A. 液压传动的概念是什么
一、液压传动定义
液力传动是以油作为介质传递发动机的动力,代替传统的离合器和变速箱。具体来说就是:发动机的转动通过一个类似水泵的装置驱使传动油运动,传动油又驱使一个有点类似于水轮机一样的装置转动,这样就将发动机的动力传送到传动轴上。这种传动方式的优点是平稳,可以很容易地实现变速。但因为液体运动会消耗能量,所以液力传动的油耗比机械传动高。
二、使用液压传动的优点
1、液压传动装置和其它类型的传动装置相比,在同等功率条件下体积小、重量轻,因此惯性小、动作灵敏,可实现频繁启动和换向。
2、容易实现无级调速,调速范围较大。
3、容易实现过载保护,一般装有安全阀便可防止过载。运转平稳,容易吸收冲击和振动。
4、液压传动能在各种方位传动,容易实现往复传动。由于其体积小、传递的功率大,可在较小的空间内传递复杂的运动形式。这些特点使液压传动在组合机床和自动线中应用十分普遍。
5、操纵简单,便于实现自动化,特别是和电气控制系统组成电液复合系统时上述优点更明显。
6、液压元件易于标准化、系列化、通用化,便于推广使用。
三、使用液压传动的缺点
1、由于工作液体不可避免会有漏损、油液具有微小的可压缩性、管路会产生弹性变形,因此液压传动不宜用于传动要求严格的传动系统中。
2、要求制造的工艺水平较高。使用维护也要有较高的技术水平。
3、当油温和载荷变化较大时不易保持负载运动速度的稳定性。油液的污染对液压系统的性能影响非常显著。
4、油液在管路中流动会产生压力损失,当管路较长时压力损失较大、传功效率降低.因此液压传动不宜用于远距离传动。
B. 液压传动的优缺点 液压传动了解一下
1、液压传动的优点:液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点;液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速;在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统;液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
2、液压传动的缺点 :油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比;对油温的变化比较敏感,不宜在很高或很低的温度条件下工作;能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
3、液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。
C. 液力传动装置有哪些类型
=(1)机械传动
机械传动是通过齿轮、皮带、链条、钢丝绳、轴和轴承等机械零件传递能量的。它具有传动准确可靠、制造简单、设计及工艺都比较成熟、受负荷及温度变化的影响小等优点,但与其他传动形式比较,有结构复杂笨重、远距离操纵困难、安装位置自由度小等缺点。
(2)电力传动
电力传动在有交流电源的场合得到了广泛的应用,但交流电动机若实现无级调速需要有变频调速设备,而直流电动机需要直流电源,其无级调速需要有可控硅调速设备,因而应用范围受到限制。电力传动在大功率及低速大转矩的场合普及使用尚有一段距离。在工程机械的应用上,由于电源限制,结构笨重,无法进行频繁的启动、制动、换向等原因,很少单独采用电力传动。
(3)气体传动
气体传动是以压缩空气为工作介质的,通过调节供气量,很容易实现无级调速,而且结构简单、操作方便、高压空气流动过程中压力损失少,同时空气从大气中取得,无供应困难,排气及漏气全部回到大气中去,无污染环境的弊病,对环境的适应性强。气体传动的致命弱点是由于空气的可压缩性致使无法获得稳定的运动,因此,一般只用于那些对运动均匀性无关紧要的地方,如气锤、风镐等。此外为了减少空气的泄漏及安全原因,气体传动系统的工作压力一般不超过0.7~0.8MPa,因而气动元件结构尺寸大,不宜用于大功率传动。在工程机械上气动元件多用于操纵系统,如制动器、离合器的操纵等。
(4)液体传动
以液体为工作介质,传递能量和进行控制的叫液体传动,它包括液力传动、液黏传动和液压传动。
1)液力传动
它实际上是一组离心泵一涡轮机系统,发动机带动离心泵旋转,离心泵从液槽吸入液体并带动液体旋转,最后将液体以一定的速度排入导管。这样,离心泵便把发动机的机械能变成了液体的动能。从泵排出的高速液体经导管喷到涡轮机的叶片上,使涡轮转动,从而变成涡轮轴的机械能。这种只利用液体动能的传动叫液力传动。现代液力传动装置可以看成是由上述离心泵一涡轮机组演化而来。
液力传动多在工程机械中作为机械传动的一个环节,组成液力机械传动而被广泛应用着,它具有自动无级变速的特点,无论机械遇到怎样大的阻力都不会使发动机熄火,但由于液力机械传动的效率比较低,一般不作为一个独立完整的传动系统被应用。
2)液黏传动
它是以黏性液体为工作介质,依靠主、从动摩擦片间液体的黏性来传递动力并调节转速与力矩的一种传动方式。液黏传动分为两大类,一类是运行中油膜厚度不变的液黏传动,如硅油风扇离合器;另一类是运行中油膜厚度可变的液黏传动,如液黏调速离合器、液黏制动器、液黏测功器、液黏联轴器、液黏调速装置等。
3)液压传动
它是利用密闭工作容积内液体压力能的传动。液压千斤顶就是一个简单的液压传动的实例。
液压千斤顶的小油缸l、大油缸2、油箱6以及它们之间的连接通道构成一个密闭的容器,里面充满着液压油。在开关5关闭的情况下,当提起手柄时,小油缸1的柱塞上移使其工作容积增大形成部分真空,油箱6里的油便在大气压作用下通过滤网7和单向阀3进入小油缸;压下手柄时,小油缸的柱塞下移,挤压其下腔的油液,这部分压力油便顶开单向阀4进入大油缸2,推动大柱塞从而顶起重物。再提起手柄时,大油缸内的压力油将力图倒流入小油缸,此时单向阀4自动关闭,使油不致倒流,这就保证了重物不致自动落下;压下手柄时,单向阀3自动关闭,使液压油不致倒流入油箱,而只能进入大油缸顶起重物。这样,当手柄被反复提起和压下时,小油缸不断交替进行着吸油和排油过程,压力油不断进入大油缸,将重物一点点地顶起。当需放下重物时,打开开关5,大油缸的柱塞便在重物作用下下移,将大油缸中的油液挤回油箱6。可见,液压千斤顶工作需有两个条件:一是处于密闭容器内的液体由于大小油缸工作容积的变化而能够流动,二是这些液体具有压力。能流动并具有一定压力的液体具有压力能。液压千斤顶就是利用油液的压力能将手柄上的力和位移转变为顶起重物的力和位移。
D. 液压与气压传动系统主要由什么组成
液压传动系统由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油(工作介质)。
1、动力元件
即液压泵,其职能是将原动机的机械能转换为液体的压力动能(表现为压力、流量),其作用是为液压系统提供压力油,是系统的动力源。
2、执行元件
指液压缸或液压马达,其职能是将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可完成回转运动。
3、控制元件
指各种阀利用这些元件可以控制和调节液压系统中液体的压力、流量和方向等,以保证执行元件能按照人们预期的要求进行工作。
4、辅助元件
包括油箱、滤油器、管路及接头、冷却器、压力表等。它们的作用是提供必要的条件使系统正常工作并便于监测控制。
5、工作介质
即传动液体,通常称液压油。液压系统就是通过工作介质实现运动和动力传递的,另外液压油还可以对液压元件中相互运动的零件起润滑作用。
液压传动优点:
1、液压传动可以输出较大的推力或大转矩,可实现低速大吨位的运动,这是其它传动方式所不能比的突出优点。
2、液压传动能很方便地实现大范围的无级调速(调速范围达2000:1),调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、 液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
气压传动优点:
1、工作介质是空气,来源于大自然中的空气,取之不尽,用之不竭,使用后直接排入大气而无污染,不需要设置专门的回气装置。
2、空气的粘度很小,所以流动时管道压力损失较小,节能,高效,适用于集中供应和远距离输送。
3、气动动作迅速,反应快,适合于高速往复运动;维护简单,调节方便,特别适合于轻型设备的控制。
4、工作环境适应性好,防火防爆。特别适合在易燃、易爆、潮湿、多尘、强磁、振动、辐射等恶劣条件下工作,外泄漏不污染环境,在食品、轻工、纺织、印刷、精密检测等环境中采用最适宜。
E. 液压传动和机械传动有什么区别、以及优点和缺点
一)液压传动的工作原理:
液压传动时候依靠液体介质的静压力来传递能量的液体传动。它依靠密闭容积的变化传递运动,依靠液体内部的压力(由外界负载所引起)传递运动。液压装置本质上是一种能量转换装置,它先将机械能转换还成为便于传输的液压能,随后又将液压能转换为机械能做功。对教材中的例子要理解。
(二)液压传动系统的组成
液压传动系统有以下四个主要部分组成:
动力部分,执行部分,控制部分,辅助部分
1. 动力部分:把机械能换成油液压力能,常见的是液压泵。
2. 执行部分:把液体的压力能转换成机械能输出的装置,如作直线运动的液压缸或作回转运动的马达。
3. 控制部分:对系统中流体压力流量和流动方向进行控制或调节的装置,如溢流阀、流量控制阀、换向阀等。
4. 辅助部分;保证液压传动系统正常工作所需的上述三种以外的装置,如油箱、过滤器、油管和管接头等。
要掌握以下内容,这些内容是客观题的考点:
只要控制油液的压力、流量和流动方向,便可控制液压设备动作所要求的推力(转矩)、速度(转速)和方向。
液压缸的工作压力取决于负载。
溢流阀可以控制油泵打出油液的压力,溢流阀同时还起着把油泵输出的多余油液排回油箱的作用。
(三)液压传动的优缺点:
优点:
1. 在输出同等功率的条件下体积和重量可减小很多,布局安装有很大的灵活性,能构成用其它方法难以组成的复杂系统。
2. 传递运动均匀平稳,易于实现快速启动、制动和频繁的换向,可以在运行中实现大范围的无级变速。
3. 操作控制方便、省力,易于实现自动控制、过载保护。
液压元件易于实现系列化、标准化、通用化。
缺点:
1. 不能严格保证定比传动。
2. 对温度比较敏感,在高温和低温条件下采用液压传动有一定的困难。
3. 液压元件制造精度高,不易诊断。
机械传动有多种形式,主要可分为两类:①靠机件间的摩擦力传递动力和运动的摩擦传动,包括带传动、绳传动和摩擦轮传动等。摩擦传动容易实现无级变速,大都能适应轴间距较大的传动场合,过载打滑还能起到缓冲和保护传动装置的作用,但这种传动一般不能用于大功率的场合,也不能保证准确的传动比。②靠主动件与从动件啮合或借助中间件啮合传递动力或运动的啮合传动,包括齿轮传动、链传动、螺旋传动和谐波传动等。啮合传动能够用于大功率的场合,传动比准确,但一般要求较高的制造精度和安装精度。 机械传动按传力方式分,可分为 : 1 摩擦传动。 2 链条传动。 3 齿轮传动。 4 皮带传动。 5 涡轮涡杆传动。 6 棘轮传动。 7 曲轴连杆传动 8 气动传动。 9 液压传动(液压刨) 10 万向节传动 11 钢丝索传动(电梯中应用最广) 12 联轴器传动 13 花键传动。 1、带传动的特点 由于带富有弹性,并靠摩擦力进行传动,因此它具有结构简单,传动平稳、噪声小,能缓冲吸振,过载时带会在带轮上打滑,对其他零件起过载保护作用,适用于中心距较大的传动等优点。 但带传动也有不少缺点,主要有:不能保证准确的传动比,传动效率低(约为0.90~0.94),带的使用寿命短,不宜在高温、易燃以及有油和水的场合使用。 2,齿轮传动的基本特点 1、齿轮传递的功率和速度范围很大,功率可从很小到数十万千瓦,圆周速度可从很小到每秒一百多米以上。齿轮尺寸可从小于1mm到大于10m。 2、齿轮传动属于啮合传动,齿轮齿廓为特定曲线,瞬时传动比恒定,且传动平稳、可靠。 3、齿轮传动效率高,使用寿命长。 4、齿轮种类繁多,可以满足各种传动形式的需要。 5、齿轮的制造和安装的精度要求较高。4. 链传动的特点 1)能保证较精确的传动比(和皮带传动相比较) 2)可以在两轴中心距较远的情况下传递动力(与齿轮传动相比) 3)只能用于平行轴间传动 4)链条磨损后,链节变长,容易产生脱链现象。5. 蜗杆传动的特点 单级传动就能获得很大的传动比,结构紧凑,传动平稳,无噪声,但传动效率低。6. 螺旋传动的特点:传动精度高、工作平稳无噪音,易于自锁,能传递较大的动力等特点。
F. 一般的液压传动系统由哪几部分组成,基本工作原理是什么
液压传动系统由液压动力元件(液压油泵)、液压控制元件(各种液压阀)、液压执行元件(液压缸和液压马达等)、液压辅件(管道和蓄能器等)和液压油组成。
基本工作原理:
电动机带动液压泵从油箱吸油,液压泵把电动机的机械能转换为液体的压力能。液压介质通过管道经节流阀和换向和阀进入液压缸左腔,推动活塞带动工作台右移,液压缸右腔排出的液压介质经换向阀流回油箱。换向阀换向之后液压介质进入液压缸右腔,使活塞左移,推动工作台反向移动。
1、液压泵是将原动机的机械能转换为液体的压力动能(表现为压力、流量),为液压系统提供压力油,是系统的动力来源。
2、液压缸或液压马达将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可实现回转运动。
3、各种液压阀可以控制和调节液压系统中液体的压力、流量和方向等,保证执行元件能按照要求进行工作。
4、液压辅件提供必要的条件使系统正常工作并便于监测控制。
5、液压油,液压系统就是通过液压油实现运动和动力传递的,液压油还可以对液压元件中相互运动的零件起润滑作用。
(6)海口液压传动装置扩展阅读:
液压传动系统的优点
1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动。
2、液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3、在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
G. 液压传动具体有哪些用途
与其它传动方式相比,液压传动具有以下优缺点。
一、液压传动的优点
1)
液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2)
液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3)
在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4)
液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5)
操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6)
液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7)
液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点
1)
油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2)
对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3)
能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4)
系统出现故障时,不易查找原因。
综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
H. 液压式制动传动装置
液压制动传动装置类似于离合器液压控制装置。它以专用油为介质,将驾驶员施加在制动踏板上的踏板力放大后传递给车轮制动器,再将液压转化为制动蹄片开口的机械推力,使车轮制动器产生制动效果。它具有结构简单、制动滞后时间短、无摩擦部件、制动稳定性好、对各种车轮制动器适应性强等优点,因此被广泛应用于中小型汽车。
液压传动装置的主要部件如下
1.制动主缸
主缸可以将制动踏板输入的机械力转化为液压。大部分制动缸由铸铁或合金制成,其中一些与储油室成一体,形成一个整体的主缸,另一些相互分离,然后通过油管连接,这是一个分离的主缸。分体式总泵的储油室多采用透明塑料成型,部分配有防溅浮子或低液位报警灯开关。根据工作室的数量,主缸可以分为单室和双腔。单线液压制动传动装置采用单室主缸,现已淘汰。双腔制动总泵应用广泛。下面简单介绍一下双腔制动总泵。
1)结构组成
双腔制动总泵一般是串联的,如图17.5所示。主要由主缸、前活塞及回位弹簧、前活塞弹簧座、前活塞杯、限位螺栓、后活塞及杯等组成。主缸体中的工作面精度高、光滑。缸体上有进油孔和补偿孔,有两个活塞。后活塞9为主活塞,右端凹槽与推杆之间有一定间隙。前活塞6位于气缸中部,将主缸内腔分为前腔B和后腔A两个工作腔,两个工作腔分别与前后液压管路连接,前腔B产生的液压通过出油口11和管路与后轮制动器连接,后腔A产生的液压通过出油口10和管路与前轮制动器连接。
2)工作条件
当踩下制动踏板时,推杆推动主活塞9向左移动,直到杯8盖住补偿孔,后腔A内的液压上升,建立起一定的液压。一方面,机油通过后机油出口流入前制动管路,另一方面,机油推动前活塞6向左移动。在后腔A中的液压和弹簧的作用下,前活塞向左移动,前腔B中的压力也随之增加。油通过空腔内的出油口进入后制动管路,这样两条制动管路制动汽车车轮制动器。
当持续踩下制动踏板时,前腔B和后腔A中的液压会继续增大,从而加强前后轮制动器的制动。
当制动器松开时,活塞在弹簧的作用下复位,高压油从制动管路流回制动总泵。如果活塞复位过快,工作室的容积会迅速增加,油压会迅速下降。由于管路阻力的影响,制动管路中的油将无法充分回流到工作腔,从而在工作腔内形成一定的真空度,这样储液腔内的油将通过进油口和活塞上的轴向孔将垫片和杯体推入工作腔内。当活塞完全复位时,补偿孔打开,制动管路中回流到工作室的多余油通过I补偿孔流回储液室。
如果连接到前室B的制动管路损坏漏油,踩下制动踏板时,只有后室A能积聚一定的液压,但前室B中没有液压,此时,在液压压差的作用下,前活塞6迅速被推向底部,直到接触到油缸的顶部。前活塞被推到底部后,后室A的液压可能会上升到制动所需的值。
如果连接到后室A的制动管路损坏漏油,当踩下制动踏板时,起初只有主活塞9向前移动,但前活塞6不能被推动,因此后室A中的液压无法建立。然而,当主活塞的顶部接触前活塞6时,推杆的力可以推动前活塞,从而可以在前室中建立液压。
可以看出,在双管路液压系统中,当任何一条管路损坏漏油时,另一条仍能工作,只是增加了所需的管路。
上海 桑塔纳 ( 查成交价 | 车型详解 )使用的制动总泵也是串联双腔制动总泵。主缸用两个螺母连接在真空助力器前面,主缸上有两个橡胶头与储液罐连接。制动液通过进油孔供应至前后工作室。主缸前后有两个对称的M10 X1 出油螺孔,相互成100度角,通过制动管路与四轮制动器的轮缸交叉布置连接。
当踏板松开时,活塞和推杆分别在回位弹簧的作用下回到初始位置。由于回程速度快,在制动管路中很容易生成 tru e空。因此,前活塞和后活塞的头部有三个l.4毫米的小孔,相互间隔120度,制动液可以通过小孔流回两个工作室,从而减少负压。
为了保证主缸活塞完全回位,推杆与制动主缸活塞之间有一定的间隙,这种间隙体现在制动踏板的行程上,称为制动踏板自由行程。
制动踏板的自由行程对制动效果和行车安全有很大影响。如果自由行程过大,制动踏板有效行程减小,制动过晚,导致制动不良或失效。如果自由行程过小或过小,刹车不能及时完全释放,造成刹车拖滞,加速刹车磨损,影响动力传递效率,增加汽车油耗。
制动踏板的自由行程可以通过推杆的长度来调节。
2.制动轮缸
制动轮缸将来自主缸的液压转换成机械推力,以打开制动蹄。由于车轮制动器的结构不同,轮缸的数量和结构也不同,通常分为双活塞制动轮缸和单活塞制动轮缸。
1)双活塞制动轮缸
双活塞制动轮缸的结构如图17所示。6.缸体用螺栓固定在制动底板上。气缸里有两个塞子。具有相对切削刃的密封杯分别被弹簧压靠在两个活塞上,以保持杯之间的进油孔畅通。防护罩用于防止灰尘和湿气进入气缸。2)单活塞制动轮缸
单活塞制动轮缸的结构如图17所示。7.顶块压在单活塞制动轮缸活塞外端凸台孔内的制动蹄上端。排气阀安装在缸体上方,用于排出气体。为了减小轴向尺寸,安装在活塞导向面上的橡胶圈用于密封液腔,进油间隙由活塞端面的凸台保持。
单活塞制动轮缸多用于单向助力平衡轮制动器,目前趋于淘汰。
单活塞制动轮缸的活塞直径大于主缸的直径,并且与前后轴上的实际负载分布成比例。这样,作用在前制动器和后轮轴制动器上的制动力应该是踏板力和制动踏板杠杆与活塞直径之比。3.制动管路
制动管路用于输送和承受一定压力的制动液。制动管路有两种:金属管和橡胶管。由于主缸和轮缸的相对位置经常变化,除了金属管外,有些制动管有相对运动的截面,用高强度橡胶管连接。
4.制动液
要求制动液具有冰点低、高温老化低、流动性好的特点。制动液对普通金属和橡胶有腐蚀性,制动系统中所有与制动液接触的零件都由耐腐蚀材料制成。因此,为了保证可靠的制动性能,在修理和更换相关零件时,必须使用原装零件或认证零件。桑塔纳用的制动液是D0T4。 @2019
I. 传动装置有哪些
常用的传动装置有机械传动、液力传动、液压传动等。传动装置具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。机械传动:机械传动系统一般由离合器、变速器、万向传动、主减速器、差速器和半轴组成。液压传动:依靠液体介质在驱动元件和从动元件之间循环流动的过程中产生动能。液压传动装置有两种:液力耦合器和液力变矩器。液力偶合器能传递扭矩,但不能改变扭矩。液力变矩器除了具有液力偶合器的所有功能外,还可以实现无级变速。液压传动:它是通过液体传动介质的静压能的变化来传递能量的。液压传动具有布置灵活的优点,但传动效率低,成本高,寿命和可靠性不理想。目前仅用于少数特种车辆。
J. 液压传动的特点是什么
1液压传动的优点
液压传动与机械传动、电气传动、气压传动等相比较,具有以下优点:
(1)在同等功率的情况下,液压传动装置的体积小、重量轻、结构紧凑,如液压马达的重量只有同等功率电动机重量的10%~20%。当液压传动采用高压时,则更容易获得很大的力或力矩。
(2)液压系统执行机构的运动比较平稳,能在低速下稳定运动。当负载变化时,其运动速度也较稳定。同时因其惯性小、反应快,所以易于实现快速运动、制动和频繁地换向。在往复回转运动时换向可达每分钟500次,往复直线运动时换向可达每分钟1000次。
(3)液压传动可在大范围内实现无级调速,调速比一般可达100以上,最大可达2000以上,并且可在液压装置运行的过程中进行调速。
(4)液压传动容易实现自动化,因为它是对液体的压力、流量和流动方向进行控制或调节,操纵很方便。当液压控制和电气控制或气动控制结合使用时,能实现较复杂的顺序动作和远程控制。
(5)液压装置易于实现过载保护且液压件能自行润滑,因此使用寿命较长。
(6)由于液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。
2液压传动的缺点
(1)液压传动不能保证严格的传动比,原因是由液压油的可压缩性和泄漏等因素所造成的。
(2)液压传动在工作过程中常有较多的能量损失(摩擦损失、泄漏损失等)。
(3)液压传动对油温的变化比较敏感,它的工作稳定性容易受到温度变化的影响,因此不宜在温度变化很大的环境中工作。
(4)为了减少泄漏,液压元件在制造精度上的要求比较高,因此其造价较高,且对油液的污染比较敏感。
(5)液压传动出现故障的原因较复杂,而且查找困难。