导航:首页 > 装置知识 > 麻醉机二氧化碳检测装置

麻醉机二氧化碳检测装置

发布时间:2022-12-25 18:03:24

Ⅰ 麻醉机的主要检测指标有哪些,如何检测

你问的是什么?
麻醉机主要监测指标的话有潮气量,分钟通气量,平台压,气道压,氧浓度,二氧化碳浓度,

Ⅱ 手术开始半小时后麻醉机提示PET CO2过高,55mmHg,分析其原因以及应如何处理

这里需要考虑的有好几个因素,包括手术的类型,麻醉机的通气参数,麻醉机的钠石灰是否失效,以及通气管路是否存在狭窄(被压迫弯折)等情况。

首先,对于需要采用二氧化碳气腹的腹腔镜手术而言,术中呼末二氧化碳上升是无法避免的情况,此时就需要通过调整麻醉机的通气参数来降低呼末二氧化碳数值,一般是采用减小潮气量而增加通气频率的做法(必要时延长呼气时间也可以起到一定作用)。

同样的,由于不同患者的年龄体重差异,如果前后两个患者实施麻醉时没有及时调整麻醉机的通气参数也可能导致呼末二氧化碳的变化,届时也需要对相关参数再次进行设置。

而钠石灰失效其实是一般的全麻手术中引起呼末二氧化碳上升的最常见原因之一,钠石灰其本身作用就是吸收密闭通气环路中的二氧化碳气体,如果没有及时更换失效的钠石灰就会导致二氧化碳蓄积的情况。

通气环路受压迫同样可以导致呼末二氧化碳上升,但通常此时监护设备也会提示气道压上升,及时发现和解除梗阻是最为重要的措施。

回答仅供参考……

Ⅲ 监测麻醉机呼气末测有什么临床意义

(一)监测通气功能
无明显心肺疾病的患者V/Q比值正常。一定程度上PETCO2可以反映PaCO2。正常PETCO2为5%,而1%CO2约等于11Kpa(7.5mmHg),因此,PETCO2为5Kpa(38mmHg)通气功能有改变时,PETCO2接近PACO2和PaCO2,故PETCO2逐渐增高是反映通气不足,是非常迅速、敏感的指标,而特异性一般。当PETCO2与PaCO2存在差值时,其敏感性和特异性下降,由于通气不足的临床表现不敏感,也无特异性,故PETCO2波形的辅助诊断价值较高[3]。其多数由于VT设置偏小。也可能是回路漏气等原因。

(二)维持正常通气量
全麻期间或呼吸功能不全使用呼吸机时,可根据PETCO2来调节通气量,避免发生通气不足和过度,造成高或低碳酸血症。

(三)确定气管的位置
目前公认证明气管导管在气管内的正确方法有三种:1、肯定看到导管在声门内,2、看到PETCO2的图形。临床利用纤维支气管镜技术是判断导管位置的“金标准”,但使用不便,PETCO2对于判断导管位置迅速,直观,非常敏感,特别是口腔手术经鼻插管,冉启华等利用PETCO2波形导引指导,当导管越接近声门口时,波形会越明显,以此来指导将导管插入声门,如果导管插入食道,则不能观察到PETCO2波形,所以PETCO2对导管误入食管有较高的辅助诊断价值,是证明导管在气管内的方法之一,邢峰等[7]利用PETCO2判断气管位置进一步作了改进,他们根据PETCO2特异性不高,容易面罩下操作过度通气致胃充气膨胀,饮过含CO2的饮料,服用抗酸药等原因出现假阳性波形,因而采用按胸PETCO2判断导管位置,其价值在于:(1)波形直观,有特征性、数值高,较手控通气后PETCO2更有助于迅速准确地判断导管位置,(2)有助于判断无通气期间体内CO2蓄积情况,尤其在插管时间较长情况下,机体尚未缺氧,但已出现CO2蓄积,因此,在无通气时间超过90秒后,应终止插管操作,重新面罩给O2通气,所以PETCO2波形图是指导经鼻插管的基本原则。3、看到正常的顺应性环(PV环),由此可以避免发生气管导管误入食管内的错误判断。

(四)及时发现呼吸机的机械故障
如接头脱落,回路漏气,导管扭曲、气管阻塞、活瓣失灵以及其他机械故障等,PETCO2图形在临床上可以发生变化,呼吸环路接头脱落、回路漏气常见于气管导管与螺纹管之间的脱落,螺纹管与麻醉机之间的脱落或呼吸囊连接处的脱落,头面部手术的操作容易造成接头处脱落而观察者往往由遮挡而难以发现,如作了PETCO2监测时,可及时发现二氧化碳波形消失,同时伴有气管压力骤然下降。导管扭曲打折,气道阻塞、活瓣失灵,也会发生二氧化碳波形的消失或明显的下降,同时也会发现气道压力猛增,这时只要能及时发现并排除阻塞就可转危为安。如导管为部分梗阻表现为PETCO2增高,同时伴有气道压力增高,压力波形变尖,平台降低,应及时解除梗阻。吴卫平等[9]认为在气管插管全麻术中持续PETCO2监测优于SpO2,呼出潮气量等其他监测方法,具有发现气管导管扭曲、堵塞、脱管、导管移位、呼吸环路脱开等呼吸道不畅更加及时、准确的优点,因而对气管插管全麻,尤其是术中无呼出气潮气量监测;麻醉者远离病人头部,气管全麻术中及时发现,处理呼吸道不畅,维持病人呼吸道通畅、保障病人供O2具有重要意义。

(五)调节呼吸机参数和指导呼吸机的撤除:(1)调节通气量;(2)选择最佳PEEP值,一般来说最小PETCO2值的PEEP为最佳PEEP值;(3)PETCO2为连续无创监测,可用以指导呼吸机的暂时停用,当自主呼吸时SpO2和PETCO2保持正常,可以撤除呼吸机;应注意异常的PETCO2存在,必要时应用血气对照。

(六)监测体内CO2产量的变化 静脉注入大量NaHCO2,PETCO2显著增高,是反映心输出量的指标之一;重吸入、体温升高,突然放松止血带以及恶性高热,均使CO2产量增多;而且,PETCO2迅速增高是恶性高热敏感的早期指标。

(七)了解肺泡无效腔量及肺血流量变化
PaCO2为有血液灌注的肺泡的PACO2、PETCO2为有通气的PaCO2,若PETCO2低于PaCO2,PETCO2增加或CO2波形上升呈斜形,说明肺泡无效腔量增加及肺血流量减少,方伟武等[11]报道侧卧位时,不管是控制呼吸或自主呼吸都会发生无效腔的改变,此时上侧肺有良好的通气而血流灌注不足,下侧肺则灌注充分而通气不足,可增加无效腔。

(八)监测循环功能
休克,心跳骤停及肺梗塞,肺血流减少或停止,CO2浓度迅速为零,CO2波形消失,PETCO2消失和PETCO2迅速下降持续30秒以上,表示心跳骤停,PETCO2作为复苏急救时心前区挤压是否有效的重要的无创监测指标,而且判断其预后价值更大,此时,PETCO2水平与心输出量为相应变化。

Ⅳ 麻醉机上的vt,plimit,etco2,vte,pls,pi分别是什么意思

vt -潮气量

plimit - 压力限制

etco2 - 呼末二氧化碳
vte -呼出潮气量
pls- 延续生命支持

pi - 吸气压力

去看看麻醉专业知识吧

Ⅳ 麻醉机能监测二氧化碳吗

二氧化碳的监测一般都在监护仪上,不在麻醉机上,有的麻醉机可以显示呼吸环等,一般的麻醉机显示吸呼比,潮气量,呼吸频率,气道压力等。

Ⅵ 一般麻醉机中的气动电控和高档治疗呼吸机的气动电控区别

目前市面上的麻醉机只有气动电控,电动电控两种。两者的区别只是呼吸机工作原理上的不同。气动电控是由医院中心供气的压力或气瓶压力为驱动力,驱动一个囊性风箱为病人供气;电动电控则完全由内部金属气缸内活塞运动作为驱动力来驱动气体为病人供气。从原理上看,电动电控似乎更容易准确地控制输出气体的体积,但气动电控则更能顺应人体,使气体输入更贴近人体自身呼吸,减少病人不适感,加快病人苏醒速度,提高病人自主呼吸恢复能力。

目前市面上仅有极少数厂家使用电动电控,大多数都使用气动电控。并非电动电控是高精尖技术,别人不易达到,而是各个厂家的理念及侧重点不同。在临床使用中,这种工作原理的不同在实际使用中并没有大的影响。

Ⅶ 什么是主流CO2

500型主流CO2模块通过精密红外吸收光谱法测量人体呼出CO2值。该测量直接在病人的插管上进行,因此模块响应更快,且不会由于气路泄露等原因出现错误的读数。病人的气道分泌物不会污染到模块的分析部件,不用替换抽气泵和其它气路装置,因此模块维修保养所需费用和患者所需费用都降至最低。模块配套的气路适配器操作简单,虽然这些适配器是一次性的,但它们价格低廉。该主流CO2模块C500易于集成,只需在监护仪或麻醉机上配备一个8针雷默插座并编写相应显示/控制软件,就可以使您的病人监护系统配置上最先进的呼吸检测与分析技术。

主要特点:
• 百分百兼容伟康CapnoStat5
• 反应更加迅速,精确率极高
• 长寿命红外光源
• 无需抽气或气动装置,维修保养费用低
• 更加经济实用
• 更强的临床波形识别能力

Ⅷ 想了解麻醉机与麻醉机工作站的相关介绍

麻醉机是由 麻醉呼吸机 钠石灰罐 麻醉气体蒸发器 混合气体流量计 呼吸回路组成 呼吸模式有 间歇正压通气 手动通气

麻醉机工作站 是由麻醉呼吸机 钠石灰罐 麻醉气体蒸发器 混合气体流量计 呼吸回路、心电监护仪、麻醉深度检测、呼末二氧化碳传感器、网络通信等组成 呼吸模式有 间歇正压通气 同步间歇正压通气 CAPA 手动通气 组成

Ⅸ 麻醉机的安全分析

麻醉机是用于实施全身麻醉,供氧及进行辅助或控制呼吸的一套装置.要求提供的氧及吸入麻醉药的浓度应精确,稳定和容易控制.所以,优良的麻醉机,对于减少装置故障所造成的麻醉意外及对病人的安全,起着十分重要的作用.随着医学工程技术的发展,随着几十年来人们对麻醉机/呼吸机的不断研究和改进,现代麻醉机除了具有气路部分的基础构件外,还配备了电子,电脑控制和监测等仪器.多功能现代化的麻醉机和高水平的临床医师相结合,必将大大提高麻醉和机械通气治疗的安全性.掌握麻醉机知识是临床麻醉医师的必修课,怎样用好你手中的设备是你麻醉安全的关键.
现代麻醉机构造和基本原理
一.麻醉机构造
麻醉机的分类:按功能结构分全能型,普及型和轻便型;按流量分高流量麻醉机和低流量麻醉机(也可施行高流量麻醉);按年龄分成人用麻醉机和小儿用麻醉机;兼用麻醉机:成人型附有小儿回路及风箱.
麻醉机的主要部件
麻醉机包括:供气装置,流量计,蒸发器,通气系统,通气机,监测和报警装置,麻醉残气清除系统,各种附件和接头等.
通气机分类:按动力和控制分:气动气控,气动电控,电动电控;按使用习惯分:定量型,定压型.通气机分四个时相:吸气相:流量发生,压力发生 ;吸转呼相:时间,压力,容量,流量;呼气相:至大气压ZEEP,NEEP,PEEP及CPAP;呼转吸换:时间,压力,容量,触发.
通气方式分:定容式,定容式+Sigh(深呼吸),定压式.PSV:压力支持通气,自主呼吸启动的定压式辅助呼吸,适于哮喘,术后呼吸困难或准备脱离呼吸机时;CPAP:持续气道正压;SIMV:同步间歇指令通气;BIPAP:双水平气道正压;CPPV:持续正压通气.
小儿通气机的特点:潮气量50ml以下,精确可调,通气机内管道压缩容积小,Y型管部死腔小,提供的气流为持续恒流.
麻醉机回路系统:分类:按重复吸入程度及有无二氧化碳吸收装置分为开放式,半开放式,半紧闭式及紧闭式四种(Eger分类法).开放系统:无重复吸入活瓣和贮气囊组成.半开放系统 :mapleson系统:无二氧化碳吸收装置的二氧化碳冲洗回路.经常使用的为A,D系统.Mapleson A系统:magil回路:贮气囊起新鲜气体的变流器作用,贮气囊大到足以满足一次深吸气的需要,即稍小于一次最大吸气量,为 2500 ~3000ml,一般2升即足.螺纹管长1米,内径22mm,容积应不小于(最好)等于潮气量,以防肺泡气与新鲜气流在贮气囊混合.自主呼吸时排除二氧化碳效果最好.控制呼吸与流量关系.新鲜气流必须增至每分钟通气量的3倍.Lack回路:同轴,呼气通过内管至呼气阀.Mapleson D 系统:排气阀高压型,贮气囊邻近排气阀.管及贮气囊容积超过病人的潮气量,则管的长度可不影响通气功能.自主呼吸,吸气后部分可能重复吸入含二氧化碳的气体.每分钟通气量的2-3倍.该系统最适宜应用于控制呼吸.Bain系统为mapleson系统改良型.同轴新鲜气流内管.Mapleson F系统(T管系统).半紧闭二氧化碳吸收回路:全麻药吸入浓度和含量较稳定,能保持呼吸道的的湿度和热量,残余气可排除.紧闭式二氧化碳吸收回路:二氧化碳吸收器:100g碱石灰可吸收14-23L二氧化碳,最多达50L .一般情况下,600-700g可至少使用5h,650ml普通罐串联,单罐时利用率为50%,串联为70%.
其他:包括呼吸和排气活瓣, APL阀,螺纹管,贮气囊,面罩,Y型,贮气囊5L,ISO推荐还有0.5,1,1.5,3L等规格.
蒸发器
蒸发器的结构方式:按蒸气流量的调节方式分可变旁路型和定流量型;按蒸发方式分气流拂过型和气泡穿过型(鼓泡式).温度补偿方式有:供热源型和流量调节型.回路内的安放位置:回路内(少用)和回路外.
影响蒸发器输出浓度的因素:受温度,载气与药液接触面积,压力,稀释气流与载气流配比,麻醉药容积,振荡,回路内位置等因素的影响.
废气清除系统(AGSS):有主动式和被动式.
二, 麻醉呼吸机的基本原理
(一)工作原理
呼吸机是实施机械通气的工具,用以辅助和控制病人的呼吸,改善病人的氧合与通气,减少呼吸肌作功,支持循环功能等及作为呼吸衰竭的治疗等.
呼吸机必须具备四个基本功能,即向肺充气,吸气向呼气转换,排出肺泡气以及呼气向吸气转换,依次循环往复.因此必须有能提供输送气体的动力,代替人体呼吸肌的工作;能产生一定的呼吸节律,包括呼吸频率和吸呼比,以代替人体呼吸中枢神经支配呼吸节律的功能;能提供合适的潮气量(VT)或分钟通气量(MV),以满足呼吸代谢的需要;供给的气体最好经过加温和湿化,代替人体鼻腔功能,并能供给高于大气中所含的O2量,以提高吸入O2浓度,改善氧合.
动力源:可用压缩气体作动力(气动)或电机作为动力(电动)呼吸频率及吸呼比亦可利用气动气控,电动电控,气动电控等类型,呼与吸气时相的切换,常于吸气时于呼吸环路内达到预定压力后切换为呼气(定压型)或吸气时达到预定容量后切换为呼气(定容型),不过现代呼吸机都兼有以上两种形式.
治疗用的呼吸机,常用于病情较复杂较重的病人,要求功能较齐全,可进行各种呼吸模式,以适应病情变化的需要.而麻醉呼吸机主要用于麻醉手术中的病人,病人大多无重大心肺异常,要求的呼吸机,只要可调通气量,呼吸频率及吸呼比者,能行IPPV,基本上就可使用.
绝大多数较常用麻醉呼吸机系由气囊(或折叠风箱)内外双环气路进行工作,内环气路,气流与病人气道相通,外环气路,气流主用以挤压呼吸囊或风箱,将气囊(或风箱内的新鲜气体压向病人肺泡内,以便进行气体交换,有称驱动气.因其与病人气道不通,可用压缩氧或压缩空气.
三.使用麻醉机应当了解的几个问题
(一)新鲜气体的供给
麻醉机使用的新鲜气体可由压缩气筒或中心供气系统提供.
在使用压缩气筒时应严格按操作规程进行,先缓慢地稍稍开启压缩气筒,让气流冲掉可能积聚于出气口处的尘土等异物.选用规格适宜,功能正常的压力表和压力调节器与气筒出气口衔接,两者的接合必须牢固可靠,无漏气.将压力调节器的输出管与麻醉机输入管相联接.在开启气筒阀门前,应先将麻醉机上的所有针型阀门关闭,然后缓缓开启气筒阀门,这样可防止高压气流猛然冲击压力调节器和麻醉机.停用气体时,应先将气筒阀门关紧,待残留余气从麻醉机内全部排尽后,再将麻醉机上的所有阀门关闭,目的是使麻醉机内部不遗留有残气.卸除压力调节器之前,应先将气筒阀门关紧.高压气简只准在与压力调节器连接以后使用,两者连接应紧密,无漏气.
麻醉机使用的中心供气源,其氧气压必须保持在≥3.5kg/cm2.在中心供气的条件下,还必须备妥压缩氧气筒,以便随时更换使用.应在供气系统的出口部位常规安装压力表,以示中心气源压力水平,如发现压力未能持续恒定在3~4 kg/cm2,必须暂停使用,应更换压缩氧气瓶气源.在更换气源时,必须强调正确的操作规程.在各种气源的主供管路和区域管路上应安装报警系统.主供管路报警系统监测各种医疗气体的中心供应情况和压力变化.在依赖中心供气系统的各治疗区如手术室,麻醉恢复室等,必须设置区域报警系统,当区域供气系统压力低于或高于正常运行压力的20%时,即发出音响和视觉报警.
中心供气系统不足的原因主要有:输气管道损坏;人为错误将主供管路或区域关闭阀关闭;主供管路压力调节器的调节不合适;在正常维持运行中次供气源发生障碍;压力调节器功能失灵;自动转换装置失灵;管道阻塞(阻塞物常常是安装中遗留的碎屑);接头连接不紧密或存在裂纹;供气管路脱连接;外来设备压迫导致管道扭曲和阻塞等.中心供气系统的各种气体输出管道接头,需要严格遵循直径指数安全系统(DISS)标准,以防误连接造成气体供应错误.
(三)麻醉气体的供给
除N2O经由流量计控制直接输入环路与O2混合供病人吸入外,其它都由蒸发器所盛麻醉药液挥发后输出该麻醉药蒸汽.并按一定浓度供给病人吸入,故蒸发器可谓麻醉机的核心组成部分,关系到麻醉深浅及病人的安全.
现代麻醉机的蒸发器采用了一些专门的结构,以排除温度,流量,压力等因素的影响,能精确地稀释麻醉药蒸气的浓度.新鲜气流(O2 和N2O)到达蒸发器时分成两部分,一部分80%的气流从旁路直接通过蒸发器,两者于出口处汇合,其间的比例根据两者的不同阻力而定.浓度控制位于旁路通道或蒸发室出口处.转动浓度转盘后可以引起其间阻力的改变,从而使两者汇合的比例发生变化.这类蒸发器都是为特定的吸入麻醉药设计的,不能混用,称为可变旁路蒸发器.为了保持比较恒定的麻醉药气体浓度,现代蒸发器都具有完善的温度补偿,压力补偿和流量控制等装置.
地氟醚蒸发器不采用可变旁路的设计,而用电加热并保持39℃恒温,使蒸发室内的地氟醚蒸气压保持200kPa.新鲜气流不进入蒸发室.根据调节钮的开启位置和传感器测得的新鲜气流量的大小,蒸发室自动释放出一定量的地氟醚蒸气,与新鲜气流混合后输出.蒸发器内有两路气流相互独立,新鲜气流流经固定阻力R1时产生回压,称为工作压力,其大小取决于新鲜气流的流量.压差传感器感受R1处的工作压力,启动电子控制的压力调节阀,调节地氟醚蒸气输出的可变阻力R2,使R2处压力调节至相同于R1处的工作压力,再经浓度控制转盘调节后在出口与新鲜气流汇和输出.简而言之,通过电路将地氟醚蒸气调节至与新鲜气流相同的压力,再经刻度转盘调节浓度后输出.新鲜气流增加,工作压力也相应增加.在特定转盘刻度下,在不同新鲜气流时流经气流的比例不变,从而保证蒸发器输出的恒定.
(四)低流量循环紧闭麻醉的呼吸回路
低流量循环紧闭麻醉具有麻醉平稳,麻醉用药量少,不污染环境,有利于维持气道湿度等优点.但同时对麻醉装置也提出了较高的要求:
1.麻醉机低压系统和呼吸回路的密闭性能要良好,泄漏不得超过200ml/min.
2.要具有精准的气体流量计,在低流量情况下,送气亦要精确.
3.要有高质量的蒸发器,能在流量很低时(200ml/min)也能准确地输出麻醉药浓度.
4.麻醉呼吸机同样要高质量的,呼吸机送出的潮气量要精确.
5.二氧化碳吸收罐应有足够的容积,至少容纳500g以上的钠石灰.
6.呼吸回路以聚乙烯管为好,因其对麻醉药的吸收量小.
(五)安全保障系统
为了防止麻醉机输出低氧性气体,麻醉机的安全保障系统及使用麻醉机前的安全检查显得格外重要.一般麻醉机对于O2,N2O等不同气源的接口有不同的轴针及口径以防止接错.现代麻醉机还增加其它一些装置(如流量表联动装置,氧比例装置)以控制气体的输出比例.
即使麻醉机配备了联动装置或氧比例装置,在下述情况中,麻醉机仍将输出低氧性气体,应引起注意.
(1)气源错误:流量表联动装置和氧比例装置只能感受和调节其内的气体压力和流量,不能识别氧源的真伪.
(2)联动装置或氧比例装置故障:当装置的某部件损坏,出现故障时,可能发生低氧气体的输出.
(3)其它气体的加入:目前麻醉机的气体比例装置只限于控制氧化亚氮和氧的比例,并未考虑其它气体的加入.因此,若加入氦,氮或二氧化碳等气体于麻醉气体中,则有可能产生低氧性气体的输出.
(4)流量表泄漏:玻璃流量管是麻醉机气路部件中较易破损的部位,若存在轻微的裂痕不易被察觉,使输出气流量发生错误而导致缺氧.
因此,准确测定混合气中麻醉气体的浓度可有效预防意外发生.质谱仪可同时测出混合气体内每种气体的浓度,是目前最先进的气体浓度分析仪,基本原理是呼出或吸入的气体被质谱仪内的电子束轰击下离解成离子,离子经加速和静电聚焦成离子束而后进入磁场,由偏转系统使各种离子分散成弧形轨道,每种离子的轨道半径与各自的电荷/质量比值成正比,质量大的半径大,于是不同种类的离子在空间分散开,形成质谱,再经离子收集器分别测量不同气体离子所带电流.电流量大小与气体离子数(即浓度)成正比.放大后经电子处理系统分析,很快显示出数值(mmHg或%)能同时迅速(<100ms,0%-90%,测出每次呼吸中各种气体浓度,可同时监测O2,N2O,CO2,N2及挥发性麻醉药.
四.麻醉机的的使用
1.潮气量的设置
理论上,如系真正完全紧闭式环路,只需补充机体代谢消耗的氧量(4ml/(kg·min))即可.事实上,难免潜在程度不等的漏气,故必须注意使用足够的新鲜气流量.使用麻醉呼吸机时,麻醉与通气两者之间互相影响,由麻醉机提供持续新鲜气流,同时供病人通气和麻醉,其潮气量不单与风箱上下移动度有关,而与许多因素有关.输入环路的潮气量为预设定的风箱上下移动度与吸气相进入环路内的新鲜气流量.正常情况下,因新鲜气流量的改变引起潮气量轻微改变对于成人影响不大,但对小儿则可导致严重后果.因新鲜气流量的增加可能引起小儿过度通气甚至气压伤.麻醉中可通过许多方法评估预置潮气量是否合适,如听诊肺部,观察肺部活动幅度,使用潮气量计,环路内气量计,吸气峰压和CO2监测等.单凭观察风箱移动度容易发生差错.
2.通气压力和呼吸频率
间歇正压通气的通气压力正常时应1.47kFa(15cmH20)水平,气道峰压应低于2.94kPa(30cmH20).通气频率8~40次/分钟,可根据病人需要,通气效果及代谢状态进行调整,成人常为10~20次/分钟.使用呼气终末正压通气(PEEP)时,通常于呼气末保持的气道正压为0.49~1.47kPa(5~15cmH20).为选择最佳通气压力,可逐渐增加呼气末正压,并根据治疗反应寻找最佳PEEP值,而且随病情变化及时调整,把其对循环的干扰尽可能减少到最低程度.
麻醉中应用高频通气时,一般选用60~100次/分钟的通气频率即可维持满意的肺部气体交换,但以静脉麻醉为宜.当用吸入麻醉时则对吸入麻醉药的输出有较大影响.
(三)麻醉呼吸机使用中的注意事项
使用麻醉呼吸机前,需对其性能,参数和附件功能进行严格监测,并定期给予保养,发现异常应及时进行维修.
呼吸机内设置的解压阀可能出现某些故障,如阀门关闭不严,引导管脱落,活瓣破裂等.阀门关闭不严时,吸气相期间有大量麻醉气体异常地逸入废气清除系统,可导致呼吸机完全失灵.如果解压阀固定在关闭不启位置,则会引起肺气压伤.
气道压力监测是麻醉呼吸机所必需的,可监测通气功能,了解是否有足够正压;监测肺内或环路内压力变化,特别是吸气峰压的变化,吸气峰压增高常见于气管导管扭曲,气管导管开口于隆突附近或进入支气管,螺纹管受压不通,气道插入过粗的气体采样管等.
使用容量监测仪可连续监测呼出气潮气量,分钟通气量或同步监测两参数.宜将报警阚值设置在容量稍高或稍低的限值范围.
五.麻醉机使用前安全检查
麻醉前应对使用的麻醉机进行全面安全检查,这对于预防麻醉意外尤为重要.目前推荐使用1993年美国食品和药品管理局(FDA)发布的麻醉机安全检查程序.这一检查程序应与所使用麻醉机的用户操作手册结合起来并做出必要的修正与补充.麻醉机使用前应确认一些常规监测设备功能正常,如二氧化碳浓度监测,脉搏氧饱和度监测,呼吸回路氧分析仪,呼吸容量监测以及呼吸环路高,低压监测.还要注意麻醉挥发罐麻药液面的检查,其中以氧浓度检测,低压系统的泄漏试验和循环回路试验最为重要.
(一)检查紧急通气装置
证实备有功能良好的简易通气装置.
(二)检查高压系统
1.氧气筒供氧
(1)打开氧气筒开关,证实至少有半筒(压力约为70kg/cm2或1000psi)的氧气量.
(2)关闭氧气筒开关.
2.检查中心供氧
检查麻醉机管道已与中心供氧连接,压力表所示压力为3.5kg/cm2或50psi .
(三)检查低压系统
1.低压系统的初始状态
(1)关闭流量控制阀和蒸发器.
(2)检查蒸发器内药液充满水平,关紧蒸发器加药口上的帽盖.
2.检查低压系统的逸漏
(1)证实机器总开关和流量控制阀已关闭.
(2)在气体共同出口处接上"负压皮球".
(3)重复挤压负压皮球直至完全萎陷.
(4)证实完全萎陷的负压皮球至少保持10秒.
(5)一次开放一个燕发器,重复上述第(3),(4)项操作.
(6)卸下负压皮球,接上供给新鲜气体的软管.
低压系统泄漏试验主要检查流量控制阀到共同输出口之间的完整性.根据低压系统中有无止回阀,泄漏试验的方法有所不同.①无止回阀的麻醉机:如北美Drager 的麻醉机及大多数国产麻醉机.正压试验只能用于无止回阀的麻醉机的检查.而负压试验既可用于带止回阀的麻醉机,也可用于无止回阀的麻醉机.正压试验操作简便,但灵敏度稍差,常不能检测出90%.
氧浓度监测是评估麻醉机低压系统功能是否完好的最佳装置和方法,用于监测流量阀以后的气体浓度的变化.能预防氧比例系统局限性的情况中所造成的低氧的发生.
2.检查呼吸环路的初始状态
(1)将转向开关转向手控(贮气囊)通气模式.
(2)证实呼吸环路完好无损,无阻塞.
(3)证实CO2吸收器内已装满吸收性能良好的钠石灰.
(4)装上呼吸环路所需要的辅助部件.
3.检查呼吸环路有无漏气
(1)关闭所有气体流量表至"零"(或最低).
(2)关闭逸气活瓣(APL)和堵闭Y接管.
(3)用快速充氧加压呼吸环路至30cmH2O.
(4)肯定压力维持在30 cmH2O至少10秒.
(5)打开逸气活瓣(APL)降低环路内压力之正常.
(六)检查手控和自动机械通气系统和单向阀
在Y形接管上接上另一个呼吸囊.
调整合适的通气参数.
氧流量升至250mI/min,其他气流关闭至"零".
转向开关转向自动通气模式.
启动呼吸机,快速充氧至折叠囊和呼吸皮囊内.
证实吸气相折叠囊能输出正确的潮气量,呼气时折叠囊能完全充满.
检查容量监测仪指示容量与通气参数能否保持一致.
检查单向阀工作是否正常.
测试呼吸环路各附件,保证功能正常.
关闭呼吸机,将开关转向手控通气.
继续进行手控通气,确定模拟肺的充气与排气,顺应性感觉恰如其分.
测毕从Y形接管上卸下呼吸囊.
(七)检查所有监护仪的定标及其报警上下界限
氧浓度监护仪.
脉搏氧饱和度监护仪.
CO2浓度监护仪.
通气量监护仪(肺量计).
气道压监护仪.
(八)最后检查机器的最终状态
APL阀开放.
蒸发器关闭.
转向开关处于手控位.
所有流量计位于零(或最小量).
确认吸引病人分泌物的吸引器吸引力已足够.
呼吸环路立即可用.
总之,麻醉机工作正常与否,直接关系到麻醉的安全和质量,要么麻药泄露,麻醉过浅,要么麻醉过量,要么通气不足,要么过度通气,要么对病人造成气道压伤等多种问题,在麻醉前花点时间检查一下麻醉机非常有必要,不要因为我们怕麻烦,忽视了麻醉机的检查给病人造成不必要的伤害,如果使用工作不正常的麻醉机出现状况问题责任在我们,故此呼吁大家重视麻醉机的安全检查.

Ⅹ 麻醉机的工作原理

麻醉最普遍的呼吸回路都是“循环系统”。两个单向活瓣使气体流入由化学方法吸收二氧化碳的循环回路中去。在此系统中,来自麻醉机的新鲜气体在二氧化碳吸收罐的下游部位和吸气单向活瓣的上游部位进入呼吸回路。进来的新鲜气体与回路系统内原有的气体混合,流过吸气单向活瓣,并且流经可重复使用或一次性使用的波纹管道到达Y 形管。病人呼出的气体流过循环系统的另一支(呼气),通过呼气单向活瓣进入储气囊。通过挤压,储气囊中产生正压,迫使已搜集的气体通过二氧化碳吸收装置。由于流入回路系统的新鲜空气要比病人和吸收剂消耗的气体多得多,因此就必须在呼气单向活瓣和二氧化碳吸收罐之间安装一个这样保险阀。当压力超过规定阈值时多余气体可以逸出。吸收罐中盛装碳酸钠石灰(钠、钾和氢氧化钙的混合物)或盛装氢氧化钡石灰(氢氧化钡、八氢水化物和氢氧化钙的混合物)。这些物质通过化学反应吸收二氧化碳,同时释放热和水(释放出的水可以湿润循环系统中的空气)。当吸收能力耗尽时,指示剂就会改变颜色。吸收罐的设计必须要便于更换吸收剂。排出过多气体用的APL 阀通常用的是一个弹簧负载阀。弹簧张力是控制回路压力的,如果病人自发呼吸,保险阀就处于打开的位置,呼吸以最小阻力吸气和呼出气流。如果病人被深度麻醉以及深度麻痹,麻醉师就可以部分或全部关上保险阀,以挤压储气囊使气体充满肺部,帮助和控制病人呼吸。从保险阀排出的废气应通过排气管引导到手术室外,以避免微量麻醉气体对手术室工作人员的健康的危害。
病人在完成麻醉诱导后,将空气麻醉机与密闭式面罩或气管导管连接。吸气时,麻醉混合气体经开启的吸气活瓣进入病人体内;呼气时,呼气活瓣开启,同时吸气活瓣关闭,排出呼出的气体。当使用辅助或控制呼吸时,可利用折叠式风箱。吸气时压下,呼气时拉起,保证病人有足够的通气量。同时根据实际需要,调整乙醚开关以维持稳定的麻醉水平。
这种装置的不足之处是乙醚浓度较低,只能作为麻醉的维持,而且乙醚的消耗量较大,易造成环境污染。 该装置以低流量的麻醉混合气体,经逸气活瓣(门)单向流动供给病人。呼出的气体经呼气活瓣进入CO2吸收器重复使用。其结构主要由供氧和氧化亚氮装置、气体流量计、蒸发器、CO2吸收器;单向活瓣、呼吸管路、逸气活瓣、储气囊等组成,如图2-1-3所示。
现代的麻醉机还配备有通气机气道内压、呼气流量、呼气末CO2浓度,吸入麻醉药浓度、氧浓度监视仪、低氧报警及低氧-氧化亚氮自动保护装置。图2-1-4是一个实际的麻醉气路图。这是一个循环紧闭式麻醉回路。在进行麻醉之前,首先要给病人通一定量(一般为3~5min)的纯氧气,然后再进行麻醉操作。
麻醉机的组成和作用
麻醉机从结构上由以下几部分组成:机架 、外回路 、麻醉呼吸机 、麻药蒸发器、流量计、监护系统。麻醉机从工作原理上由四个主要分系统构成:气体供给和控制回路系统、呼吸和通气回路系统、清除系统,以及一组系统功能和呼吸回路监护仪。某些麻醉机还有一些监护仪和报警器,以指出与心肺功能或呼吸混合气体中气体和麻醉剂浓度有关的某些生理变量和参数的数值及变化。通常生产厂家对标配产品都仅提供较少的监护和报警组合。
下面主要从工作原理说明麻醉机的构成和作用: 由于麻醉机工作时需要大量的氧气,所以通常是从医院的中央供气系统或氧气钢瓶中获得。从钢瓶输入回路的每种气体,都要通过过滤器、单向通气阀和调节器,调节器可将压力降到麻醉机合适的工作压力。中央供气系统不需要调节器,因为气体已经降到0.4MPa左右。麻醉机的合适工作压力为0.3~0.6MPa。大多数麻醉机都有氧源故障报警系统,如果氧气压力低于0.28MPa以下,机器会减少或切断其他气体的流量,并启动报警器。
在连续流动装置中的每一种气体的流量均由流量计控制,并由流量计显示出来。流量计可以是机械性的,也可以是带LCD的电子传感器。气体通过控制阀和流量计后,进入低压回路,如果需要还要通过蒸发罐,然后供给病人。好的麻醉机,笑气和氧气的流量控制机构应该是连动的,只有这样氧气与笑气的比例就永远不会降到最小值(0.25L/分)。 大多数麻醉机可提供连续流动循环的氧气和麻醉气体,称为循环系统。在这类麻醉机中,有两种主要的呼吸回路,紧闭式和半紧闭式。在紧闭式呼吸回路中,病人呼出的气体经去除CO2后,全部返回循环系统。半紧闭式中,病人呼出的气体部分进入循环系统,部分排出循环系统。在循环系统中,新鲜气体的供给流量低于1L/min称为低流量麻醉,低于0.5L/min的新鲜气体流量称为最低流量麻醉。
手动通气要求操作者不断手动挤压储气囊使病人呼吸,在较长时间手术时,操作者不但非常疲劳,而且影响其他工作,因此常用自动呼吸机机械地使病人得以呼吸。呼吸机迫使麻醉混合气体进入病人回路和呼吸系统中,接受病人呼出的气体和新鲜气体。麻醉师可根据病人的情况调节潮气量、呼吸频率、吸呼比和分钟通气量等参数。调节通气方式来满足病人的各种需要。
3、清除系统
又称为二氧化碳吸收系统,由1-2个CO2吸收罐(钠石灰罐)组成,罐内装有钠石灰或钡石灰,主要作用是清除病人呼出气体中的CO2。 麻醉机根据不同的配置有一套与监护有关的装置,如用于监测气道方面、生理方面、麻醉气体浓度以及能间接反映病人麻醉深度、肌肉松弛程度的监护。
大部分麻醉机的监护系统只配一台附有基本监护装置作为系统的平台用,监护的内容包括:气道压力、吸入潮气量、分钟通气量、呼吸频率以及相关的报警系统。所需其他的监护可单独购得,加到系统中去。
另外,麻醉工作站还需配有麻醉信息管理系统,这套系统可接收、分析、储存与麻醉临床和行政管理有关的信息,自动采集监护仪的信息并自动生成麻醉记录单。 科曼、迈瑞、谊安、长锋、晨伟、凯泰等

阅读全文

与麻醉机二氧化碳检测装置相关的资料

热点内容
淋浴的冷热水阀门怎么换 浏览:872
氧气阀门检修安全要求 浏览:620
专用设备制造业税负多少 浏览:343
cs6扩展版工具箱 浏览:743
北京博世电动工具专卖 浏览:617
某学生用图的实验装置测物块 浏览:568
摊铺轴承坏了怎么办 浏览:158
硅胶洗油设备哪里生产 浏览:651
金科五金机电城D区商业门面价 浏览:343
超声波什么时候有雾气 浏览:502
iphone怎么选择播放设备 浏览:854
兆丰轮毂轴承多少钱 浏览:160
江湖多功能电动工具 浏览:995
光驱如何改装机械硬盘吗 浏览:480
工具箱汉化smart 浏览:133
铸造除尘器为什么要做保温层 浏览:617
怎么看机械表要保养 浏览:517
小学生雕刻工具箱 浏览:417
k5仪表信息怎么调 浏览:936
青岛泰科阀门怎么样 浏览:277