Ⅰ 换热器课程设计的不足与改进怎么写
不足:
1、缺乏对换热器的系统研究,没有深入了解换热器的结构、原理、性能及其应用,缺乏对换热器的系统研究。
2、缺乏对换热器的实验研究,没有对换热器的实验研究,缺乏对换热器的实验研究。
3、缺乏对换热器的设计研究,没有对换热器的设计研究,缺乏对换热器的设计研究。
改进:
1、加强对换热器的系统研究,深入了解换热器的结构、原理、性能及其应用,加强对换热器的系统研究。
2、加强对换热器的实验研究,研究不同类型换热器的性能,加强对换热器的实验研究。
3、加强对换热器的设计研究,研究不同类型换热器的设计方法,加强对换热器的设计研究。
Ⅱ 气液两相流传热实验冷热流体分别是什么
气液两相流传热实验冷热流体分别是冷空气和热空气。气液两相流传热实验目的是通过测定换热器冷、热流体的流量,测定换热器的进、出口温度,熟悉换热器性能的测试方法,冷热流体时冷空气和热空气。
Ⅲ 传热实验装置,换热器水平放置有什么优点
可以依靠重力多次进行换热,要是竖直放置则只能依靠重力进行一次
Ⅳ 换热器性能测试中的热流体放热量的m怎么求
在换热器冷热流体传热的过程当中,我们把热流体放出的热量(Q1)或冷流体吸收的热量(Q2),称为热负荷。热负荷是由生产工艺决定的,理论上Q1=Q2。
在进行热负荷计算当中,需要用到如下几个参数:
1、比热
工业传热过程中,常用到的是定压比热。其概念是在压力一定的情况下,每单位重量(Kg)物料温度变化1℃所需要吸收或放出的热量,通常使用符号C来表示,单位:千卡/千克·℃。比热是一个随温度变化而变化的物理量。
2、显热
显热是指物料在不发生相变以及化学变化的情况下,温度升高或降低而吸收或放出的热量,称为显热。
3、潜热
物料在一定温度条件下发生相变时,所吸收或放出的热量称为潜热。比如水在1个大气压下,温度加热至100℃的水后,再变为水蒸气而吸收的热量,叫做潜热。
4、饱和蒸汽
处于动态平衡的蒸汽称为饱和蒸汽,其对应的气压称为饱和蒸气压。饱和蒸气压随蒸汽的温度升高而增加。
5、过热蒸汽
一定的温度下,液体全部汽化为蒸汽,此蒸汽称为干饱和蒸汽。在特定压力条件下继续对该饱和蒸汽加热,则蒸汽温度继续上升,即变为过热蒸汽。如在1个大气压条件下,100℃的水蒸气为饱和蒸汽,而同样压力条件下,130℃的水蒸气则是过热蒸汽。
四川迪瑞机电设备有限公司,主要设计及制造浮动盘管(半)容积式换热器、列管式换热器、U型管管壳式换热器、板式换热器、换热机组、储水罐以及冷凝水回收器等给水系统设备的厂家,拥有先进的X射线探伤机、磁粉探伤机、着色检测机等检测设备,为您的疑难与困惑提供细致的解答,欢迎来电来函咨询。
Ⅳ 传热实验中冷流体的比热容如何得到
实验四传热实验一、实验目的1.通过对空气一水蒸气简单套管换热器的实验研究,掌握对流传热系数勺的测左方法,加深对苴 概念和影响因素的理解。并应用线性回归分析方法,确左关联式严丹如中常数A、川的值。2.通过对管程内部插有螺旋线圈的空气一水蒸气强化套管换热器的实验研究,测左其准数关联式 NzBR严中常数B、加的值和强化比Ni叫、了解强化传热的基本理论和基本方式。二.实验内容与要求
实验4-1 实验4-2
实 脸 内 容 与 要 求 1测泄5~6个不同流速下 简单套管换热器的对流传 热系数血。2对勺的实验数据进行 线性回归,求关联式 NxAR^P"中常数 A. m 的值。 1测左5~6个不同流速下 强化套管换热器的对流传 热系数%。2对4的实验数据进行 线性回归,求关联式 Nu=BRem中常数B、加的值。3同一流量下,按实验一 所得准数关联式求得Me, 计算传热强化比Nu/Nu0o
三、实验原理实验4-1普通套管换热器传热系数及其准数关联式的测定1.对流传热系数%的测定对流传热系数勺可以根据牛顿冷却疋律,用实验来测泄。因为所以传热管内的对流 传热系数勺a热冷流体间的总传热系数K = Q /(△. xsj (W/m2 • °C )(4-1)式中:勺一管内流体对流传热系数,W/(m2-°C):©—管内传热速率,W:SL管内换热面积,n*:△g—对数平均温差,°C。对数平均温差由下式确立:
式中:切,G—冷流体的入口、出口温度,0
心一壁而平均温度,°C;因为换热器内管为紫铜管,英导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用h来表示,由于管外使用蒸汽,近似等于热流体的平均温度。管内换热面积:Sj 二码厶 (4-3)式中:山一内管管内径,m;乙一传热管测量段的实际长度,m。由热量衡算式:Q 二 (4-4)其中质量流量由下式求得:叱=匕空 (4-5)3600式中:冷流体在套管内的平均体积流M. m5/h:cpi—冷流体的进压比热,kJ / (kg・°C):PL冷流体的密度,kg/m3o切和。•可根据泄性温度查得,tm = 斗乞为冷流体进岀口平均温度。⑺,址,治 匕可采取2一定的测量手段得到。2.对流传热系数准数关联式的实验确左流体在管内作强制湍流,被加热状态,准数关联式的形式为Nut = ARe," Pi;". (4-6)贝中:眄=叫 込,P「=沁A “ ’ A物性数据入、切、°、闪可根据左性温度乙查得。经过讣算可知,对于管内彼加热的空气,普兰特准数 p八变化不大,可以认为是常数,则关联式的形式简化为:Nui =ARe/MPi;0-4 (4-7)这样通过实验确左不同流呈:下的Re,与Ng ,然后用线性回归方法确定A和加的值。实验4-2、强化套管换热器传热系数、准数关联式及强化比的测定强化传热又被学术界称为第二代传热技术,它能减小初设讣的传热面积,以减小换热器的体积和重 量:提高现有换热器的换热能力:使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换 热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装豊是采用在换热器内管 插入螺旋线圈的方法来强化传热的。
螺旋线圈的结构图如图3-1所示,螺旋线圈由 直径3mm以下的铜丝和钢丝按一立节距绕成。将 金属螺旋线圈插入并固左在管内,即可构成一种强 化传热管。在近壁区域,流体一面由于螺旋线圈的 作用而发生旋转,一而还周期性地受到线圈的螺旋 金属丝的扰动,因而可以使传热强化。由于绕制线 圈的金属丝直径很细,流体旋流强度也较弱,所以 阻力较小,有利于节省能源。螺旋线圈是以线圈石 距H与管内径〃的比值以及管壁粗糙度(2〃/力) 为主要技术参数,且长径比是影响传热效果和阻力 系数的重要因素。科学家通过实验研究总结了形式为Nil = BRe,n的经验公式,英中B和加的值因螺旋 丝尺寸不同而不同。
在本实验中,采用实验3・1中的实验方法确泄不同流量下的R©与眄,用线性回归方法可确立B和m的值。单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:Nu/Nu(),其中N“是强化管的努塞尔准数,M❻是普通管的努塞尔准数,显然,强化比1,而且它的值越大,强化效果越好。需要说明的是,如果评判强化方式的贞•正效果和经济效益,则必须 考虑阻力因素,阻力系数随着换热系数的增加而增加,从而导致换热性能的降低和能耗的增加,只有强 化比较高,且阻力系数较小的强化方式,才是最佳的强化方法。四、实验装置1.实验流程图及基本结构参数:
图4-2空气-水蒸气传热综合实验装置流程图1 一普通套管换热器:2—内插有螺旋线圈的强化套管换热器:3—蒸汽发生器:4 一旋涡气泵:5—旁路调节阀:6—孔板流量讣;7、8、9一空气支路控制阀:10、11 一蒸汽支路控制阀:12、13—蒸汽放空口: 14一传热系数分布实验套盒(本实验不使用):15—紫铜管:16-加水口:17—放水口: 18—液位计:19一热点偶温度测址实验测试点接口: 20—普通管测压口: 21—强化管测压口如图3-2所示,实验装置的主体是两根平行的套管换热器,内管为紫铜材质,外管为不锈钢管,两 端用不锈钢法兰固左。实验的蒸汽发生釜为电加热釜,内有2根2.5RW螺旋形电加热器,用200伏电压 加热(可由固态调压器调节)。气源选择XGB-2型旋涡气泵,使用旁路调卉阀调肖流量。蒸汽空气上升 管路,使用三通和球阀分别控制气体进入两个套管换热器。空气由旋涡气泵吹岀,由旁路调卉阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热 器。管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,由另一端蒸汽出口自 然喷岀,达到逆流换热的效果。空气经支路控制阀7后,进入蒸汽发生器上升主管路上的热电偶和传热 系数分布实验管,可完成热电偶原理实验。
装豊结构参数表3-1所示。2.实验的测量手段(1)空气流量的测量空气主管路由孔板与差压变送器和二次仪表组成空气流量计,孔板流量计为标准设计,其流量讣算 式为:
实验内管内径也(mm) 19.25
实验内管外径必(mm) 20.01
实验外管内径D (mm) 50
实验外管外径D, (mm) 52.5
总管长(紫铜内管)L (m) 1.30
测量段长度/ (m) 1」0
加热釜 操作电压 W200 伏
操作电流 W20安
表4-1实验装置结构参数第⑦、⑧套实验装置:匕=23.80式中:孔板流量计两端压差,KPa;R—孔板流量计两端压差,mH/O柱;/。一流量计处温度(本实验装置为空气入口温度),°C;内一巾时的空气密度,kg/m\由于被测管段内温度的变化,还需对体积流量进行进一步的校正:
273 +口273 + r()⑵温度的测呙实验采用铜-康铜热电偶测温,温度与热电势的关系为:
(4-9)
(4-10)
T(°C)二8・ 5009+21. 25678XE(mv)图4・3传热实验中冷流体进岀口温度及壁温的测量线路图五、注意事项1.由于采用热电偶测温,所以实验前要检查冰桶中是否有冰水混合物共存。检査热电偶的冷端,是 否全部浸没在冰水混合物中。2・检查蒸汽加热釜中的水位是否在正常范用内*特别是每个实验结束后,进行下一实验之前,如果发现水位过低,应及时补给水量。3.必须保证蒸汽上升管线的畅通。即在给蒸汽加热釜电压之前,两蒸汽支路控制阀(见图4-2所示) 之一必须全开。在转换支路时,应先开启需要的支路阀,再关闭另一侧,且开启和关闭控制阀必须缓慢, 防止管线截断或蒸汽压力过大突然喷出。4・必须保证空气管线的畅通」即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀(见 图4-2所示)必须全开。在转换支路时,应先关闭风机电源,然后开启和关闭控制阀。
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
实验四传热实验
实验四传热实验
一、实验目的
1.通过对空气一水蒸气简单套管换热器的实验研究,掌握对流传热系数勺的测左方法,加深对苴 概念和影响因素的理解。并应用线性回归分析方法,确左关联式严丹如中常数A、川的值。
2.通过对管程内部插有螺旋线圈的空气一水蒸气强化套管换热器的实验研究,测左其准数关联式 NzBR严中常数B、加的值和强化比Ni叫、了解强化传热的基本理论和基本方式。
Ⅵ 换热器综合实验为什么使用立式列管换热器
性能好。换热器综合实验是一种工程实验,实验使用立式列管换热器是因为立式的性能好,适应性更好,材料的范围也更广。
Ⅶ 用于汽车检测方面的检测设备试验机有哪些
用于汽车检测这方面的设备有很多,不过既然说到汽车检测设备试验机这块,就要分好几部分来讲了。根据不同汽车零部件,使用的试验机检测设备就不一样。
一,制动系统检测设备,是用于制动胶管总成、液压制动主缸带真空助力器总成、制动主钳、液压感载比例阀、真空单向阀、真空管、储液罐的相关试验。用于这块的试验机有以下这几台设备
1.制动管脉冲试验机
Ⅷ 氟利昂制冷装置用翅片式换热器的性能如何检测
其性能主要体现在压力损失以及换热性能上
压力损失,测一测换热器进出口的压差就好 一般希望压损小
换热性能就测一测冷热流体的进出口温差以及流量算出换热系数吧(具体怎么算还请另外提问吧,问得不详细,没法说) 一般希望换热系数大
Ⅸ 各种换热器的工作原理和特点
各种换热器 的 工作原理和特点
一、换热器
1、U形管式换热器
每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了消除热应力。
性能特点:
(1)优点
此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点
是管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器
沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。根据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点
这是一种古老的换热设备。它结构简单,制造、安装、清洗和维修方便,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点
由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。为提高传热系数,容器内可安装搅拌器。
3、列管式换热器
冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:
列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6MPa时,由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其它结构。
SPEET无源动力强化换热系统,是由深圳中创鼎新工业节能智能化技术有限公司自主研发的一项革新性的工业高效节能技术,可广泛应用于化工、冶金、石油、制盐、制糖、造纸、制药、海水淡化、制冷等行业的列管式换热器,有效解决列管式换热系统因设计或运行等原因导致的换热效率不足的问题,有效提高换热效率20%以上。
与传统的换热器清洗方式相比,SPEET具有无腐蚀、无污染、免拆卸、对设备无损伤、高可靠性、高效节能的优势。
SPEET工作原理为,沿着介质流向将SPEET纽带插入到每一根换热管中,当设备运行时,利用介质自身流速驱动SPEET装置不停地快速旋转,一方面打破管内温度分层,将流体边界滞留层厚度降低一个数量级,实现强化换热;另一方面通过强化扰流和对管壁不规则刮扫,减少垢的析出,阻止垢的附着,加快垢的剥蚀,防止换热管壁结晶或结疤,从而实现在线除垢防垢。通过这两方面共同作用,将换热器的换热系数K值提高20%-50%以上,从而达到节能降耗的目的。
SPEET安装便捷,无需停工或改动换热器主体;无需专人维护,节省化学清洗及人工清洗费用,投资回报周期6到12个月,经济效益十分显著,大幅提升大工业用户能源利用效率,助力工业企业低碳绿色发展。
4、螺旋板式换热器
由两块相互平行的钢板,卷制成相互隔开的螺旋形流道。螺旋板的两端焊有盖板。冷热流体分别在两流道内流动。
性能特点:
(1)传热效率高(性能好)
一般认为螺旋板式换热器的传热效率为列管式换热器的1~3倍。等截面单通道不存在流动死区,定距柱及螺旋通道对流动的扰动降低了流体的临界雷诺数,水-水换热时,螺旋板式换热器的传热系数最大可达3000W/(㎡·K)。
(2)有效回收低温热能
螺旋板式换热器由两张卷制而成,进行余热回收,充分利用低温热能。
(3)运行可靠性强
不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性,保证两种工作介质不混合。
(4)阻力小
在壳体上的接管采用切向结构。比较低的压力损失,处理大容量蒸汽或气体;有自清刷能力,因其介质呈螺旋型流动,污垢不易沉积;清洗容易,可用蒸汽或碱液冲洗,简单易行,适合安装清洗装置;介质走单通道,允许流速比其他换热器高。
(5)可多台组合使用
单台设备不能满足使用要求时,可以多台组合使用。但组合时,必须符合下列规定:并联组合、串联组合,设备和通道间距相同。混合组合:一个通道并联,一个通道串联。
5、喷淋式换热器
热流体在裸露的管中流过,冷却水喷淋流过蛇管。
性能特点:
这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器。喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多。
另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用。因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。
6、热管换热器
一根密封的金属管子,管内壁覆盖一层有毛细结构材料作成的芯网,其中间是空的。管内装有一定量的热载体(如液氨、氟利昂等),被气化,流向冷端,蒸汽在冷端被冷凝,放出汽化潜热,而加热了冷流体。冷凝液又流回热端,如此反复。
性能特点:
(1)热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中,单根热管因为磨损、腐蚀、超温等原因发生破坏时,基本不影响换热器运行。热管换热器用于易然、易爆、腐蚀性强的流体,换热场合具有很高的可靠性。
(2)热管换热器的冷、热流体完全分开流动,可以比较容易的实现冷、热流体的逆流换热。冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合非常经济。
(3)对于含尘量较高的流体,热管换热器可以通过结构的变化、扩展受热面等形式,解决换热器的磨损和堵灰问题。
(4)热管换热器用于带有腐蚀性的烟气余热回收时,可以通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,使热管尽可能避开最大的腐蚀区域。
7、套管式换热器
冷、热流体分别在内管和套管中流动并换热。
(1)优点
这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。
结构简单,传热面积增减自如。因为它由标准构件组合而成,安装时,无需另外加工。传热效能高。它是一种纯逆流型换热器,同时还可以选取合适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此它的传热效果好。液-液换热时,传热系数为 870~1750W/(m2·℃)。这一点特别适合于高压、小流量、低传热系数流体的换热。套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约为管壳式换热器的五倍;管接头多,易泄漏;流阻大。结构简单,工作适应范围大,传热面积增减方便,两侧流体均可提高流速,使传热面的两侧都可以有较高的传热系数,是单位传热面的金属消耗量大,为增大传热面积、提高传热效果,可在内管外壁加设各种形式的翅片,并在内管中加设刮膜扰动装置,以适应高粘度流体的换热。可以根据安装位置任意改变形态,利于安装。(2)缺点
检修、清洗和拆卸都较麻烦,在可拆连接处容易造成泄漏。生产中,有较多材料选择受限,由于套管式换热器大多是内管中不允许有焊接,因为焊接会造成受热膨胀开裂,而套管式换热器大多数为了节省空间选择,弯制,盘制成蛇管形态,故有较多特殊的耐腐蚀材料无法正常生产。套管换热器国内还没有形成统一的焊接标准,各个企业都是根据其它换热产品经验选择焊接方式,所以,套管式换热器的焊接处,出现各类问题司空见惯,需要经常注意检查,保养。
二、具有补偿圈的换热器
1、浮头式换热器
两端的管板,有一段不与壳体相连,可以在管长方向自由浮动,当壳体与管束因温度不同而引起不同的热膨胀时,可以消除热应力。
冷流体入口热流体入口
(1)优点
管束可以抽出,以方便清洗管、壳程;介质间温差不受限制;可在高温、高压下工作;可用于结垢比较严重的场合;可用于管程易腐蚀场合。 (2)缺点
小浮头易发生内漏;金属材料耗量大,成本高20%;结构复杂。 2、夹套式换热器
夹套式换热器是间壁式换热器的一种,在容器外壁安装夹套制成。
性能特点:
结构简单,但其加热面受容器壁面限制,传热系数也不高。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数。为补充传热面的不足,也可在釜内部安装蛇管。夹套式换热器广泛用于反应过程的加热和冷却。
3、板翅式换热器
由隔板、肋片和侧条组成单元体,多个单元体经逆流或错流组装为组装件,再将带有集流出口的集流箱焊接到组装件上。由于材料轻薄,换热面积与换热器体积之比可达4000 m2/ m3。
性能特点:
(1)传热效率高,由于肋片对流体的扰动使边界层不断破裂,因而具有较大的换热系数;同时由于隔板、肋片很薄,具有高导热性,所以使得板肋式换热器可以达到很高的效率。
(2)紧凑,由于板肋式换热器具有扩展的二次表面,使得它的比表面积可达到1000 m2/ m3 。
(3)轻巧,原因为紧凑且多为铝合金制造,现在钢制,铜制,复合材料等的也已经批量生产。
(4)适应性强,板肋式换热器可适用于:气-气、气-液、液-液、各种流体之间的换热以及发生集态变化的相变换热。通过流道的布置和组合能够适应:逆流、错流、多股流、多程流等不同的换热工况。通过单元间串联、并联、串并联的组合,可以满足大型设备的换热需要。工业上可以定型、批量生产以降低成本,通过积木式组合扩大互换性。
(5)制造工艺要求严格,工艺过程复杂。
(6)容易堵塞,不耐腐蚀,清洗检修很困难,故只能用于换热介质干净、无腐蚀、不易结垢、不易沉积、不易堵塞的场合。
4、涡流热膜换热器
流热膜换热器体积只有传统管壳式换热器的1/5,采用全不锈钢焊接结构。既具有钎焊板式换热器体积小、耐高温的优势,又克服了框架板式换热器胶条老化、维护费用高的缺陷,它采用经纳米技术处理的不锈钢涡流管作为换热元件,极大提高了换热器的整体性能。
性能特点:
高效节能,该换热器传热系数为6000~8000W/(m2·℃);全不锈钢制作,使用寿命长,可达20a以上,十年内出现换热器质量问题免费更换;改层流为湍流,提高了换热效率,降低了热阻;换热速度快,耐高温(400℃),耐高压(2.5MPa);结构紧凑,占地面积小,重量轻,安装方便,节约土建投资;设计灵活,规格齐全,实用针对性强,节约资金;应用条件广泛,适用较大的压力、温度范围和多种介质热交换;维护费用低,易操作,清垢周期长,清洗方便;采用纳米热膜技术,显著增大传热系数;应用领域广阔,可广泛用于热电、厂矿、石油化工、城市集中供热、食品医药、能源电子、机械轻工等领域。