Ⅰ 求问有什么比较简单容易用电机控制的机械结构可以实现竖直运动的
一般这种情况都用步进电机加丝杆,普通电机不行,无法定位。
Ⅱ 门窗中滑杆是干嘛用的
平开上悬门窗五金件。门窗中的滑杆是一种用于平开上悬门窗五金件的传动器,包括一固定不动的定杆,一与定杆叠合并可相对于定杆滑动的滑杆及其传动装置
Ⅲ 螺杆式制冷压缩机的润滑装置是怎样的,它有哪些作用
螺杆式制冷压缩机一般采用喷油式压力润滑,即在压缩机工作过程中,通过油泵将油喷射至两螺杆工作部位及其他需润滑的部位。其作用有以下四个方面:
(1)使转子及其他运动机件不发生干摩擦,减少了磨损,提高了零部件的使用寿命。
(2)带走了压缩过程中所产生的压缩热,降低了排气温度,可将排气温度控制在80℃以下,并可起到防止机件受热变形的作用。
(3)用油膜封闭转子间的间隙,减少了内部的泄漏量,增大了压差和压缩比,提高了工作效率。
(4)有效地降低了机械噪声。
Ⅳ 机械运动中的杆杠原理具体怎么解释
简单机械
凡能够改变力的大小和方向的装置,统称“机械”。利用机械既可减轻体力劳动,又能提高工作效率。机械的种类繁多,而且比较复杂。根据伽利略的提示,人们曾尝试将一切机械都分解为几种简单机械,实际上这是很困难的,通常是把以下几种机械作为基础来研究。例如,杠杆、滑轮、轮轴、齿轮、斜面、螺旋、劈等。前四种简单机械是杠杆的变形,所以称为“杠杆类简单机械”。后三种是斜面的变形,故称为“斜面类简单机械”。不论使用哪一类简单机械都必须遵循机械的一般规律——功的原理。
杠杆
用刚性材料制成的形状是直的或弯曲的杆,在外力作用下能绕固定点或一定的轴线转动的一种简单机械。其上有支点(用O表示),动力(F)作用点,阻力(W)作用点,杠杆的固定转轴就是通常所说的“支点”,从转轴到动力作用线的垂直距离叫“动力臂”,从转轴到阻力作用线的垂直距离叫“阻力臂”。上述就是通常所讲的三点两臂。由于杠杆上三点的位置不同,即产生不同的受力效果。
杠杆原理
亦称“杠杆平衡条件[1]”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为 F1· L1=F2·L2 简单机械
式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
动力
任何机械,不论是简单的还是复杂的,在工作时,总要受到两种力的作用:一种是推动机械的力叫作“动力”动力是使杠杆转动的力。另一种是阻碍机械运动的力叫作“阻力”阻力是阻碍杠杆转动的力。动力可以是人力,也可以是畜力、风力、电力、水力、蒸汽压力等,阻力除了我们要克服的有用阻力之外,还有一些是不可避免的无用阻力。
作用线
通过力的作用点沿力的方向所引的直线,叫作“力的作用线”。
动力臂
从支点到力的作用线的垂直距离叫“力臂”。从支点到动力的作用线的垂直距离L1叫作“动力臂”;从支点到阻力的作用线的垂直距离L2叫作“阻力臂”。如果把从动力点到支点的棒长距离作为动力臂,或把从阻力点到支点的棒长距离作为阻力臂,这种认识是错误的。这是因为对动力臂和阻力臂的概念认识不清所致。
阻力臂
见动力臂条。
转动轴
转动是常见的一种运动。当物体转动时,它的各点都做圆周运动,这些圆周的中心在同一直线上,这条直线叫做“转动轴”。门、窗、砂轮、电动机的转子等都有固定转轴,只能发生转动,而不能平动。几个力作用在物体上,它们对物体的转动作用决定于它们的力矩的代数和。若力矩的代数和等于零,物体将用原来的角速度做匀速转动或保持静止。
三类杠杆
对杠杆的分类一般是两种方法。第一种是以支点、阻力点和动力点所处的位置来分的;另一种是按省力或费力来区分的。无论怎样来划分,总离不开省力、费力、不省力也不费力这几种情况。 简单机械
机械利益
表示机械省力程度的物理量。机械虽然绝对不能省功,但可以省力。使机械作功的力称为“动力”(F),阻碍机械作功的力称为“阻力”(P)。使用机械的目的,在于使用很小的动力而与阻力平衡。所谓机械利益(A),就是机械的有用阻力(P)跟动力(F) 小于1。 机械利益>1时,省力费时,凡省力的机械,其机械利益必大于1。例如,独轮车、钳子、起子、省力的杠杆等都是省力的机械。机械利益=1时,不省力,也不费力。例如物理天乎。机械利益<1时,费力省时,例如竹夹、火钳等。机械利益是由实际测得的有用阻力和动力的大小所决定。由于机械润滑情况的不同,在克服同样的有用阻力时,亦有所不同。机械润滑得不好,无用阻力大,需要动力也大,机械利益就小些;机械润滑得好,无用阻力小,需要的动力也小,机械利益就大些。新生产出的机器需要磨合,汽车出厂要用上一段时间,目的是使其摩擦阻力减小。但机器陈旧,机件磨损,又会增加阻力。
杠杆的应用
不同类型杠杆各具有不同的特点和用途。掌握了杠杆原理,就可根据需要有意识地选用不同类型的杠杆来使用。应明确:省力杠杆省力但要多移动距离,费力杠杆费力但省距离,等臂杠杆不省力也不省距离,又省力又省距离的杠杆是没有的。有的杠杆是否省力或省距离,不是永恒不变的。根据使用情况的不同,会由省力变为省距离。例如,用铁锹铲土,往车上装土的过程都会有所改变。铲土时支点在动力点及阻力点之间,在装土时动力点在支点与阻力点之间。为此,在使用杠杆时应注意几点: 1.解答杠杆问题时,必须根据题意画出示意图,在图上标出杠杆的支点、动力作用线和阻力作用线。同时用线段标明动力臂和阻力臂的大小,再根据杠杆平衡条件,列出方程,进行计算。 2.力臂是一个重要的概念。力臂是从支点到力的作用线的垂直距离,不要理解为力臂是从支点到力的作用点的长度。动力和阻力都是指作用在同一杠杆上的力,而不是作用在重物或其他物体上的力。 3.画杠杆示意图的方法: (1)画出杠杆:用粗直线表示直杠杆,用变曲的粗线表示曲杠杆。 (2)在杠杆转动时找出支点,并在支点旁用箭头表示杠杆转动的方向。 (3)根据转动方向判断动力、阻力的方向。动力、阻力的作用点应画在杠杆上,可用力的示意图表示。 (4)用虚线表示力的作用线的延长线和力臂。 4.杠杆的平衡条件,适用于任意一个平衡位置上,所谓杠杆的平衡是指杠杆静止不转动或匀速转动。
杆秤
它是测量物体质量的量度工具,是以提纽为转动轴,根据杠杆平衡原理制造的。杆秤主要由秤杆、秤砣、秤钩(或秤盘)等构成。如图1-23所示。G表示杆秤的重力,B点是它的重点,未挂重物时若将 A点即为杆秤的“定盘星”。在秤钩上加物W后,将秤砣从A点移到A' 力G相对应的刻度A'的位置。杆秤是我国劳动人民所发明并使用已久的测量工具,旧秤以斤,两为单位计量,目前以千克计量。
力矩
又叫“转矩”,是表示力对物体作用时,使物体发生转动或改变转动状态的物理量。力矩是矢量。力矩的大小等于力与从转轴到力的作用线的垂直距离之乘积。如果物体所受的力不在垂直于转轴O的平面内,就必须把力分解成两个分力:一个分力与转轴平行;另一个分力是在转动的平面内。只有转动平面内的分力才可能改变物体的转动状态。因此,在力矩等于力跟力臂乘积的计算中,应理解力是在它的作用点的转动平面内的分力。如这一点在力的作用线上,则力矩为零。如果若干个力同时作用在一个物体上,则合力矩是所有分力矩的代数和。一个处于平衡的物体,顺时针方向力矩的和等于逆时针方向力矩的和,在国际单位制中,力矩的单位是米·牛顿。其方向用右手螺旋法则决定。在中学阶段,因为只研究有固定转轴的物体的平衡,力矩就只有两种转向。规定物体逆时针转动的力矩为正,使物体顺时针转动的力矩为负。力矩愈大,使物体转动状态发生改变的效果就愈明显。用大小相同的力推门时,力的作用点离转轴愈远,且方向垂直于门,力臂愈大,则推门愈省力。
力偶
大小相等、方向相反,但作用线不在同一直线上的两个力叫作“力偶”。用双手攻螺纹或用手旋钥匙、水龙头时,所施加的作用常是力偶。它能使物体发生转动,或改变其转动状态。汽车驾驶员双手转动转向盘时所施加的一对力就是一个力偶。力偶的转动效果决定于力偶矩的大小。力偶矩等于其中任何一个力的大小和两力作用线之间的垂直距离(力偶臂)的乘积。如图1-24所示。如果作用力F的方向跟AB垂直,AB的长度等于d,那么这个力偶的力偶矩(M)为: M=±Fd。 式中Fd为力偶矩的大小,符号用来表示力偶的转向。规定力偶逆时针转向取“+”,反之取“-”(也可规定,力偶顺时针转向取“+”,那么力偶逆时针转向就取“-”)。应注意:力偶中力的方向不跟AB垂直时,应像力矩那样分解成垂直分量,再进行计算。力偶的转矩(即力偶矩)和所绕着转动的点无关。由于力偶的合力为零,它不能使物体产生位移,只能使物体发生转动或改变物体的转动状态。
力偶矩
简称为“力偶的力矩”,亦称“力偶的转矩”。力偶是两个相等的平行力,它们的合力矩等于平行力中的一个力与平行力之间距离(称力偶臂)的乘积,称作“力偶矩”,力偶矩与转动轴的位置无关。力偶矩是矢量,其方向和组成力偶的两个力的方向间的关系,遵从右手螺旋法则。对于有固定轴的物体,在力偶的作用下,物体将绕固定轴转动;没有固定轴的物体,在力偶的作用下物体将绕通过质心的轴转动。
力偶臂
力偶之两个力之间的垂直距离。见力偶条图1-24所示。
轮轴
是固定在同一根轴上的两个半径不同的轮子构成的杠杆类简单机械。半径较大者是轮,半径较小的是轴。从形式上看是圆盘,但从实质上看起来只有它们的直径或半径起力学作用。用R表示轮半径,也就是动力臂;r表示轴半径,也就是阻力臂;O表示支点。当轮轴在作匀速转动时,动力×轮半径=阻力×轴半径,所以轮和轴的半径相差越大则越省力。上式动力用F表示,阻力用W表示,则可写成FR=Wr。 即利用轮轴可以省力。若将重物挂在轮上则变成费力的轮轴,但它可省距离。轮轴的原理也可用机械功的原理来分析。轮轴每转一周,动力功等于F×2πR,阻力功等于W×2πr。在不计无用阻力时,机械的 日常生活中常见的辘轳、绞盘、石磨、汽车的驾驶盘、手摇卷扬机等都是轮轴类机械。
滑轮
滑轮是属于杠杆变形的一种简单机械,是可以绕中心轴转动的,周围有槽的轮子。使用时,根据需要选择。滑轮可分为定滑轮、动滑轮、滑轮组、差动滑轮等。有的省力,有的可以改变作用力的方向,但是都不能省功。
定滑轮
滑轮的轴固定不动,它实质上是一个等臂杠杆。动力臂和阻力臂都是滑轮的半径r,根据杠杆原理Fr1=Wr2。它的机械利益为 变了动力的方向,如要把物体提到高处,本应用向上的力,如利用定滑轮,就可以改用向下的力,因而便于工作。
动滑轮
滑轮的轴和重物一起移动的滑轮。它实质上是一个动力臂二倍于阻力臂的杠杆。根据杠杆平衡的原理Wr=F·2r,它的机械利 改变用力的方向。其方向是与物体移动的方向一致。
滑轮组
动滑轮和定滑轮组合在一起叫“滑轮组”。因为动滑轮能够省力,定滑轮能改变力的方向,若将几个动滑轮和定滑轮搭配合并而成滑轮组,既可以改变力的大小,又能改变力的方向。普通的滑轮组是由数目相等的定滑轮和动滑轮组成的。而这些滑轮或者是上下相间地坐落在同一个轮架(或叫“轮辕”),或者是左右相邻地装在同一根轴心上。绳子的一端固定在上轮架上,即相当于系在一个固定的吊挂设备上,然后依次将绳子绕过每一个下面的动滑轮和上面的定滑轮。在绳子不受拘束的一端以F力拉之,被拉重物挂在活动的轮架上。对所有各段绳子可视为是互相平行的,当拉力与重物平衡时,则重物W必平均由每段绳子所承担。若有n个定滑轮和n个动滑轮时, 且为匀速运动时,则所需之F力的大小仍和上面一样。因此,在提升重物时才能省力。其传动比乃为F∶W=1∶2n。注意,在使用滑轮组时,不能省功,只能省力,但省力是以多耗距离(即行程)为前题的。 前边所分析的定滑轮、动滑轮以及滑轮组,都是在不计滑轮重力,滑轮与轴之间的摩擦阻力的情况下得出的结论。但在使用时,实际存在轮重和摩擦阻力,所以实际用的力要大些。
差动滑轮
即链式升降机,是一种用于起重的滑轮组。上面是由两个直径不同装在同一个轴上的圆盘A、B组成的定滑轮。下面是一个动滑轮,用铁索与上面的定滑轮联结起来而成滑轮组。若大轮A的半径是R,小轮B的半径是r,如图1-25所示。当动力F拉链条使大轮转一周,动力F拉链条向下移动了2πR,大轮卷起链条2πR,此时小轮也转动一周,并放下链条长2πr于是动滑轮和重物W上升的高度为 由于2R大于(R-r),差动滑轮的机械利益大于1,若提高机械利益,可加大两轮的半径同时缩小两轮间的半径差。这种机械,亦称“葫芦”,有手动,也有用电来驱动的。链条是闭合的,为防止滑轮和链条间的滑动,滑轮上有齿牙与链条配合运动。
斜面
简单机械的一种,可用于克服垂直提升重物之困难。距离比和力比都取决于 简单机械
倾角。如摩擦力很小,则可达到很高的效率。用F表示力,L表示斜面长,h表示斜面高,物重为G。不计无用阻力时,根据功的原理。得 FL=Gh。实验证明,沿着光滑斜面向上拉重物数学要的拉力F小于重物的所受的重力G,即利用斜面可以省力,当斜面高度一定时,长度L不同的斜面所需的拉力也不同:L越长,F越小,越省力 倾角越小,斜面越长则越省力,但费距离。
螺旋
属于斜面一类的简单机械。例如螺旋千斤顶可将重物顶起,它是省力的机械。千斤顶是由一个阳螺旋杆在阴螺旋管里转动上升而将重物顶起。根据功的原理,在动力F作用下将螺杆旋转一周,F对螺旋做的功为F2πL。螺旋转一周,重物被举高一个螺距(即两螺纹间竖直距离),螺旋对重物做的功是Gh。依据功的原理得 很小的力,就能将重物举起。螺旋因摩擦力的缘故,效率很低。即使如此,其力比G/F仍很高,距离比由2πL/h确定。螺旋的用途一般可分紧固、传力及传动三类。
齿轮和齿轮组
两个相互咬合的齿轮,在它们处于平衡状态时,不省力,因为齿轮的实质是两个等臂杠杆,所以咬合的齿轮不省力,只省圈数。
劈
亦称“尖劈”,俗称“楔子”。它是简单机械之一,其截面是一个三角形(等腰三角形或直角三角形)。三角形的底称作劈背,其他两边叫劈刃。施力F于劈背,则作用于被劈物体上的力由劈刃分解为两部分,如图1-26所示。P是加在劈上的阻力,如果忽略劈和物体之间的摩擦力,利用力的分解法,知P与劈的斜面垂直,P的作用可分成两个分力:一个是与劈的运动方向垂直,它的大小等于P·cosα,对运动并无影响;另一个是与劈的运动方向相反的,它的大小等于P·sinα,对运动起阻碍作用。所以,当F=2P·sinα时劈才能前进,因而P与F大小之比等于劈面的长度和劈背的厚度之比,因此劈背愈薄,劈面愈长,就愈省力。劈的用途很多,可用来做切削工具,如刀、斧、刨、凿、铲等;可用它紧固物体,如鞋楦榫头,斧柄等加楔子使之涨紧;还可用来起重,如修房时换柱起梁等。
功
是描述物体状态改变过程的物理量,能量变化的量度。功的概念来源于日常生活中的“工作”一词。在物理学中,它有特殊的含义。当物体在恒力F的作用下,力的作用点的位移是S时,这个功就等于力跟距离的乘积。对初中学生来说,只要明确“在力的作用下,物体沿力的方向通过了一段距离,那么这个力就对物体做了功”,这是指物体在恒力作用下,沿力的方向作单向直线运动的情况,所以对功的计算可用公式W=FS。当物体在恒力作用下,作非单向直线运动,如竖直上抛运动、平抛运动、斜抛运动等等,物体受力方向和运动方向不一定是一致时,对功的理解应加深为“力对物体所做的功,等于力的大小、力的作用点的位移大小,力和位移间夹角的余弦三者之乘积”即W=FScosα。式中W表示外力F对物体所做的功,S表示物体移动的路程,α表示F与S之间的夹角。根据公式研究力对物体做功的一些情况: 1.当α=0°时,W=FS,力对物体做正功; 2.当0°<α<90°时,1>cosα>0,则力F的有效分力Fcosα和物体的运动方向一致,力F对物体做正功; 3.当α=90°时,cosα=0,则W=0,此时力F对物体不做功; 4.当180°>α>90°时,-1<cosα<0,则W<0,即W为负值。在这种情况下F对物体做负功,也可说成物体克服阻力F做功; 5.当α=180°时,则W=-FS,这时力F对物体做负功,或者说成物体克服阻力F做功。 必须注意:在研究有关“功”的问题时,应分清有没有做功,谁在做功。功是一个只有大小而没有方向的物理量,它是标量而不是矢量。至于正功和负功,不过是区别外力对物体做功还是物体克服阻力做功,或用来表示力与路程同向还是反向,并不是功有方向性。 功是力对空间的累积效应。力对物体做功,使物体发生位置或运动状态的改变,因而也就发生了机械能的改变。功即是反映在这一过程中,物体机械能改变多少的物理量。在力学中功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。功的单位和能量单位一样,在国际单位制中,都是焦耳。 计算变力做功是把运动的轨迹分成许许多多无限小的小段,在每个小段内,可以把力看作为恒力,按恒力做功的定义来计算在各个小段内所做的功,最后把各个小段的功加起来,就是变力做的功,即A=ΣFi·ΔSi,如果力和位移都是连续的,则可用积分法计算,
功的原理
亦称“机械功的原理”。即动力对机械所做的功等于机械克服阻力所做的功。也就是说利用任何机械都不能省功。动力功W动,又称输入功或总功。阻力功W阻,包括克服有用阻力所做的W有用(又称输出功)和克服无用阻力所做的W无用(又称损失功),即W动=W阻=W有用+W无用。也可写成W输入=W输出+W损失。功的原理是机械的基本原理。要省力就要多移动距离,要少移动距离就要多用力,使用任何机械都不能省功。在机械做功过程中,只有在不存在无用阻力,机械本身作匀速运动的理想情况下,有用功才等于总功,效率为100%。事实上,必然存在无用阻力,效率一定小于100%,也就是说使用任何机械,在实际情况下总是费功的。应明确,只有在理想情况下,有用功才等于总功。
正功
作用力的方向和力的作用点的位移方向之夹角小于90°且大于或等于0°时(即α为锐角),根据公式作用力A做正功。当力F与位移S夹角α=0°时,W=FScos0°=FS,F做最大正功;0°<α<
负功
当作用力方向与力的作用点位移方向夹角大于90°且小于或等于180°时,这时cosα<0,根据公式功为负。力对物体作负功-A就代表受力作用的物体克服阻力作了正功A。这两种说法描述的是同一物理过程。例如,空气压缩机中空气对活塞作负功,也可以说成是活塞克服空气的压力作正功。又如,汽车紧急制动,车轮停止转动,轮胎在地面上滑动,这时摩擦力对汽车作负功,反过来也可以说汽车克服摩擦力作正功。
功率
功跟完成这些功所用时间的比值叫做“功率”。最初定义功率为“单位时间里完成的功”,它是指做功快慢不变的情况,初中学生易于掌握。“功跟完成这些功所用时间的比值”这一定义功率,对于做功快慢不变的情况,既表示平均功率,又表示即时功率。对于做功快慢不均匀的情况,如时间取得长些,则为平均功率;时间趋于零,这一 率,只能表示机器在一段时间t内的平均功率。而由公式P=Fv计算出来的功率就有了不同的含义。若速度v代表平均速度,那么P代表平均功率,如果v代表即时速度,那么P就代表机器在某瞬时的即时功率。 公式中力是一个矢量,速度也是一个矢量,而功率却是一个标量。 方法,一为“标积”;一为“矢积”。两矢量的“标积”为一标量,其大小(к)为两矢量的大小和两矢量夹角的余弦的乘积,用公式表示为 式P=Fv中,实际上P应为 矢量和 矢量的标积,即 所以得到的功率P应为一标量。 关于公式P=Fv,中F与v成反比的关系,应明确,不能脱离具体条件,防止得出谬误的结果。因为机器的牵引力要受速度的限制,又受机器的构造、运转条件等限制,任何机器在设计制造时,已规定了它的正常功率和最大作用力。超过最大作用力范围,牵引力和速度成反比这一关系就不能适用。另一方面也不能使机器的牵引力趋近于零,而使机器的速度无限制地增加。因为任何机器在工作时要受到阻力作用,阻力还与机器运转的速度有关。即使在没有负载的情况下,机件间的摩擦阻力仍然存在。为维持机器的运转,发动机的牵引力不能小于它所受的阻力。因而它的速度也不能无限增加。因此,任何机械在有一定的最大输出功率的同时,还具有一定的最大速度和最大作用力。 功率的常用单位是瓦特(焦耳/秒),简称瓦,单位符号W。瓦特这个单位较小,技术上常用千瓦做功率的单位。过去还有尔格/秒、牛顿·米/秒、千克力·米/秒。 间t内的平均功率。当物体受恒力作用时也可表示为P=F 。式中 表示某段时间的平均速度。平均功率随所取的时间不同而不同,因此在谈到平均功率时,一定要指出是哪一段时间内的平均功率。参阅功率条。
即时功率
即“瞬时功率”,简称功率。描述机械在某一瞬间作 物体运动即时速度的乘积。作平均速度时,P当然代表平均功率,如果作即时速度,那么P就代表机械在某瞬时的即时功率。当作匀速运动时,即时功率和平均功率相同 杠杆概念:当动力点离支点的距离小于阻力点离支点的距离时,省力。 当动力点离支点的距离大于阻力点离支点的距离时,费力。 当动力点离支点的距离等于阻力点离支点的距离时,不省力也不费力。
编辑本段分类法
第一种分类法
第一类杠杆:是动力F和有用阻力W分别在支点的两边。这类杠杆 不省力也不费力。例如,剪金属片用的剪刀,刀口很短,它的机械利益远大于1 。这是因为金属板很硬,刀口短,刀把长,即动力臂大于阻力臂,可以少用力。属于这种情况的杠杆还有克丝钳等。家庭裁衣剪布用的剪刀,把与刃基本是等长的,即动力臂等于阻力臂,属于不省力也不费力的类型。因为布的厚度较薄,不需太大的力,剪布要直故刀口要长些,为此用力不大,布剪的也直。属于这种类型的还有物理天平。又如理发用的剪刀,刀口很长,即动力臂小于阻力臂,它的机械利益小于1。这是因为剪发本来不需要多大的力,刀口长一些,能够剪得快一些和齐一些。 第二类杠杆:是支点和动力点分别在有用阻力点的两边。这类杠杆的动力臂大于阻力臂,其机械利益总是大于1,所以总是省力的。例如,用铡刀铡草、独轮车等都是这类杠杆。 第三类杠杆:是支点和有用阻力点分别在动力点的两边,这类杠杆的动力臂小于阻力臂,其机械利益总是小于1,所以总是费力的。例如,缝纫机的脚踏板、夹食品的竹夹子都属于这类杠杆。
第二种分类法
第一类杠杆:是省力的杠杆,即动力臂大于阻力臂。例如,羊角锤、木工钳、独轮车、汽水板子、铡刀等等。 第二类杠杆:是费力的杠杆,即动力臂小于阻力臂。如镊子、钓鱼杆、理发用的剪刀。 第三类杠杆:不省力也不费力的杠杆,即动力臂等于阻力臂。其机械利益等于1。如夭平、定滑轮等。
Ⅳ 有没有能通电自动上下往复运动的液压杆或者机械装置,频率大概1秒到两秒动一次,或者什么其他机械
行程开关控制电动机正反转,不就可以实现往复运动吗?
Ⅵ 火车轮子上连接的滑杆(好像在做往复运动)的那个杆运动原理是什么
所说的火车早期的蒸汽火车。只有蒸汽火车轮子上才有连接的滑杆(学名叫连杆)。
3、蒸汽火车发明后,铁路交通迅速发展,为人们的生产和生活带来了极大的便利。但是蒸汽机车由于具有笨重(庞大的锅炉),速度慢,效率低,噪音大("况且况且"声),工作环境差(高温,烟和粉尘)等缺点,在铁路上逐步被内燃机车(柴油机车)和电力机车淘汰。
(6)机械滑杆装置扩展阅读
蒸汽火车小知识:
1、世界上第一部蒸汽机车是由英国人乔治·斯蒂芬森(George Stephenson,1781--1848)制造的。1814年7月25日,斯蒂芬森自己动手制作的世界上第一台蒸汽机车开始运行,取名"布鲁克"号,人称"火车"。
2、1876年7月3日,中国第一条铁路--"淞沪铁路"(窄轨)建成通车,那台英制名曰"先导号"的蒸汽机车(机车总重量1420kg)时速为24-32公里,为我国第一台外国蒸汽机车。
3、2016年1月,新疆哈密地区三道岭煤矿中国最后一批6台蒸汽火车退役,中国全面进入内燃机车(柴油机车)和电力机车时代。
Ⅶ 这个机械装置(曲柄滑块机构)是怎么运动的
从图上看,这个运动机构还是比较简单的。
驱动轮由电机或其他外接驱动结构带动,通过皮带传动给上方大轮,因为有滑槽,连杆不会立即带动执行机构,有当行程不足以满足连杆运动时,才会推动横向主滑槽运动。周而复始,所以整个机构运动应该是个间歇性运动
Ⅷ 设计一机械传动装置:有一横杆和一竖杆,竖杆可在横杆水平移动,竖杆上安的器件可上下移动
下部(上部)采用丝杠,上部(下部)采用滑道,横杆和竖杆用轴承安装在螺母上即可。
Ⅸ 收集的几种连杆机构:机器人行走背后的机械原理(一)
机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构。
连杆机构(Linkage Mechanism)
又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。
由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。
主要特征
连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。
优点:
(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。
(2)改变杆的相对长度,从动件运动规律不同。
(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。
(4)连杆曲线丰富,可满足不同要求。
缺点:
(1)构件和运动副多,累积误差大、运动精度低、效率低。
(2)产生动载荷(惯性力),且不易平衡,不适合高速。
(3)设计复杂,难以实现精确的轨迹。
网络的相关词条图片如下
下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。
平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。机构类型有曲柄摇杆机构、铰链四杆机构、双摇杆机构等。
1、曲柄摇杆机构(Crank rocker mechanism )
曲柄摇杆机构是指具有一个曲柄和一个摇杆的铰链四杆机构。通常,曲柄为主动件且等速转动,而摇杆为从动件作变速往返摆动,连杆作平面复合运动。曲柄摇杆机构中也有用摇杆作为主动构件,摇杆的往复摆动转换成曲柄的转动。曲柄摇杆机构是四杆机构最基本的形式 。主要应用有:牛头刨床进给机构、雷达调整机构、缝纫机脚踏机构、复摆式颚式破碎机、钢材输送机等。
2、双曲柄机构(Double crank mechanism )
具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。
双曲柄机构类型分类
【1】不等长双曲柄机构
说明:曲柄长度不等的双曲柄机构。
结构特点:无死点位置,有急回特性。
应用实例:惯性筛
【2】平行双曲柄机构
说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相同的双曲柄机构。
结构特点:有2个死点位置,无急回特性。
应用实例:天平
【3】反向双曲柄机构
说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相反的双曲柄机构。
结构特点:无死点位置,无急回特性。
运动特点:以长边为机架时,双曲柄的回转方向相反;以短边为机架时,双曲柄回转方向相同,两种情况下曲柄角速度均不等。
应用实例:汽车门启闭系统
3、铰链四杆机构(Hinge four-bar mechanism)
铰链是一种连接两个刚体,并允许它们之间能有相对转动的机械装置,比如门窗用的合页,就是一种常见的铰链。由铰链连接的四连杆就叫铰链四杆机构。所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之後,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。
铰链四杆机构可以通过以下方法演化成衍生平面四杆机构。
(1)转动副演化成移动副。如引进滑块等构件。以这种方式构成的平面四杆机构有曲柄滑块机构、正弦机构等。
(2)选取不同构件作为机架。以这种方式构成的平面四杆机构有转动导杆机构、摆动导杆机构、移动导杆机构、曲柄摇块机构、正切机构等。
(3)变换构件的形态。
(4)扩大转动副的尺寸,演化成偏心轮机构 。
4、双摇杆机构(Double rocker mechanism)
双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。 机构中两摇杆可以分别为主动件。当连杆与摇杆共线时,为机构的两个极限位置。双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。
双摇杆机构的两连架杆都不能作整周转动。三个活动构件均做变速运动,只是用于速度很低的传动机构中 。双摇杆机构在机械中的应用也很广泛,手动冲孔机,就是双摇杆机构的应用实例,比如说吧飞机起落架,鹤式起重机和汽车前轮转向机构都是双摇杆机构。
判别方法
1.最长杆长度+最短杆长度 ≤ 其他两杆长度之和,连杆(机架的对杆)为最短杆时。
2. 如果最长杆长度+最短杆长度 >其他两杆长度之和,此时不论以何杆为机架,均为双摇杆机构。
5、连杆机构的理论应用
动力机的驱动轴一般整周转动,因此机构中被驱动的主动件应是绕机架作整周转动的曲柄在形成铰链四杆机构的运动链中,a、b、c、d既代表各杆长度又是各杆的符号。当满足最短杆和最长杆之和小于或等于其他两杆长度之和时,若将最短杆的邻杆固定其一,则最短杆即为曲柄。若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则
a、 取最短杆的邻杆为机架时,构成曲柄摇杆机构;
b、 取最短杆为机架时,构成双曲柄机构;
c、 取最短杆为连杆时,构成双摇杆机构;
若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,不论以哪一杆为机架,只能构成双摇杆机构。
急回系数
在曲柄等速运动、从动件变速运动的连杆机构中,要求从动件能快速返回,以提高效率。即k称为急回系数。曲柄存在条件参考图
压力角
如图中的曲柄摇杆机构,若不计运动副的摩擦力和构件的惯性力,则曲柄a通过连杆b作用于摇杆c上的力P,与其作用点B的速度vB之间的夹角α称为摇杆的压力角,压力角越大,P在vB方向的有效分力就越小,传动也越困难,压力角的余角γ称为传动角。在机构设计时应限制其最大压力角或最小传动角。
死点
在曲柄摇杆机构中,若以摇杆为主动件,则当曲柄和连杆处于一直线位置时,连杆传给曲柄的力不能产生使曲柄回转的力矩,以致机构不能起动,这个位置称为死点。机构在起动时应避开死点位置,而在运动过程中则常利用惯性来过渡死点。
6、平面四杆机构一些案例
切比雪夫连杆机构其实是和霍肯连杆机构是属于同一种形式的四连杆机构,其轨迹点都是在连杆两端谁在的直线上。霍肯连杆机构的轨迹点是在两端点连线的延伸线上,而切比雪夫连杆机构的轨迹点是在两端点连线的中间。如下:
切比雪夫连杆机构的动态演示
1、切比雪夫(1821~1894)
俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。切比雪夫在概率论、数学分析等领域有重要贡献。在力学方面,他主要从事这些数学问题的应用研究。他在一系列专论中对最佳近似函数进行了解析研究,并把成果用来研究机构理论。他首次解决了直动机构(将旋转运动转化成直线运动的机构)的理论计算方法,并由此创立了机构和机器的理论,提出了有关传动机械的结构公式。他还发明了约40余种机械,制造了有名的步行机(能精确模仿动物走路动作的机器)和计算器,切比雪夫关于机构的两篇著作是发表在1854年的《平行四边形机构的理论》和1869年的 《论平行四边形》。
理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。
2、切比雪夫连杆机构经常被用于模拟机器人的行走
根据公式i=3n-2m
(n为活动构件数目,m为低副数目)
可得自由度i=1
3、切比雪夫连杆机构被广泛运用在机器人步态模拟上,从动图上也能看出,它的轨迹底部较为平稳,步态方式非常像四足动物,收腿动作有急回特性。根据下图WORKING MODEL仿真分析可得,在X轴上,也能看出它的急回特点。
4、嵌入汽缸的切比雪夫直线机构的运动
动图
5、使用切比雪夫连杆机构的行走桌子
常见到有人遛狗溜猫,但你绝对没见过人溜桌子的,拜荷兰设计师Wouter Scheublin的脑洞所赐,荷兰人民倒是有幸见到过这一奇葩景象,有人推着一张桌子在路上行走,而有着八条腿的桌子就运动着自己的腿,走的蹭蹭蹭的,场景怪异中带着搞笑,让人印象深刻。那么桌子是怎么行走的呢?其实并没有用上什么高科技,它只是通过精细的机械传动机构动起来而已。设计师受到俄罗斯数学家切比雪夫的理论启发,并将它应用到桌子中,所以这张160斤重的桌子轻轻推拉就能走,而且走的异常平稳,不比轮子差。
每条桌腿与桌板之间,都采用精细的木质结构打造。当用手推动桌子时,给力的一方会使桌腿不断前进,通过力臂的摇摆和连接处木质结构,会把力传递到对面的桌腿使之向前移动,然后桌子就能满街跑了。
Ⅹ 杠杆和滑轮组合的机械装置结构越复杂,越省力吗
现实中考虑摩擦阻力,越复杂的机械机械效率越低(一样的材料),那么,杠杆和滑轮组合的机械装置结构越复杂,就不一定越省力了。花在克服摩擦力做功上的力会变大。