A. 跪求· ··关于活塞式压电式压力传感器的课程设计,包括各个参数的详细计算和活塞式传感器的图片
活塞式压电传感器课程设计
专业:测控技术与仪器
班级:08测控
姓名:单雨
目 录
引言 1
1.传感器课程设计的目的和任务 2
1.1目的 2
1.2要求 2
2.传感器设计方案的选择 3
2.1传感器种类的选择 3
2.2传感器支承的选择 4
2.3电级结构的选择 5
3.传感器机械设计各部分的参数确定 7
3.1晶片的参数 7
3.1.1压电系数 7
3.1.2晶片的直径的确定 9
3.2验算 9
3.3电极的设计 12
3.4弹簧设计 12
4.传感器整体的结构设计 15
附录 16
参考书目 17
引 言
压电式压力传感器基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成(见图)。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号(见压电式传感器)。这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法,例如XYδ(+20°~+30°)割型的石英晶体可耐350℃的高温。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。
压电式压力传感器的结构类型很多,但它们的基本原理与结构仍与前述压电式加速度和力传感器大同小异。突出的不同点是,它必须通过弹性膜、盒等,把压力收集、转换成力,再传递给压电元件。为保证静态特性及其稳定性,通常多采用石英晶体作压电元件。压电压力传感器种类及型号繁多,按弹性敏感元件分,主要有两种,活塞式和膜片式。在压电式传感器中,常采用两或两片以上的压电元件组合、并联两种方式工作,并联时,输出电容大、电荷大,同时,时间常数τ= 大,宜于用于缓慢信号的测量,并宜用于以电荷作输出的场合。串联时,输出电压高,自身电容小,宜使用于输出为电压及测量电路的输入阻抗很高的场合。活塞式压力传感器也分为中压活塞式和高压活塞式传感器。根据要求选择的时活塞式直接支承并联式传感器。其主要是根据外界受力的变化来转变成电压的变化从而测到外界的压力的变化,压力与外接电压是一个线性变化的关系。下面就是压电式压力传感器的具体选择方案等说明书
1.传感器课程设计的目的和任务
1.1目的
(1). 巩固所学知识,加强对传感器原理的进一步理解;
(2). 理论与实际相结合,“学以致用”;
(3). 综合运用知识,培养独立设计能力;
(4). 着重掌握典型传感器的设计要点,方法与一般过程;
(5). 培养学生精密机械与测控电路的设计能力。
1.2要求
(1).设计时必须从实际出发,综合考虑实用性、经济性、安全性、先进性及操作维修方便。如果可以用比较简单的方法实现要求,就不必过份强调先进性。并非是越先进越好。同样,在安全性、方便性要求较高的地方,应不惜多用一些元件或采用性能较好的元件,不能单纯考虑简单、经济;
(2).独立完成作业。设计时可以收集、参考传感器同类资料,但必须深入理解,消化后再借鉴。不能简单地抄袭;
(3).在课程设计中,要随时复习传感器的工作原理。积极思考。不能直接向老师索取答案和图纸。
(4). 设计传感器测头机械机构方案,绘制总装图(CAD为工具),编写传感器设计说明书。
2.传感器设计方案的选择
设计一台活塞式压电式压力传感器
设计的参数
1.量程范围(压缩)40 MPa
2.灵敏度为1.6×10-3pC/Pa
3.固有频率≥40kHz
4.线性度≤1%
5.绝缘电阻≥1012Ω
压电式压力传感器的结构类型很多,但它们的基本原理与结构仍与前述压电式加速度和力传感器大同小异。突出的不同点是,它必须通过弹性膜、盒等,把压力收集、转换成力,再传递给压电元件。为保证静态特性及其稳定性,通常多采用石英晶体作压电元件。其结构主要是由本体、弹性敏感元件和压电转换元件组成。
2.1 传感器种类的选择
压电压力传感器种类及型号繁多,按弹性敏感元件分,主要有两种,活塞式和膜片式。
活塞式压电式传感器的应用特点:
(1)灵敏度和分辨率高,线性范围大,结构简单、牢固,可靠性好,寿命长;
(2)体积小,重量轻,刚度、强度、承载能力和测量范围大,动态响应频带宽,动态误差小;
(3) 易于大量生产,便于选用,使用和校准方便,并适用于近测、遥测。
(a)中压活塞式 传感器 (b) 膜片式石英压力传感器结构图
图 1 压电式压力传感器结构图
图(a) 1本体 2活塞3弹簧4晶片5绝缘套6晶片7电极 8绝缘套9晶体10垫块
图(b) 1街头 2绝缘套3芯体4绝缘管 5电极引线6本体7晶体8压块9绝缘管10压紧螺母11繁定螺母
2.2传感器支承的选择
(a) 直接支承 (b)间接支承
图 2 压电压力传感器结构简图
1本体 2支撑螺杆3压电转换元件4电极5压电转换元件6膜片
图1 中(a)为晶片直接支承在本体上 (b) 为晶片间接支承在本体上。这两种结构形式的谐振频率相差很大。
2.3 电级结构的选择
传感器的固有频率为 0¬2=K/m,为了使活塞活动灵活,必须增加长度,这样将使质量 增加而使 下降,一般取 0 30kHz 。如果采用导电胶粘接晶片和电极,可提高刚度K,使 0 提高至40kHz。
在压电式传感器中,常采用两或两片以上的压电元件组合、并联两种方式工作,如下图所示。
(a)并联方式 (b)串联方式
图3 压电式的连接方式
(1)并联结构
如图5(a)所示,负极集中在中间,正极为上、下两个面的串联,此种方式称为并联方式。
n片并联时,并联输出电容为
输出电压为
极板上电荷为
式中 n ¬——片数;
C1、U1、Q1——单片时的电容、电压、电荷量。
(2)串联结构
如图5(b)所示,上极板为正极,下极板为负极,中间正、负电荷抵消方式称为串联结构形式。
输出电荷量为
输出电压为
输出电容量为
由此可见:
(1) 并联时,输出电容大、电荷大,同时,时间常数τ= 大,宜于用于
慢信号的测量,并宜用于以电荷作输出的场合。
(2) 串联时,输出电压高,自身电容小,宜使用于输出为电压及测量电路的
入阻抗很高的场合。
根据要求选择的时活塞式直接支承并联式传感器
3.传感器机械设计各部分的参数确定:
3.1晶片参数确定
3.1.1 压电系数
根据正压电效应原理可知,当一个平行于X轴的力Fx作用于垂直于X轴的压电元件的平面上时,则在该平面上产生的点和密度为
1=d11 1=d11=d11 (3-1)
式中 d11———压电系数:晶体受单位力作用时产生的电荷量;
1———Ax面上的作用应力。
所以,在弹性限内电荷密度 1与应力(作用力)成正比。
如果同时在压电原件的x、y、z三个轴向上作用拉(压)力,对yz、xy、xz平面上作用切向力,则个平面上的电荷密度可用数学表达式表示如下:
1= d11 1+ d12 2+ d13 3+ d14 23+ d15 31+ d16 12
2= d21 1+ d22 2+ d23 3+ d24 23+ d25 31+ d26 12 (3-2)
3= d31 1+ d32 2+ d33 3+ d34 23+ d35 31+ d36 12
式中 1、 2、 3——Ax、Ay、Az 各平面上的电荷密度;
1、 2、 3——Ax、Ay、Az平面上作用的轴向应力;
23、 31、 12——切向应力;
dij——压电系数
将式(1-8)以矩阵形式表示,则有
1
2
1 3
2 =D 4
3 5
6
式中 4= 23, 5= 31, 6= 12
d11 d12 d13 d14 d15 d16
D= d11 d12 d13 d14 d15 d16 (3-3)
d11 d12 d13 d14 d15 d16
式(1-4)称为压电系数矩阵。实验得到石英晶体的压电系数矩阵为
2.31 -2.31 0 0.67 0 0
D= 0 0 0 0 -0.67 -4.62 (3-4)
0 0 0 0 0 0
由式(3-4)可知
(1) 压电系数矩阵是正确选择力—电转换方式和转换效率的重要依据;
(2) 石英晶体不是在任何方向都存在压电效应;
(3) 石英晶体的压电系数共有18个。但由于晶体的对称性,可以确定的压电系数只有两个。
对于右旋石英晶体, <0和 >0:对于左旋石英晶体则是 >0, <0,即
= 2.3× C/N, = 7.3× C/N
3.1.2晶片的直径的确定
为纵向灵敏度的计算公式为
SQ =nd11•A (3-5)
SQ=1.6×10-3 Pc/Pa=1.6×10-15C/Pa
所以 1.6× =2×2.3× ×A
A=348
A=
D=21.06mm
晶片直径及厚度大于0.5mm
3.2验算
弹性元件的材料应具有:
(1)强度高和耐蚀性好;
(2)弹性模量要高;
(3)温度系数要低。
弹性储能是衡量弹性材料的一个重要指标。弹性储能是指单位体积所吸收最大变形的功,它表示在弹性元件的材料吸收最大变形功时,而不产生永久变形的能力。
最大变形功为
式中 W——最大弹性变形功;
——弹性极限;
E——弹性模量。
由上式可见:
(1)要使W增加,则必使E减小;
(2)但弹性元件要求有较高E值;
(3)以上两者矛盾,综合考虑,常取E值高的材料作弹性元件;
(4)测量超高压时,选用超高强度的合金材料( >1600MPa),如马氏体、不锈钢、镍钴钼合金等。
无论选用哪种材料,都要求具有良好的机械加工性能、热处理性能和焊接性能好等。
要保持具有良好的线性。
具有良好的线性关系必使在最大动态力作用下不脱离接触,此时,必须满足以下条件:在最大动态力作用下产生的变形 不超过预应力产生的变形x,即
最大动态力为 ,由胡克定律,由
因而,在此动态力作用下产生的变形为
在位移 下产生的弹性力为
所以最小预用力为
显然, ,预应力的下限值应取 。
机械强度的设计计算
(1) 根据使用条件和测量要求合理选择材料;
(2) 合理设计整体结构和零件尺寸;
(3) 用于超高压测量的传感器要进行连接螺纹的强度校合,以满足整个传感器强度要求和可靠性。压力传感器的强度设计主要是对弹性元件和转换元件。
设: 为被测最大压力;A为膜片有效受力面积;A’为压电转换元件(晶片)的面积; 为压电元件(晶片)的强度极限;[ ]为允许应力。则压电元件(晶片)上承受的最大力为
= •A
=4.0× ×3.48×
=1.39× N
3.3电极设计
纵向效应晶体组件的设计
晶体元件一般设计成机械串联(受力)、电气并联,以薄金属片做电极(图9-41),或以金属镀层做电极(图9-42)。
以金属片为电极的应用较为普遍,因其结构工艺简单。
(a)金属薄片式 (b)金属镀层式
图4 晶体元件组
3.4.弹簧设计
图5 弹簧设计图
1.弹簧的作用:
保证测头与被测目标可靠接触。
2.设计要求:
测量力要求:小于100g,不能太硬。
行程要求: 2mm,伸缩行程。
3.关于材料的选择和参数计算:
弹簧材料的选择,应根据弹簧承受载荷的性质、应力状态、应力大小、工作温度、环境介质、使用寿命、对导电导磁的要求、工艺性能、材料来源和价格等因素确定。弹簧材料除了注意其化学成分外,还应特别注意其冶金及热处理的工艺质量。相同成分的材料由于冶金及热处理工艺质量不同,其机械性能往往有很大差别。传感器内部弹簧较小,选用经预先热处理的油淬火回火的弹簧钢丝。
考虑最大工作负荷为 ,并且在低温下使用的弹簧材料,应具有良好的低温韧性。碳素弹簧钢丝、琴钢丝和 1Cr18Ni9 等奥氏体不锈钢弹簧钢丝、铜合金、镍合金有较好的低温韧性和强度,本传感器还需要该材料膨胀系数变化极小。综上各因素,我们小组决定选取材料1Cr18Ni9,其许用切应力 ,通过查阅机械手册表,选取其弹簧指数为C=14,则曲度系数
。
计算弹簧丝径 ,选取标准值 。
弹簧中径 。节距一般取 ,这里取 。根据量程 ,查机械手册表,选取弹簧工作圈数的标准值 ,由此得弹簧自由高度 。压缩高度 。
表1弹簧设计所有参数
丝径 中径 载荷 压缩高度 自由高度
0.35 5 0.1kg 1.225 4
为了进一步提高弹簧的许用剪切应力,需对弹簧采取强压处理。经强压处理后的弹簧,可提高弹簧的许用剪切应力,最高可增加25%左右。强压处理的基本原理是将弹簧预制的比要求的自由高度高一些,然后压缩弹簧至并紧,使其应力超过弹簧材料的弹性极限。强压处理过的弹簧再加载时,其许用弹性极限比强压处理前提高很多。强压处理方式采用长时间一次强压,保持时间为48h左右。
4.传感器整体的结构设计
图6 活塞式压力传感器总设计图
总结
1•通过这次课程设计,我对传感器设计基础知识复习了一遍,而且更重要的是又学到了很多新的知识,获得了新的经验。我从中学会了根据具体的数据进行查表、筛选,从而进行设计。学会知道团队精神的重要性,在这次的课程设计当中,在一些材料的选用,数据的算法等方面与其他同学进行了交流,提高了自己的工作效率。
2•在如此短的时间内,依靠个人能力是不可能完成如此繁琐的资料查找与收集。所以,通过这次课程设计,加强了同学之间的交流,大大增进了我们组的凝聚力,协作的精神更强了。而且自己也学到了很多实际的有用的东西,相信对以后的工作一定会有很大的益处。
3•最后,在此对郭易老师的指导与教学表示感谢,通过老师的帮助使得我们的工作效率得到了很大的提高。
参考书目
[1] 黄贤武 ,郑筱霞 . 传感器原理与应用 .北京:电子科技大学出版社 1995年 35-40
[2] 王化祥,张淑英.传感器原理及应用.天津:天津大学出版社 ,1999年 56-60
[3] 高晓蓉.传感器技术.西南交通大学出版社,2003年 66-70
[4] 郁有文,常健.传感器原理及工程应用.西安:西安电子科技大学出版社,2001年 75-80
[5]何希才.传感器及其应用电路 .北京:电子工业出版社 2001 90-100
[6] 陈杰 ,黄鸿.传感器与检测技术 .北京:高等教育出版社 2002年 100-103
[7] 于建红 . 传感技术学报 .2007年 2-4
B. 压电材料详细资料大全
压电材料是受到压力作用时会在两端面间出现电压的晶体材料。
材料原理,材料分类,无机压电材料,有机压电材料,材料套用,换能器,驱动器,感测器,机器人,发展现状,细晶粒压电陶瓷,PbTiO3系压电陶瓷,压电复合材料,多元单晶压电体,材料参数, 基本介绍 受到压力作用时会在两端面间出现电压的晶体材料。1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生巨观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。 利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。因而压电材料广泛用于感测器元件中,例如地震感测器,力、速度和加速度的测量元件以及电声感测器等。这类材料被广泛运用,举一个很生活化的例子,打火机的火花即运用此技术。
C. 电器控制装置设计的基本步骤和方法有哪些
设计方法及步骤
在接到设计任务书后,按原理设计和工艺设计两方面进行。
1.原理图设计的步骤
(1)根据要求拟定设计任务。
(2)根据拖动要求设计主电路。在绘制主电路时,可考虑以下几个方面:
①每台电动机的控制方式,应根据其容量及拖动负载性质考虑其启动要求,选择适当的启动线路。对于容量小(7.5kw以下)、启动负载不大的电动机,可采用直接启动}对于大容量电动机应采用降压启动。
②根据运动要求决定转向控制。
③根据每台电动机的工作制,决定是否需要设置过载保护或过电流控制措施。
④根据拖动负载及工艺要求决定停车时是否需要制动控制,并决定采用何种控制方式。
⑤设置短路保护及其他必要的电气保护。
⑥考虑其他特殊要求:调速要求、主电路参数测量、信号检测等。
(3)根据主电路的控制要求设计控制回路,其设计方法是:
①正确选择控制电路电压种类及大小。
②根据每台电动机的启动、运行、调速、制动及保护要求,依次绘制各控制环节(基本单元控制线路)。
③设置必要的联锁(包括同一台电动机各动作之间以及各台电动机之间的动作联锁)。
④设置短路保护以及设计任务书中要求的位置保护(如极限位、越位、相对位置保护)、电压保护、电流保护和各种物理量保护(温度、压力、流量等)。
⑤根据拖动要求,设计特殊要求控制环节,如自动抬刀、变速与自动循环、工艺参数测量等控制。
⑥按需要设置应急操作。
(4)根据照明、指示、报警等要求设计辅助电路。
(5)总体检查、修改、补充及完善。主要内容包括:
①校核各种动作控制是否满足要求,是否有矛盾或遗漏。
②检查接触器、继电器、主令电器的触点使用是否合理,是否超过电器元件允许的数量。
③检查联锁要求能否实现。
④检查各种保护能否实现。
⑤检查发生误操作所引起的后果与防范措施。
(6)进行必要的参数计算。
(7)正确、合理地选择各电器元件,按规定格式编制元件目录表。
(8)根据完善后的设计草图,按GB/T 6988电气制图标准绘制电气原理线路图,并按GB/T 5094-1985《电气技术中的项目代号》要求标注器件的项目代号,按GB 4884-1985《绝缘导线的标记》的要求对线路进行统一编号。
2.工艺设计步骤
(1)根据电气设备的总体配置及电器元件的分布状况和操作要求划分电器组件,绘制电气控制系统的总装配图和接线图。
(2)根据电器元件的型号、外形尺寸、安装尺寸绘制每一组件的元件布置图(如电器安装板、控制面板、电源、放大器等)。
(3)根据元件布置图及电气原理编号绘制组件接线图,统计组件进出线的数量、编号以及各组件之间的连接方式。
(4)绘制并修改工艺设计草图后,便可按机械、电气制图要求绘制工程图。最后按设计过程和设计结果编写设计说明书及使用说明书。
D. 如何利用压电式传感器设计一个测量轴承支座受力情况的装置。
基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感专元件由压电材属料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。
轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。
按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。其中滚动轴承已经标准化、系列化,但与滑动轴承相比它的径向尺寸、振动和噪声较大,价格也较高。
滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成,严格的说是由外圈、内圈、滚动体、保持架、密封、润滑油 六大件组成。主要具备外圈、内圈、滚动体就可定意为滚动轴承。按滚动体的形状,滚动轴承分为球轴承和滚子轴承两大类。
E. 分析压电换能器的工作原理
极化的压电陶瓷在周期周期信号激励下,产生伸缩振动。推动周围媒介运动-此为发射换能器。一般结构为1/2波长振子、极化的压电陶瓷,在媒介的推动下,产生伸缩振动,产生电信号。此为接收换能器。
换能器:实现电能、机械能或声能从一种形式的能量转换为另一种形式的能量的装置称为换能器,也称有源传感器。换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。
F. 震动送料盘结构图
近十几年利用压电陶瓷作为驱动源的新型振动送料装置正在快速发展起来,压电振动送料装置是将压点技术应用于振动输送的一种新型振动送料装置,它利用压电片的逆压电效应产生振动,作为驱动源驱动料槽实现物料的输送。
振动盘原理结构图:
1、国内外的研究现状: 对于这种新型的振动送料装置,其结构和工作原理都不同于传统的电磁或机械驱动的振动送料装置,因此它具有许多传统振动送料装置所不具备的特点:
(1)结构简单,安装和维护更加方便;
(2)应用压电片作为驱动源,无需电机、电磁激振器等驱动装置,也无需轴、杆、皮带等机械传动部件,结构简单,易于加工制作;
(3)改变驱动信号中的幅值、脉宽及频率中的任意一个,都可以调节输送率,控制参数多,可控性好;
(4)无转动惯性,几乎没有加速和减速过程,启动、停止迅速,反应性能快;
(5)不产生干扰电磁振动盘场,也不受电磁干扰信号的影响;
(6)在低频率段或超声段工作,噪音小;
(7)在共振或无共振状态下工作,因此能量消耗少;
(8)驱动力略显不足,无法输送过重之料件,因此这类装置大多应用于物料的微量或精量输送。 压电振动送料装置是振动送料领域的一个重大的突破,国内外的科技人员都进行了不同程度的研究,取得了一定的成果,其按照物料前进的方式可将其分为直进型和螺旋型两种。
2、国内研究现状我国对压电振动送料装置的研究整体水平仍然落后于发达国家和地区,成型产品很少。
G. 压电效应——将压力转化成电力的系统,结构及其原理图
压力变送器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用压力变送器的原理及其应用
1、应变片压力变送器原理与应用
力学传感器的种类繁多,如电阻应变片压力变送器、半导体应变片压力变送器、压阻式压力变送器、电感式压力变送器、电容式压力变送器、谐振式压力变送器及电容式加速度传感器等。但应用最为广泛的是压阻式压力变送器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。
在了解压阻式压力变送器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变变送器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是 A/D转换和CPU)显示或执行机构。
金属电阻应变片的内部结构
如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。
电阻应变片的工作原理
金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:
式中:ρ——金属导体的电阻率(Ω?cm2/m)
S——导体的截面积(cm2)
L——导体的长度(m)
我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情
2、陶瓷压力变送器原理及应用
抗腐蚀的压力变送器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。
陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力变送器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力变送器。
3、扩散硅压力变送器原理及应用
工作原理
被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。
4、蓝宝石压力变送器原理与应用
利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。
蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅 -蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。
用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。
表压压力传感器和压力变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。
传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。在绝压压力传感器和压力变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。
5、压电压力传感器原理与应用
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。
压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。
压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。(转载)
要问压电效应,网络上有
H. 制作一套可以实际应用的压电发电装置成本高么
可以共用一个发电机。
但是使用时需要考虑发电机的功率是否能满足要求。
注意事项:回
正确使用和维护发答电机组可延长发电机组的使用寿命:
起动前的准备工作:
1、机房操作人员应遵守安全操作规程,
发电机(图9)
穿工作服和绝缘鞋,机组人员应分工明确;
2、检查飞轮及发电机部分防栏杆罩是否完好;
3、检查各变速箱、离合器、调速器、油位、各紧固件等,确认完好,油水温度不低于20度时,方可起动;
4、将各系统管路闸门设置在“工作”位置;
5、检查传动的链接螺栓,并紧固好;
6、将离合器手柄压力是否正常,超速保险装置是否定位;
7、检查贮气瓶压力是否正常,超速保险装置是否定位;
8、打开打气泵的排污阀;
9、检查循环水泵、机油泵、燃油泵是否正常;
10、将励磁电阻置于最大的电阻位置,并将送电开关断开。
I. 打火机里面的这个东西的发电原理是什么威力为什么还会越来越弱
打火机中产生电火花的装置原理,其核心部件是压电陶瓷。压电陶瓷是一种可以将机械能转化成电能的材料,当压电陶瓷受到外界的压力时,陶瓷中正负电荷中心发生分离,导致它的两个表面上分别积累正负电荷形成电势差。
电打火机工作的时候主要是通过电火花点燃丁烷。所以,点火的关键在于如何产生电火花。
如果电荷积累足够多,产生的电势差将足以把空气击穿产生电火花,打火机正是利用这种电火花来点火。在打火机的点火装置中,通过按压顶部按钮在弹簧后中储存势能,然后通过突然释放储存的势能撞击压电陶瓷从而在一瞬间实现陶瓷两侧电荷的积累产生放电。完成点火。
打火机里面的丁烷随着使用次数越多而减少,故威力越来越弱。
(9)压电装置设计图扩展阅读:
打火机品种分类:
1、火石钢轮打火机其钢轮用特殊钢制成,外周有齿;火石用低温合金制成,燃点在160℃左右,发热量大。
火石被弹簧顶靠在钢轮面上,操作时受钢轮磨擦升温,产生引燃火。这种打火机操作不如其他打火机轻快,但产生的火花多,燃点率较高。
2、压电陶瓷打火机
发火机构内设压电陶瓷元件。压电陶瓷在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷。因此,当压电陶瓷元件受到冲击压力时,将机械能转换为电能,在尖端放出瞬时高压电火花,点燃燃料。
3、磁感应打火机
内有磁电转换器。操作时,磁铁与线圈产生相对运动,改变磁通,产生放电电压,使电极气隙间产生火花,点燃燃气。
4、电池打火机
以集成电路电池或普通电池为能源。当电容和变压器的电路导通时,产生高压电火花,点燃燃气。
5、太阳能打火机
经阳光或其他光照射后,其光电池将光能转为电能,充入蓄电池。使用时蓄电池对电容充电,升压线圈瞬间产生高反抗电动势,在绝缘的二级管间放出电火花,点燃燃气。
6、微电脑打火机
打火机内装有由电池供电的微型电脑,微型电脑的集成电路上有自动循环系统。操作时使电路接通即可发火。一旦火焰被风熄灭即可自动重新燃烧。
7、气态打火机
其标准压力在24摄氏度,超过104kpa。
8、后混式打火机
这类气态打火机在点火后空气与燃料混合燃烧。
9、前混式打火机
这类气态打火机的燃料气体与空气先混合作用后燃烧。
10、一次性打火机
这类打火机制作时充入燃料,不能重复充气。
11、可重复充气打火机
这类打火机可对其用外部气罐进行重复充气或插入新的燃料气箱。
12、可调节打火机
这类打火机提供可自由调整火焰高度的装置。
13、可自动调节的烟斗打火机
这类打火机提供一个在从直立到倾斜时可自动提高火焰高度的装置,这种装置是专门为烟斗设计的。
14、整蛊打火机
这类打火机主要是他的娱乐性,比如带有电人功能的整人打火机,通过发挥创意,设计师可以设计出很多品种的此类打火机,通常用于作为送人的礼品。
参考资料来源:网络-打火机