-250试剂仍加5.0ml, 同时作相应的标准曲线,测定595nm的光吸收值。
0.05mg牛血清蛋白/ml溶液的a595约为0.29。
六、紫外吸收法
蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。
紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(nh4)2so4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。
此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。
此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因ph的改变而有变化,因此要注意溶液的ph值,测定样品时的ph要与测定标准曲线的ph相一致。
下面介绍四种紫外吸收法:
1. 280nm的光吸收法
因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。
测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值a280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,a280约为1.0左右。由此可立即计算出蛋白质的大致浓度。
许多蛋白质在一定浓度和一定波长下的光吸收值(a1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(a1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值a1%1cm,?称为百分吸收系数或比吸收系数。
蛋白质浓度 = (a280′10 )/ a1%1cm,280nm (mg/ml)
(q 1%浓度?10mg/ml)
例:牛血清清蛋白 : a1%1cm=6.3 (280nm)
溶菌酶: a1%1cm=22.8 (280nm)
若查不到待测蛋白质的a1%1cm值,则可选用一种与待测蛋白质的酪氨酸和色氨酸含量相近的蛋白质作为标准蛋白质,用标准曲线法进行测定。标准蛋白质溶液配制的浓度为1.0mg/ml。常用的标准蛋白质为牛血清清蛋白(bsa)。
标准曲线的测定:取6支试管,按下表编号并加入试剂:
管号 1 2 3 4 5 6
bsa(1.0mg/ml) 0 1.0 2.0 3.0 4.0 5.0
h2o 5.0 4.0 3.0 2.0 1.0 0
a280
用第1管为空白对照,各管溶液混匀后在紫外分光光度计上测定吸光度a280,以a280为纵座标,各管的蛋白质浓度或蛋白质量(mg)为横座标作图,标准曲线应为直线,利用此标准曲线,根据测出的未知样品的a280值,即可查出未知样品的蛋白质含量,也可以用2至6管a280值与相应的试管中的蛋白质浓度计算出该蛋白质的a1%1cm,280nm
2. 280nm和260nm的吸收差法
核酸对紫外光有很强的吸收,在280nm处的吸收比蛋白质强10倍(每克),但核酸在260nm处的吸收更强,其吸收高峰在260nm附近。核酸260nm处的消光系数是280nm处的2倍,而蛋白质则相反,280nm紫外吸收值大于260nm的吸收值。通常:
纯蛋白质的光吸收比值:a280/a260 ? 1.8
纯核酸的光吸收比值: a280/a260 ? 0.5
含有核酸的蛋白质溶液,可分别测定其a280和a260,由此吸收差值,用下面的经验公式,即可算出蛋白质的浓度。
蛋白质浓度(mg/ml)=1.45×a280-0.74×a260
此经验公式是通过一系列已知不同浓度比例的蛋白质(酵母烯醇化酶)和核酸(酵母核酸)的混合液所测定的数据来建立的。
3. 215nm与225nm的吸收差法
蛋白质的稀溶液由于含量低而不能使用280nm的光吸收测定时,可用215nm与225nm吸收值之差,通过标准曲线法来测定蛋白质稀溶液的浓度。
用已知浓度的标准蛋白质,配制成20~100 mg/ml的一系列5.0ml的蛋白质溶液,分别测定215nm和225nm的吸光度值,并计算出吸收差:
吸收差d= a215 -a225
以吸收差d为纵座标,蛋白质浓度为横座标,绘出标准曲线。再测出未知样品的吸收差,即可由标准曲线上查出未知样品的蛋白质浓度。
本方法在蛋白质浓度20~100mg/ml范围内,蛋白质浓度与吸光度成正比,nacl、(nh4)2so4以及0.1m磷酸、硼酸和tris等缓冲液,都无显著干扰作用,但是0.1n naoh, 0.1m乙酸、琥珀酸、邻苯二甲酸、巴比妥等缓冲液的215nm光吸收值较大,必须将其浓度降到0.005m以下才无显著影响。
4. 肽键测定法
蛋白质溶液在238nm处的光吸收的强弱,与肽键的多少成正比。因此可以用标准蛋白质溶液配制一系列50~500mg/ml已知浓度的5.0ml蛋白质溶液,测定238nm的光吸收值a238,以a238为纵座标, 蛋白质含量为横座标,绘制出标准曲线。未知样品的浓度即可由标准曲线求得。
进行蛋白质溶液的柱层析分离时,洗脱液也可以用238nm检测蛋白质的峰位。
本方法比280nm吸收法灵敏。但多种有机物,如醇、酮、醛、醚、有机酸、酰胺类和过氧化物等都有干扰作用。所以最好用无机盐,无机碱和水溶液进行测定。若含有有机溶剂,可先将样品蒸干,或用其他方法除去干扰物质,然后用水、稀酸和稀碱溶解后再作测定。
不过凯式定氮法最常用
E. 全自动凯氏定氮仪的主要特点
通过程序化设计和新获得专利的蒸汽发生器实现改变蒸馏时间和蒸汽流量。根据分专析样品的不同属,可选择快或慢的蒸馏速度。良好的自我保护装置,不关闭防护门,仪器不启动,安全可靠,不会对人员造成任何伤害。含四个RS232接口,可同时接电脑、打印机、键盘等外部设备,仪器内部程序可对各项连接设置进行编辑,而且还可编辑输出实验报告的各项参数,同时对操作语言也可进行选择。
全自动控制过程包括:样品蒸馏控制,加碱量控制,加硼酸量控制,蒸汽流量控制,蒸馏时间控制,残余物排出开关控制,自动报警控制,自动滴定开关控制
--------------------------------------------------------------------------------
F. 凯氏定氮法的仪器
定氮仪NAI-DTY是按照GB/T 19227-2008研制的新型定氮仪,它具有消解时间短、分析速度快、取样量少、操作步骤简单,以及测量结果准确等优点。
1. 凯氏定氮仪,采用微电脑进行过程控制,包括手动模式和自动模式,可根据您的需要自行设定和切换:
自动模式下:一次完成加碱、加硼酸、蒸馏,氨气吸收整个过程,加硼酸和加碱的体积以及蒸馏和吸收过程的时间都可以自行设定。
人工模式下:加硼,加碱 和蒸馏吸收三个过程可以单独人工操作,体积,时间自行控制,满足专业用户需求。
2.大屏幕点阵式液晶显示,全中文菜单,触摸式按钮,操作简捷方便。
3.自动式蒸馏控制、自动加水、自动水位控制、自动停水和水压过低报警。
4.各种安全保护:消化管安全门装置,蒸汽发生器缺水报警。
5.可存储操作程序。
6.仪器外壳采用特制喷塑钢板,工作区域采用ABS防腐板及不锈钢底板。
7.防化学试剂腐蚀和机械损坏表面,耐酸耐碱。
8.水位检测、低水位报警,自动断电。
9.标配里不含消化炉,消化炉为选配,建议选择C型消化炉。
G. 凯氏定氮法的操作
1、样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,6g硫酸钾及20毫升硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45度角斜支于有小孔的石棉网上,小火加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5小时。取下放冷,小心加20ml水,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、浓硫酸同一方法做试剂空白试验。但是此法比较危险,不易在实验室演示,大多数实验室有消煮仪一次可以进行多个(一次可以消煮16个样品)样品处理,并有通风橱进行通风,温度可以自己设定,更加安全和可操作性,因此逐步成为主要的凯氏定氮法的首选处理方法。
一般消解温度都设在240度及240度以上,如果想快速消解可以适当提高温度甚至可以用最大温度进行消解。
2、按图装好定氮装置,于水蒸气发生器内装水约2/3处加甲基红指示剂数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水。
3、向接收瓶内加入10ml 2%硼酸溶液及混合指示剂1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将10ml 40%氢氧化钠溶液倒入小玻璃杯,提起玻璃塞使其缓慢流入反应室,不能立即将玻璃盖塞紧,这样易使玻璃塞粘在进样口,应先用蒸馏水冲洗然后再盖,并加水于小玻璃杯以防漏气。夹紧螺旋夹,开始蒸馏,蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min。移动接收瓶,使冷凝管下端离开液皿,再蒸馏1min,然后用少量水冲洗冷凝管下端外部。取下接收瓶,以0.05N硫酸或0.05N盐酸标准溶液定至灰色或蓝紫色为终点。
同时吸取10.0ml试剂空白消化液按3操作。
H. 消化炉的用法
消化炉采用井式电加热方式,使样品在井式电加热炉内加热取得较佳热效应,提高消煮速度。下面我就给大家介绍消化炉的用法。
1、消化炉在蒸馏时翻滚剧烈,是水蒸气大量进入消化管液体翻滚,并非剧烈反应造成;而且仪器有超压保护装置,可以保持管路内部常压,避免危险。
2、消化炉的蒸馏水桶内要装蒸馏水或纯水,机器长期不用要将蒸馏器里水放掉。
3、消化炉开机没声音,如果机器电源开关内红灯亮,说明是定氮仪内保险管烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。
4、消化炉蒸锅不加热,不能产生蒸气, 原因:如果机器能正常加碱,不能加热出蒸气,判定加热丝可能烧坏了,可拿万用表量一下加热丝正负极,不通可确定加热丝损坏,换新加热丝。如果及其不能正常加碱,开机后又没有任何声音,判断是保险丝烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。
5、消化炉工作中不能加碱、加碱没有声音,原因:见车碱桶是否漏气,被气充鼓机器才能正常工作;仪器使用时间长,碱管内部会结晶,加液时流速降低,没有声音。
6、消化炉使用中发生消化管浸满水,是由于机器控制水位器导电性降低造成的,解决办法:打开水位器取出探针用砂纸打磨,去掉氧化层;在蒸馏水桶里加入3-5克实验室用氯化钠,摇匀溶解。
320智能消化炉
主要特点
HYP-320智能消化炉是由 上海纤检仪器有限公司研发 。
炉内温度连续可调,控温精度高,控温稳定。铝锭一体加热,温差小,样品消化均匀。控制面板与炉体散热隔离,减少炉体高温辐射对控制系统的影响。过热保护:温度超过500℃时自动切断加热电源并报警。限温保护:可设置温度上限,若实际温度超过上限温度,仪器将自动报警并切断加热电源,防止控温系统失灵后温度不断上升而报废样品。 自动6阶段升温:可设置连续6个阶段的温度和保温时间,仪器将自动按顺序完成。更适于牛奶等易产生泡沫的样品。毒气罩排气,可不用将仪器置于通风橱中使用。完善的周边附件配置,方便使用者称样,摆放等工作 。
技术参数
测定范围: 0.1mg~200mg氮; 测定数量:20个/批.; 速 度:45min/批; 消化管容量:250ml; 控温范围:室温~480℃; 控温精度:±1℃; 平均升温速度:30℃/min; ★控温方式:6阶段无触点控温; ★废气密封材料:聚四氟乙烯;加热方式:铝合金一体加热; ★安全功能:过温保护,限温保护; ★显示:2.5寸液晶屏,同时显示实际温度与保温时间,并倒计时,到时后自动停止加热并报警;电 源:220(V)±10% 50~60HZ; 额定功率: 2000W; 外形尺寸:405×435×475(mm);重 量: 27Kg;
二十孔消化炉
主要特点
HYP-1020消化炉
★消解装置采用数显无触点断开控温,设定温度与实际温度双重显示,加热体采用铝合金材料,具备工作室升温快,炉孔间温差小的优点;
技术参数
1. 测定范围: 0.1mg~200mg氮; 2. 测定数量:20个/批; 3. 速 度:45min/批; 4. 消化管容量:标配250ml;
5. 控温范围:室温~500℃ 6. 控温精度:±1℃; 7. 升温速度:30℃/min; 8. 控温方式:采用数显无触点断开控温; 9. ★废气密封材料:聚四氟乙烯; 10. 加热方式:铝合金一体加热; 11. 电 源:220(V)±10% 50~60HZ;额定功率: 2800W; 外形尺寸:392×360×485(mm)重量25KG
4孔恒温消化炉
消化炉介绍
HYP 4孔恒温消化炉
按经典凯氏定氮法为原理,广泛应用于粮食、食品、饲料、土壤、肥料、水、沉淀物、化学品乳制品、酿造、制糖、药物、煤炭、橡胶等物质的消解,具有测试精确、安全可靠、操作简便等特点。
技术参数
测定范围: 0.1mg~200mg氮;测定数量:4个/批; 速 度:45min/批 ;消化管容量:标配300ml;
废气密封材料:聚四氟乙烯升温速度:30℃/min;电 源:220V±10% 50~60HZ;
额定功率:1000W; 外形尺寸:430×310×485(mm);重 量: 17Kg;
8孔消化炉
主要特点
HYP-1008八孔消化炉
1、★采用数显无触点断开控温,设定温度与实际温度双重显示,加热体采用八个陶瓷炉芯,双排开关,单排使用;
2、★废气密封采用聚四氟乙烯材料加工制成,耐酸、耐碱、耐高温,保证操作安全;
3、消解时在不需通风橱的条件下消化管内溢出的SO2等有害气体,全部通过毒气罩,经过抽气泵溶于水中排入下水道,避免了废气对环境的污染,确保了操作人员的人身安全。
技术参数
测定范围: 0.1mg~200mg氮; 测定数量:8个/批; 速 度:45min/批 ;消化管容量:标配300ml;
控温范围:室温~500℃ 控温精度:±1℃; 升温速度:30℃/min;控温方式:采用数显无触点断开控温;
★废气密封材料:聚四氟乙烯;加热方式:陶瓷炉芯加热;电 源:220(V)±10% 50~60HZ;
I. 凯氏定氮仪法公式里面的消化液是指
凯氏定氮法只能检测蛋白质中氮含量,不能检测氨基酸的含量。其中蛋白质含量也只是称为粗蛋白质的含量,只是用氮的含量乘以6.25(系数)得出,不是真正的蛋白质的含量。
凯氏定氮法测氮的方法如下:
1、称取0.5~1g试样(含氮量5~80mg)准确至0.0002g,无损失地放入凯氏烧瓶中,加入硫酸铜0.9g,无水硫酸钾(或硫酸钠)15g,与试样混合均匀,再加硫酸25ml和2粒玻璃珠,在消煮炉士小心加热,待样品焦化,泡沫消失,再加强火力(360~410℃)直至溶液澄清后,再加热消化15min。
2、氨的蒸馏
(1)常量直接茂馏法 将上述的试样消煮液冷却,加蒸馏水200ml,摇匀,冷却。沿瓶壁小心加入40%氢氧化钠溶液100ml,立即与蒸馏装置相连.蒸馏装置冷凝管的末端应浸入50ml硼酸吸收液lcm。加混合指示剂2滴,轻摇凯氏烧瓶,使溶液混匀,加热蒸馏,直至馏出液体积约150ml。先将吸收液取下,再停止加热。
(2)半微量水蒸汽蒸馏法 上述试样的消煮液冷却,加蒸馏水20m1转入100ml容量瓶,冷却后用水稀释至刻度,摇匀,为试样分解液。取2%硼酸溶液20ml,加混合指示剂2滴,使半微量蕉馏装置的冷凝管末端浸入此溶液;蒸馏装置的蒸汽发生器的水中应加甲基红指示剂数滴,硫酸数滴,且保持此液为橙红色,否则应补加少许硫酸。准确移取试样分解液10~20ml注入蒸馏装置的反应室中,用少量蒸馏水冲洗进样入口,塞好入口玻璃塞,再加10ml40%氢氧化钠溶液,小心提起玻璃塞使之流入反应室,将玻璃塞塞好,并在入口处加水封密好,防止漏气,蒸馏4min,使冷凝管末端离开吸收液面,用蒸馏水洗冷凝管末端,洗液均流入吸收液。
3、滴定 用硼酸吸收氨后,立即用0.05mol
J. 凯氏定氮法是什么
凯氏定氮法
蛋白质测定的国标规定方法——凯氏定氮法介绍
【GB/T 5009.5—1985】
食品中蛋白质的测定方法
本标准适用于各类食品中蛋白质的测定.
1 原理
蛋白质是含氮的有机化合物.食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵.然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量.
2 试剂
所有试剂均用不含氨的蒸馏水配制.
2.1 硫酸铜.
2.2 硫酸钾.
2.3 硫酸.
2.4 2%硼酸溶液.
2.5 混合指示液:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合.也可用2份0.1%甲基红乙醇溶液与1份0.1%次甲基蓝乙醇溶液临用时混合.
2.6 40%氢氧化钠溶液.
2.7 0.05N硫酸标准溶液或0.05N盐酸标准溶液.
3 仪器
定氮蒸馏装置:如图所示.
(图略)
4 操作方法
4.1 样品处理:精密称取0.2.0g固体样品或2~5g半固体样品或吸取10~20ml液体样品(约相当氮30~40mg),移入干燥的 100ml或500ml定氮瓶中,加入0.2g硫酸铜,3g硫酸钾及20ml硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45°角斜支于有小孔的石棉网上.小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5h.取下放冷,小心加20ml 水.放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用.取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验.
4.2 按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水.
4.3 向接收瓶内加入10ml 2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化稀释液由小玻杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻杯的棒状玻塞.将10ml 40%氢氧化钠溶液倒入小玻杯,提起玻塞使其缓缓流入反应室,立即将玻塞盖紧,并加水于小玻杯以防漏气.夹紧螺旋夹,开始蒸馏.蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min.移动接受瓶,使冷凝管下端离开液面,再蒸馏1min.然后用少量水冲洗冷凝管下端外部.取下接收瓶,以0.05N硫酸或0.05N盐酸标准溶液滴定至灰色或蓝紫色为终点.
同时吸取10.0ml试剂空白消化液按4.3操作.
4.4 计算
式中:X——样品中蛋白质的含量,%;
V1——样品消耗硫酸或盐酸标准液的体积,ml;
V2——试剂空白消耗硫酸或盐酸标准液的体积,ml;
N——硫酸或盐酸标准溶液的当量浓度;
0.014——1N硫酸或盐酸标准溶液1ml相当于氮克数;
m——样品的质量(体积),g(ml);
F——氮换算为蛋白质的系数.蛋白质中的氮含量一般为15~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.70,玉米、高粱为6.24,花生为5.46,米为5.95,大豆及其制品为5.71,肉与肉制品为6.25,大麦、小米、燕麦、裸麦为5.83,芝麻、向日葵为 5.30.
附加说明:
本标准由全国卫生标准技术委员会食品卫生标准分委员会提出,由卫生部食品卫生监督检验所归口.
本标准由卫生部食品卫生监督检验所负责起草.