㈠ 如图所示是某科技小组设计的一种温度自动控制报警装置电路图,关于它的说法正确的是()A.当温度低
据图可知,该温度自动报警器的原理是:当温度达到90℃时,由于温度计内的液体是导体,这样控制电路会接通,电磁铁产生磁性,将衔铁吸引,将报警电路接通,电铃响,红灯亮,起到报警作用;
故选C.
㈡ 水泵自动控制电路图
实现水泵自动化的来措施:
增加源两个延时继电器,就是给信号后延时两秒延时继电器动作,启动泵,同时触发第二个延时继电器延时10秒,十秒后该延时继电器动作,断开主电路。
拓展资料
水泵控制器适用于城市供水系统中取水泵站、水厂加压泵站、中途加压泵站、小区加压泵站的远程监控及管理。泵站管理人员在监控中心可远程监测现场设备的工作状态和运行参数;可远程控制供水设备的启停;可图像监视站内全景或重要工位。
水泵控制器是根据所检测到的水源状态,管道用水量和管道压力变化等数据去启动与停止水泵.可以由压力罐,压力开关,缺水保护装置,止回阀,四通等所构成的传统系统.带电部分与管道的完全隔离和高密封性的控制箱使该控制器拥有了传统系统所无法比似的安全性。
随着科技的日新月异,传感器行业的快速发展,在水泵控制器中加入压力传感器,即电子式压力控制器的诞生,以其独特的优势迅速取得市场认可。在控制器中加上传感器探头感知压力,在控制电路中运用单片机技术实现多项智能控制功能。
㈢ 电机自动往返线路图(主电路和控制电路)
电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。合上电源开关Q和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。接触器KM1得电并吸合,电动机作正向限时运转。
待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。
待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。
这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。
(3)自动装置电路图扩展阅读
保护
1、电机保护
(1)电机保护就是给电机全面的保护,即在电机出现过载、缺相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、轴承磨损、定转子偏心、轴向窜动径向跳动时,予以报警或保护。
(2)为电动机提供保护的装置是电机保护器,包括热继电器、电子式保护器和智能型保护器,大型和重要电机一般采用智能性保护装置。
2、差动保护
(1)电动机差动保护具备差动速断保护及带或不带二次谐波制动的复式比率差动保护,最大可用于三侧差流输入的场合(三圈变),具有对一次设备电压电流模拟量和开关量的完整强大的采集功能。
(2)配备标准RS485和工业CAN通讯口,并通过合理配置实现三圈主变差动保护、两圈主变差动保护、两圈配变差动保护、发电机差动保护、电动机差动保护及非电量保护等保护和测控功能;
3、过载保护
(1)微型电动机的线圈通常是由很细的铜丝绕成,耐电流的能力较差。当电机负载较大或电机卡住时,流过线圈的电流会快速增加,同时电机温度急剧升高,铜丝绕阻极易被烧毁。如
(2)果能够在电动机线圈中串接高分子PTC热敏电阻,则会在电机过载时提供及时的保护功能,避免电机被烧毁。通常的保护电路如下图。热敏电阻通常被至于线圈的附近,这样热敏电阻更易于感受温度,使保护更加迅速有效。
(3)用于初级保护的热敏电阻通常选用耐压等级较高的KT250型热敏电阻,用于次级保护的热敏电阻通常选用耐压等级较低的KT60-B、KT30-B、KT16-B及片状电机。
电动机的火灾危险性
电动机的具体火灾原因有以下几个方面:
1、过载
会造成绕组电流增加,绕组和铁心温度上升,严重时会引发火灾。
2、断相运行
电动机虽然还能运转,但绕组电流会增大以致烧毁电动机而引发火灾。
3、接触不良
会造成接触电阻过大而发热或者产生电弧,严重时可引燃电动机内可燃物进而引发火灾。
4、绝缘损坏
形成相间和匝间短路,因而引发火灾。
5、机械摩擦
轴承损坏时可造成定子、转子摩擦或电动机轴被卡,产生高温或绕组短路而引发火灾。
6、选型不当
7、铁心消耗过大
会使涡流损耗过大造成铁心发热和绕组过载,严重时引发火灾。
8、接地不良
当电动机绕组对发生短路时,如果接地不良,会导致电动机外壳带电,一方面可引起人身触电事故,另一方面致使机壳发热,严重时引燃周围可燃物而引发火灾。
㈣ 如图所示是一个火警自动报警装置的电路示意图
温度正常时控制电路接通,电磁铁有磁性,吸引衔铁,工作电路中的动触点与下触点接通,乙灯工作,温度升高控制电路断开,工作电路中的动触点与上触点接通,电铃工作
㈤ 求水位自动控制装置的原理图
水位自动控制装置(液位自动控制)的原理图如下:
工作过程:
假定由于某一因素使得疏水生成量突然增大,那么系统原有的平衡被破坏,加热器内水位上升,相应地信号筒内水位也上升,使得槽孔处汽体的通流面积减小,调节管路内汽相流量减小,液相流量增大,导致调节阀喉部汽相通流面积减小,疏水有效通流面积增大,从而疏水排出量不断增大,最后在新的水位高度上建立平衡,反之亦然。控制系统的调节过程可分为减压、抽吸、控制3个不同环节。
1、减压环节:
疏水从加热器排出经疏水管路进人调节阀,在收缩段内加速,压力降低到喉部混合点压力的过程,称为减压环节。减压环节的计算任务是根据控制环节的疏水流量分配,确定出喉部混合点的压力。在其它条件不变的情况下,减小节流阀开度,能降低混合点处的压力。
2、抽吸环节:
根据信号筒感受到的加热器内水位讯号,调节汽体和一部分疏水按一定比例混合,经调节管路到达调节阀喉部混合点的过程,称为抽吸环节。抽吸环节是根据减压环节获得的压力降,求出调节管路内的汽液两相流量。
3、控制环节:
两股流体在调节阀喉部相互作用后混合,压力迅速降低,而后在扩张段内充分回流,压力有所升高的过程,称为控制环节。控制环节是确定疏水流量在调节阀前疏水管路及调节管路内的分配比例,以满足系统管路内的压力平衡。
由于两股流体的相互作用发生在调节阀喉部处很短的距离内,且汽液两相间存在着极其复杂的传热传质过程,液体内蒸时由于相间热阻的存在,汽液两相间达到热平衡需要一定的时间。汽化速率的大小与闪蒸时液体的过热度、传热系数、传热面积及流型都有关系,在计算时必须做一些简化处理。
㈥ 三相双电源自动切换电路图 简单的谁知道呀! 拜托指点一下 谢谢!!!
用分立元件组成的双电源自动切换装置见图㈦ 水箱自动停水装置与电路图!
有现成的卖,有两个浮球里面装水的,就一组触点直接串联在水泵开关上就行。
㈧ 自动门的电路图 真心求教
ni wen de si sen mei
㈨ 求高手看看这个自动报警装置控制电路图错在哪!只有10分了,急
电路图画错了,正确的接法是这样的
㈩ 2台电动机的污水泵加自动的控制箱电路图,谁能发给我
污水泵控制箱、污水泵控制箱、污水泵控制箱接线图、污水泵控制箱接线图
污水泵控制箱通常采用液位控制原理。液位排污泵控制柜通常采用高性能浮子开关和控制柜功能,当液位高时启动排污泵,当液位低时停止排污泵
一、污水泵控制箱原理如下:
1、污水泵控制箱控制污水泵出口端液位的原理
供水的工作状态是控制污水泵出口末端集水坑的水量。我们称之为供水工作状态的液位控制。污水泵控制箱接线中,只需将浮子开关常闭触点的两根引线分别接在Y1和Y2上。
这种连接方式是当污水泵出口段水满时,浮子在设置时能浮到白球位置,常闭触点自动断开,污水泵停止工作。
(10)自动装置电路图扩展阅读:
排污泵故障原因及排除:
1、污水泵运行后,没有流量原因分析和空气塞排除方法。检查出口排放阀。泵反转。经常启闭阀门,启停泵数次,启停时间间隔2-3分钟,检查泄压阀是否按安装方法安装。打开阀门,检查阀门安装方向是否错误,关闭主电源,更换两根电源线。
2、污水泵流量或扬程下降原因分析。送货头太高。泵送介质被旁路。出水管漏水。出水管可能部分被泥沙堵塞。泵部分堵塞。叶轮或底座磨损。关闭控制箱主电源,更换两相电源线。
检查:型号选择是否正确;出水管尺寸是否正确。检查阀门是否关闭,然后在满负荷下测试泵。找出漏点并修理。检查管路,清洁或更换。检查并清洁泵(包括滤网中使用的泵)。调整间隙或更换零件。
3、污水泵频繁启停原因分析浮球开关选择距离过短。止回阀失灵,止回阀不回,使液体流回污水池。a、重新调整浮动开关以延长操作时间。B、检查并修理阀门。
4、排污泵故障原因分析浮球开关功能失常。浮子卡在工作位置。检查,必要时更换。根据需要松开并调整位置。
5、污水泵启动后,断路器和过载装置跳闸。电压太低。电压太高。电机接线错误。沉积物沉积在蜗壳的底部。
检查电压,如果电压过低,就不能使用;如果电缆过长,导致电压降过大,尽量缩短电缆,并适当选择较粗的电缆。使用变压器,将电压调整到正常范围。检查控制箱中的电缆颜色编号和接头编号,并检查接线。清洁泵和油底壳,请参阅安装说明的相关部分。
6、排污泵不能启动的原因是检修方法不通电。绕组、电缆、端子或控制箱中存在断路。检查控制箱电源是否正常。检查电缆、电机接头和绕组。
7、排污泵不能启动,保险丝熔断或断路器跳闸。通过分析可以消除浮球故障。绕组、连接器或电缆短路。泵堵塞了。检查旁路浮子开关是否可以启动泵,如果可以,检查浮子开关。用欧姆表检查。如果短路,检查绕组、端子和电缆。切断电源,将泵从污水池中取出,清除障碍物,试着复位。