A. 实验室制取乙酸乙酯的制取装置图和步骤
一、制取乙酸乙酯的装置图:
三、装置中通蒸汽的导管不能插在饱和碳酸钠溶液之中目的:
防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。
B. 化学实验
我这里有大学做的项目:蜡乳液中性胶AKD的制备。。内有具体的实验步骤。。需要的话可以给你发邮件过去。。
C. 分析失重腐蚀试验的误差来源,如何提高试验精度
[业务]实验一 失重法测金属腐蚀速度材料腐蚀与防护实 验 指 导 书山东科技大学材料学院金属材料系 2007———————??———————1. 腐蚀体系的极化性能2. 失重法测金属腐蚀速度实验一 腐蚀体系的极化性能1. 实验目的(1)分析活化极化控制腐蚀体系极化曲线的特征。(2)掌握恒电位法测定极化曲线的基本原理和方法。(3)学习塔菲尔区外延法求腐蚀电流的原理和方法。(4)熟悉恒电位仪或电化学综合测试仪的操作规程。2. 基本原理见《金属腐蚀理论及腐蚀控制》第四章,见《金属腐蚀理论及应用》第二章的第二、四、八、十节内容。当电极上有净电流通过时,电极电位显著偏离了未通电时的开路电位(平衡电位或非平衡的稳态电位),这种现象叫做电极的极化。当通过外加电流时电极电位偏离稳定电位的的现象,成为腐蚀体系的极化。研究对一腐蚀金属电极外加极化时,其极化电位与外加电流之间的关系即是腐蚀金属电极的极化曲线。金属的电化学腐蚀中,常用电流密度来表示腐蚀速度(单位时间内金属腐蚀的程度)。腐蚀金属电极的一般速度方程式如下:,,2.303,E,2.303,EI,Iexp,expcorr,,bbac,, 它是大部分测定腐蚀速度的电化学方法的理论基础。方程式中通过试验测定的Ecorr,E数据是自腐蚀电位和一系列极化电位以及相对应的极化电流I,然后icorr从实验测定的极化数据计算出金属的腐蚀速度以及其它有关电化学参数。3.实验内容及要求(1)用恒电位法测量低碳钢(Q235)试样在0.05mol/L硫酸氢钠中的极化曲线,了解这种活化极化腐蚀体系极化曲线的特征。(2)用塔菲尔区外延法确定腐蚀电流密度及极化曲线的Tafle斜率值。4.实验装置及仪器用品(1) 实验仪器和试剂实验仪器: 烧杯500mL 2个玻璃棒 1个鲁金毛细管 1个1480A 8通道恒电位仪和POTENTIOSTAT/GALVANOSTAT 273
试 剂: NaHSO 4(2)实验参数o实验温度: 常压、室温 26-28C实验溶液: NaHSO溶液0.05mol/L 4实验气氛: 空气装置状态: 静止静置时间: 2000s电极体系: 三电极体系2待测电极: Q235(面积约为1cm)参比电极: 饱和甘汞电极2辅助阴极: pt电极(面积约为2cm)阳极极化曲线电压: -0.05V,0.8V(相对于开路电压) 扫描速度: 0.5mV/s扫描方式: 动电位线性扫描图1 极化曲线测量电路示意图(3)试样的准备试样用砂纸打光、酒精脱脂去污洗净,然后取10×10mm试样面积作为工作表甘汞电极 工作电极NaHSO溶液 4饱和KCl溶液鲁金毛细管Pt电极面,背部焊接导线,其余部分用环氧树脂(或绝缘清漆、AB胶、石蜡等)覆盖。图2 极化曲线测量装置图5.实验步骤(1)配溶液:用试剂硫酸氢钠和蒸馏水配制实验溶液0.05mol/L,盛在烧杯内作为电解池。(2)磨试样:试样表面状态要求均一、光洁,需要进行表面处理。制作试样时已经过机加工,试验前还需用砂布打磨,以达到要求的光洁度。表面上应无刻痕与麻点。平行试样的表面状态要尽量一致。打磨时注意避免过热。(3)将试样工作表面磨光,测量尺寸,清洗去油,焊接导线封装后,安装到电解池内;装好辅助电极、参比电极,鲁金毛细管尖端靠近研究电极工作表面(1mm左右)。(4)测试过程中,试样为工作电极(阳极),pt片为对电极(阴极),饱和甘汞电极为参比电极。将仪器上的线与待测电极体系相连(如图2所示)。(5)打开计算机中的测试程序,选择动电位扫描,在随后的对话框里设置扫描起始电位、终止电位、扫描速度、参比电极、静置时间和终止电流等参数。然后开始测试。(6)实验开始时,记录起始扫描电位,观察曲线是否平滑,对于曲线十分粗糙,且电流较大的试样,手动停止扫描。导致此现象最合理解释为试样封装不严,发生缝隙腐蚀。此时,可以用毛笔蘸石蜡和松香的混合液体(将石蜡和松香在电炉上加热)仔细涂在试样与树脂边缘。 (7)测试结束后,按试样号保存好曲线,退出。试样取出,溶液倒掉,彻底清洗烧杯,去离子水润洗待用。试样晾干保存。
6.数据处理(1)用腐蚀体系的测量数据在E,lgi 坐标系中绘制极化曲线图。(2)用塔菲尔区外延法确定腐蚀体系的腐蚀电流密度。(3)由极化曲线塔菲尔区确定Tafel斜率ba 和bc。记 录 表 格试件材质 试件暴露面积介质温度 试件自腐蚀电位Ecor参比电极 试件自腐蚀电流Icor辅助电极 Tafel斜率ba介质成分 Tafel斜率bc7.思考问题(1)本实验中的Tafel区直线段外延法求腐蚀电流方法有哪些缺陷,(2)本实验的误差可能来自哪些方面,实验二 失重法测金属腐蚀速度1. 实验目的(1)掌握失重法测量金属腐蚀速度的原理和操作过程。(2)加强对金属腐蚀与环境条件密切相关的认识。2. 基本原理见《金属腐蚀理论及腐蚀控制》绪论,《金属腐蚀理论及应用》绪论第四节,附录一、二、三、四。3. 实验内容及要求(1)用失重法测量低碳钢(A)在硫酸溶液中的腐蚀速度。硫酸溶液的3浓度分别取20%、30%、40%、50%(待定)。室温。静态。(2)通过实验,要求初步掌握失重法测量金属腐蚀速度的各个基本操作环节。4. 实验仪器及用品分析天平规定浓度的硫酸溶液低碳钢(A)试样(矩形薄板) 3试样表面制备用品:砂布、丙酮、蒸馏水、电吹风、游标卡尺阴极去膜装置(浓盐酸(工业纯)、六甲基四胺(又称乌洛托品))5. 实验步骤(1)配溶液:用试剂硫酸和蒸馏水配制实验溶液,每种溶液800mL,分别盛在1000mL烧杯内。(2)磨试样:试样表面状态要求均一、光洁,需要进行表面处理。制作试样时已经过机加工,试验前还需用砂布打磨,以达到要求的光洁度。表面上应无刻痕与麻点。平行试样的表面状态要尽量一致。打磨时注意避免过热。(3)打号码:试样标记,可用钢号码打印编号。(4)量尺寸:用游标卡尺测量试样的长、宽、厚和小孔直径,以供计算暴露表面积。测量时必须量几个部位,取其平均值。
(5)清洗去油:将试样表面残屑除尽,用浸丙酮的棉花球擦拭,除去表面油污,再用蒸馏水冲洗,滤纸吸干。然后用电吹风干燥(注意用冷风~)。清洗后的试样不能再用手拿取,需放在干净的滤纸上。(6)称初重:干燥后的试样用分析天平称取初重W,准确到0.1mg。0(7)浸入试验溶液:试样称重后立即穿上塑料线,浸入试验溶液内(记下浸入时间~)。每种试验溶液内挂3,4块平行试样。注意试样不能彼此接触,也不能与容器接触。试样浸入深度应大致相同。其上端距液面应大于2cm。观察并记录试样浸入溶液后发生的现象。(8)试验时间:由于碳钢在不同浓度的硫酸溶液中的腐蚀速度相差很大,不同体系的试验时间应根据具体情况确定。(9)清除腐蚀产物:取出试样前应仔细观察试样表面和溶液中的变化。取出试样(记下时间~)后观察试样表面腐蚀产物的形态和分布。将试样放在自来水流下冲洗,用毛刷刷去疏松的腐蚀产物,再次观察试样表面状态。将试样用化学法除膜。除膜操作应进行多次,以达到恒重(两次称重差别小于0.5mg),并由空白试样确定金属基体的损失。具体操作步骤见《金属腐蚀理论及应用》附录四。(10)称腐蚀后重:除膜后用蒸馏水冲洗,除去已变疏松的腐蚀产物,然后擦拭、干燥,用分析天平称重量。恒重后的重量作为腐蚀后重W。16. 数据处理(1)按表格记录所测数据,计算低碳钢试样在试验溶液中的腐蚀速度Vp。(2)取同种溶液中的几块平行试样的腐蚀速度的算术平均值,作为低碳钢在该溶液中的腐蚀速度。(3)使用各种溶液中所得腐蚀速度数据,绘制低碳钢腐蚀速度随硫酸浓度变化的曲线。7. 讨论参考问题(1)碳钢在硫酸溶液中的腐蚀有何特点,(2)试样腐蚀后外貌和溶液有什么变化,描述腐蚀产物的形态、颜色、分布,以及与金属试样表面的结合情况。(3)分析失重腐蚀试验的误差来源,如何提高试验精度,记 录 表 格试样编号试样材质溶液名称、浓度、温度
试样尺寸(mm)2 试样表面积(m)试样初重W(g) 0试样腐蚀后重W(g) 1浸入时间试验时间 取出时间试验时间(hr)—2 失重腐蚀速度V(g/m.hr)腐蚀速度V(mm/y) p平均腐蚀速度V?ΔV p
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
[业务]实验一失重法测金属腐蚀速度
[业务]实验一 失重法测金属腐蚀速度
材料腐蚀与防护
实 验 指 导 书
山东科技大学材料学院金属材料系 2007
———————??———————
1. 腐蚀体系的极化性能
2. 失重法测金属腐蚀速度
实验一 腐蚀体系的极化性能
1. 实验目的
(1)分析活化极化控制腐蚀体系极化曲线的特征。
D. 大学化学实验报告范文
化学是一门以实验为基础的学科。化学上的许多理论和定律都是从实验中发现归纳出来的。那么你们知道大学的化学实验 报告 要怎么写吗?下面是我为大家带来的大学化学实验 报告 范文 _大学化学实验 总结 怎么写,希望可以帮助大家。
更多关于化学实验报告内容推荐(点击进入↓↓↓)
化学实验报告格式范文
初中化学实验报告范文
化学实验报告格式范文
化学实验报告论文
大学化学实验报告范文3篇
大学化学实验报告范文1:一、实验目的
1. 了解复盐的制备 方法 。2. 练习简单过滤、减压过滤操作方法。3. 练习蒸发、浓缩、结晶等基本操作。
二、实验原理
三、实验步骤
四、实验数据与处理 1. 实际产量:
2. 理论产量:
3. 产率:
实验二 化学反应速率、活化能的测定
姓名: 班级:学号: 指导老师: 实验成绩: 一、实验目的
1. 通过实验了解浓度、温度和催化剂对化学反应速率的影响。 2. 加深对活化能的理解,并练习根据实验数据作图的方法。
二、实验原理
三、实验数据记录及处理
1. 浓度对反应速率的影响,求反应级数 确定反应级数:m= n=
2. 温度对反应速率的影响,求活化能
表2 温度对反应速率的影响 利用表2中各次实验的k和T,作lg 求出直线的斜率,进而求出反应活化能Ea。 ?k?-图,
3. 催化剂对反应速率的影响
实验三 盐酸标准溶液的配制、标定及混合碱的测定
1.了解间接法配制标准溶液的方法。2.学习用双指示剂法测定混合碱中不同组分的含量。
二、实验原理
三、实验数据记录及处理
1. HCl标准溶液的标定结果
2. 混合碱的测量结果
大学化学实验报告范文2:实验日期: 20_ 年 11 月 18 日 开始时间: 9 时 30 分; 结束时间:11 时 30 分; 实验题目:金属的腐蚀 同 组 者:___
编号 NO: 1
一、实验目的和要求
1) 2) 3) 掌握动电位扫描法测定阳极钝化曲线的方法; 测量金属在 0.5mol/L H2SO4 中的阳极极化曲线,确定有关特征电位和电流密度; 测量金属在 0.5mol/L H2SO4+0.5mol/LNaCl 中的阳极极化曲线并考察氯离子对金属 钝化行为的影响。
二、 实验原理与方法
阳极极化曲线一般可分为四个区: 1)活性溶解区:从腐蚀电位( ? c )开始,金属溶解按活性溶解的规律进行; 2)过渡区:金属表面开始发生突变,由活态向钝态转化。此时,电流随电位的正移而 急剧下降; 3)钝化区:金属处于稳定的钝态,表面生成一层钝化膜,此时阳极溶解电流密度( i p , 称为维钝电流密度)很小,并且基本与电位无关; 4)过钝化区:电流密度又开始随电位的正移而增大; 当介质中存在氯离子时, 不锈钢等耐蚀金属材料表面的钝化膜容易被破坏, 存在点蚀电 位,此时,当 ? ? ?b 时,材料表面开始发生点蚀,电流迅速增大;当电流密度增大到一定 值时(如 1mA/cm2) ,改变扫描方向,开始向阴极方向扫描,可能形成一个滞后环。当 ? < ? s14rp 时,钝化膜重新愈合,金属恢复完全钝化状态;而当 ? s14rp < ?< ?b, 时已形成的点蚀继续进行,但不会产生新的点蚀。
三、 主要仪器设备、材料和试剂
1)主要仪器设备 CorrTest 腐蚀电化学测试系统;电解池;玻璃活栓盐桥;洗耳球、金相砂纸、 镊子、丙酮棉球(处理电极表面) ;量筒;滤纸(保护电极表面不被腐蚀) 。 2)三电极种类、材料和有效工作面积 工作电极(电极材料为镍、钛或耐蚀合金) 、饱和甘汞电极(SCE) 、大面积铂辅 助电极(有效截面积为 1cm2) ; 3)测试温度及其控制方法 测试在室温下进行
四、 实验操作步骤
1)启动CorrTest腐蚀测试系统软件,打开恒电位仪的电源开关,开始预热; 2)将玻璃活栓盐桥洗净、烘干后,把玻璃活塞插入盐桥,并使活塞孔对准盐桥 的测试溶液端;将活栓插紧后,向盐桥的参比电极室注入适量的过饱和 KCl 溶液。洗净电 解池,安装辅助电极、盐桥和参比电极; 3)处理电极,将处理好的工作电极置于电解池中使盐桥毛细管尖端对准工作电极 的中心,并且它到电极表面的距离为毛细管尖端外径的
1倍。然后将三个电极连接到恒电位 仪; 4)打开“自腐蚀电位测量”窗口(快捷键F2 ) ,输入数据文件名和注释,设置测 量时间: 15分钟, 采样速率: 1Hz, 其他参数保持默认值。 然后, 向电解池内注入0.5mol/LH2SO4 溶液约200ml后,立即开始计时,并接通盐桥,点击窗口中的“开始”按钮,开始开路电位 的测量; 5)当开路电位测量到所设置的测量时间后将自动停止。此时,打开“动电位扫描” 窗口(快捷键 F4 ) ,输入数据文件名和注释,设置初始电位:? 0.05V(相对于开 路电位) ,终止电位:1.5V(相对于开路电位) ,扫描速率:1mV/s,采样速率:1Hz,其他 参数保持默认值。然后,立即点击窗口中的“确定”按钮,开始极化曲线的测量;
6)测量结束后,取下电极接线夹头,取出工作电极和参比电极,清洗电解池和盐桥 (测试溶液端内、外侧) ,将工作电极按上述方法进行处理,更换 0.5mol/L+H2SO40.5mol/L NaCl 溶液而上述步骤进行下一次实验。注意:此时,在设置“动电位扫描”控制参数时, 应设置回扫电流密度:1mA/cm2。在测量中,当回扫曲线与正扫曲线; 7)待实验结束后,取下电极接线夹头,取出工作电极和参比电极,观察工作电极表 面腐蚀形态。然后,清洗电解池和盐桥(测试溶液端内、外侧) ,将工作电极按上述方法进 行处理,放入干燥器备用。
5 实验结果与讨论
5.1 实验结果
略
5.2 分析与讨论 5.2.1 ?~i曲线图分析 当工作电极在0.5mol/L H2SO4溶液中时,由图1-2及表1-1的特征值可知,从 腐蚀电位 ? c 开始,金属的溶解规律呈现活性溶解规律,当电位达到-0.44283时 电流随电位的增大而增大,基本符合tafel方程;当电极电位正移到钝化电位?cp =-0.34824时,金属表面开始发生突变,由活态向钝态变化,此时电流随电位正 移而急剧下降直至电位达到稳定钝化电位即 ?p =0.43837,与钝化电位?cp相对应 的阳极电流密度称为钝化电流密度icp =1.69644E-3;当电位正移到稳定钝化电位 p =0.43837时,金属处于稳定的钝化状态,表面生成一层钝化膜,此时阳极溶 解电流密度ip =1.02569E-5(即维电流密度)很小且基本不随电位变化;当电位 达到过钝化电位?tp =0.8527时,由于金属表面钝化膜遭到破 坏,腐蚀再次加剧, 电流随电位的正移而增大。 当工作电极在0.5mol/L H2SO4+0.5mol/LNaCl溶液中时,图1-1以及表1-1中特 征值可知,活性溶解区基本不发生变化,而当电位正移到?cp之后电位先正移至稳 定钝化电位?p =0.12504,而后迅速达到过钝化电位?tp =0.26698,达到过钝化电 位后由于点蚀的存在电流密度随电位的正移而再次增大; 5.2.2 氯离子对钝化过程的影响分析 由以上分析可知, 在溶液中不含氯离子时,由稳定钝化电位正移至过钝化电 位经历的时间远大于含有氯离子时的时间,可见,当溶液中存在氯离子时金属表 面的钝化膜溶液破坏从而过早进入过钝化区,这是由于钝化膜的溶解和修复(再 钝化)处于动平衡状态当介质中含有活性阴离子(常见的如氯离子)时,氯离子 能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子 结合成可溶性氯化物,使平衡便受到破坏,金属表面钝化膜发生破坏。 5.3 结论 1)金属的阳极极化随着电位的正移金属表面会发生钝化,但是随着电位的 继续正移金属表面的钝化膜会发生破坏从而使腐蚀从新加剧;
2)氯离子能时金属表面的钝化膜发生破坏从而加剧腐蚀;
六、 意见和建议
可以取含不同氯离子浓度的溶液进行实验从而验证氯离子浓度对钝化膜破坏的影响; 可以取不同电极及钝化剂进行实验从而验证钝化介质对钝化的影响;
大学化学实验报告范文3:一.实验目的
1.观测 CO2 临界状态现象,增加对临界状态概念的感性认识; 2.加深对纯流体热力学状态:汽化、冷凝、饱和态和超临流体等基本概念的理 解;测定 CO2 的 PVT 数据,在 PV 图上绘出 CO2 等温线 3.掌握低温恒温浴和活塞式压力计的使用方法。
二.实验原理
纯物质的临界点表示汽液二相平衡共存的最高温度 ( T C) 和最高压力点 (PC) 。 纯物质所处的温度高于 TC,则不存在液相;压力高于 PC,则不存在汽相;同时 高于 TC 和 PC,则为超临界区。本实验测量 TTC 三种温度条 件下等温线。其中 T
三.实验装置流程和试剂
实验装置由试验台本体、压力台和恒温浴组成(图 2-3-1) 。试验台本体如图 2-3-2 所示。实验装置实物图见图 2-3-3。 实验中由压力台送来的压力油进入高压容器和玻璃杯上半部 ,迫使水银进入 预先装有高纯度的 CO2 气体的承压玻璃管(毛细管),CO2 被压缩,其压力和容积通 过压力台上的活塞杆的进退来调节。温度由恒温水套的水温调节,水套的恒温水 由恒温浴供给。
CO2 的压力由压力台上的精密压力表读出(注意:绝对压力=表压+大气压) ,温 度由水套内精密温度计读出。比容由 CO2 柱的高度除以质面比常数计算得到。 试剂:高纯度二氧化碳。
图 2-3-1 CO2 PVT 关系实验装置图
2-3-2 试验台本体 1.高压容器 2-玻璃杯 3-压力油 4-水银 5-密封填料 6-填料压盖 7-恒温水套 8-承压玻璃管 9-CO210精密温度计
四、实验操作步骤
1.按图 2-3-1 装好试验设备。 2.接通恒温浴电源,调节恒温水到所要求的实验温度(以恒温水套内精密温度 计为准) 。 3.加压前的准备——抽油充油操作 (1)关闭压力表下部阀门和进入本体油路的阀门,开启压力台上油杯的进油阀。 (2)摇退压力台上的活塞螺杆,直至螺杆全部退出。此时压力台上油
筒中抽满 了油。 (3)先关闭油杯的进油阀,然后开启压力表下部阀门和进入本体油路的阀门。 (4)摇进活塞杆,使本体充油。直至压力表上有压力读数显示,毛细管下部出 现水银为止。 (5)如活塞杆已摇进到头,压力表上还无压力读数显示,毛细管下部未出现水 银,则重复 (1)--(4)步骤。
(6)再次检查油杯的进油阀是否关闭,压力表及其进入本体油路的二个阀门是 否开启。温 度是否达到所要求的实验温度。如条件均已调定,则可进行实验测定。
4.测定低于临界温度下的等温线(T= 20℃ 或 25℃ ) (1)将恒温水套温度调至 T= 23℃ 左右,并保持恒定。 (2)逐渐增加压力,压力为 4.0MPa 左右(毛细管下部出现水银面)开始读取 相应水银柱上端液面刻度,记录第一个数据点。读取数据前,一定要有足够的平 衡时间,保证温度、压力和水银柱高度恒定。 (3)提高压力约 0.2MPa,达到平衡时,读取相应水银柱上端液面刻度,记录第 二个数据点。注意加压时,应足够缓慢的摇进活塞杆,以保证定温条件,水银柱 高度应稳定在一定数值,不发生波动时,再读数。 (4)按压力间隔 0.2MPa 左右,逐次提高压力,测量第三、第四……数据点, 当出现第一小滴 CO2 液体时,则适当降低压力,平衡一段时间,使 CO2 温度和 压力恒定,以准确读出恰出现第一小液滴 CO2 时的压力。 (5)注意此阶段,压力改变后 CO2 状态的变化,特别是测准出现第一小滴 CO2 液体时的压力和相应水银柱高度及最后一个 CO2 小汽泡刚消失时的压力和相应 水银柱高度。此二点压力改变应很小,要交替进行升压和降压操作,压力应按出 现第一小滴 CO2 液体和最后一个 CO2 小汽泡刚消失的具体条件进行调整。 (6)当 CO2 全部液化后,继续按压力间隔 0.2MPa 左右升压,直到压力达到 8.0MPa 为止(承压玻璃管最大压力应小于 8.0MPa) 。 5.测定临界等温线和临界参数,观察临界现象 (1)将恒温水套温度调至 T= 31.1℃ 左右,按上述 4 的方法和步骤测出临界等温 线,注意在曲线的拐点( P=7.376MPa)附近,应缓慢调整压力(调压间隔可为 0.05MPa) ,以较准确的确定临界压力和临界比容,较准确的描绘出临界等温线上 的拐点。 (2)观察临界现象 a. 临界乳光现象 保持临界温度不变,摇进活塞杆使压力升至 Pc 附近处,然后突然摇退活塞杆(注意 勿使试验台本体晃动)降压,在此瞬间玻璃管内将出现圆锥型的乳白色的闪光现象, 这就是临界乳光现象。这是由于 CO2 分子受重力场作用沿高度分布不均和光的 散射所造成的。可以反复几次观察这个现象。 b. 整体相变现象临界点附近时,汽化热接近
于零,饱和蒸汽线与饱和液体线接 近合于一点。 此时汽液的相互转变不象临界温度以下时那样逐渐积累,需要一定 的时间,表现为一个渐变过程;而是当压力稍有变化时,汽液是以突变的形式相 互转化。 c. 汽液二相模糊不清现象 处于临界点附近的 CO2 具有共同的参数(P,V,T) ,不能区别此时 CO2 是汽 态还是液态。如果说它是气体,那么,这气体是接近液态的气体;如果说它是液 体,那么,这液体又是接近气态的液体。下面用实验证明这结论。因为此时是处
于临界温度附近,如果按等温过 程,使 CO2 压缩或膨胀,则管内什么也看不到。现在,按绝热过程进行,先调 节压力处于 7.4 MPa(临界压力)附近,突然降压(由于压力很快下降,毛细管 内的 CO2 未能与外界进行充分的热交换,其温度下降) , CO2 状态点不是沿等 温线,而是沿绝热线降到二相区,管内 CO2 出现了明显的液面。这就是说,如 果这时管内 CO2 是气体的话,那么,这种气体离液相区很近,是接近液态的气 体;当膨胀之后,突然压缩 CO2 时,这液面又立即消失了。这就告诉我们,这 时 CO2 液体离汽相区也很近,是接近气态的液体。这时 CO2 既接近气态,又接 近液态,所以只能是处于临界点附近。临界状态流体是一种汽液不分的流体。这 就是临界点附近汽液二相模糊不清现象。 7. 测定高于临界温度的等温线(T = 40℃ 左右) 将恒温水套温度调至 T=40.5℃ ,按上述 5 相同的方法和步骤进行。
五、实验数据处理
表 1.1 原始数据表 23℃ 压强 (Mpa)
略
将数据绘图如下:
略
六、实验结果讨论
1.由于实验器材的老化,实验数据本身的准确度不高,所以根据实验数据画出来 的曲线误差较大。 2.加压的时候要缓慢加,不能过快,实验操作的时候有一组加压不够缓慢出现了 较小的气泡,使得实验数据不够准确。
七.注意事项
1.实验压力不能超过 10.0 MPa,实验温度不高于 41℃。 2.应缓慢摇进活塞螺杆,否则来不及平衡,难以保证恒温恒压条件。 3.一般,按压力间隔 0.2MPa 左右升压。但在将要出现液相,存在汽液二相和 汽相将完全消失以及接近临界点的情况下,升压间隔要很小,升压速度要缓慢。 严格讲,温度一定时,在汽液二相同时存在的情况下,压力应保持不变。
T2.
大学化学实验报告范文相关 文章 :
★ 大学化学实验报告范文
★ 政治理论学习总结_政治理论学习心得体会6篇
★ 考研英语学习总结范文
★ 个人学习总结范文3篇
★ 高中学生学习总结1000字
★ 本学期学习总结下学期学习计划
★ 大学生有机化学实验报告总结
★ 大学生化工实习心得体会范文5篇
★ 化工实训报告范文3篇
★ 做化学实验的心得体会
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();E. 请问对苯二酚的实验室制法
对苯二酚及邻苯二酚
简介:这两个化合物是极其重要的中间体,
应用领域极其广泛,国内需求量很大。邻苯二
酚是重要的医药中间体,可用来制造止咳素、
丁子香酚、黄连素和异丙肾上腺素等。另外,
还可用于抗氧剂、杀菌剂、染料、香料等制备。
对苯二酚主要用作照相的显影剂,还可用于橡
胶和汽油的抗氧剂。目前国内所采用的生产一I:
艺成本高,劳动强度大,三废大。新工艺采用
先进的邻苯二酚联产对苯二酚的生产l_[艺,即
苯酚在TS-1合成分子筛的催化作用下,与双氧
水作用发生羟基化反应,生成邻、对苯二酚。
此工艺优点在于原料易得,反应条件温和, 反
应副产物绝大部分为水,苯二酚选择性高达99
%以上,三废污染小,产品成本低,符合当今
绿色化学的发展趋势,经济效益和社会效益都
非常好。对苯二酚及邻苯二酚产品纯度均为>98
%。所需厂房面积400 m。。主要设备有:反应
器、蒸馏釜、真空系统等设备。主要原材料有:
苯酚、丙酮、双氧水等原料。这两个产品目前
市场需求量大,其中邻苯二酚每年均需要进口。
由于环境保护的需要,国内许多采用传统工艺
生产对苯二酚的企业目前均在减产或停产。
2001年每吨产品成本<2.3万元,目前市场售价
又升高。(SUP7939)
l7
维普资讯 http://www.cqvip.com
气体抗溶剂过程(GA S) 是由Gallagher 和Krukon is 等[ 1 ] 于1989 年首先提出的, 其最初的实
验操作是一个间歇的过程。1993 年Sang2Do Yeo
等[ 2 ]将其改进为连续过程, 并成功地应用于胰岛素
超细颗粒的制备。与传统的喷雾干燥、气流粉碎、研
磨、冷冻干燥等方法相比, 连续GA S 过程制备的颗
粒具有粒径分布窄、生物成分不易失活等优点。1998
年Rererchon[ 3~ 4 ]对近几年超临界抗溶剂过程研究
作了总结与回顾, 证明这一过程在某些领域是非常
有效的。利用该方法, 人们已经得到了有用的微颗粒
和亚微颗粒产品。本文将该方法应用于对苯二酚颗
粒的制备过程, 通过改变操作参数(溶液浓度和溶液
流量等) , 研究过程变量对颗粒形貌和尺寸的影响。
1 实验部分
1. 1 实验装置
实验装置如图1 所示, 包括液体进料系统、二氧
化碳进料系统、结晶器、气液分离器及气体流量计
量、温度控制和压力控制等6 个部分。该装置的最高
操作压力为25M Pa, 最高操作温度为200°C。温度、
压力、液体流速和气体流速的测量精度分别为
±0. 1°C、± 0. 1M Pa、± 0. 01L öm in 和± 0. 02Lö
m in。
图1 超临界制细过程工艺流程图
F ig. 1 Schemat ic fo r ult ra2fine part icle p reparat ion
using SCF
1—So lution supp ly; 2—M etering pump; 3—P ressure
gauge; 4—Check valve; 5—One2way valve; 6—F ilter; 7—
Cylinder; 8—Recing value; 9—D ryer; 10—Comp resso r;
11—YT22 p ressure regulato r; 12—Nozzle; 13—Crystalliz2
er; 14—Samp ler; 15—Temperature contro l system; 16—
Co il heater; 17—Separato r; 18—Ro tameter; 19—W et test
meter
1. 2 实验方法
超临界CO 2 作为抗溶剂连续结晶过程中的溶
液与抗溶剂是以并流或逆流的方式连续进入结晶器
的, 溶液通过喷嘴进入有利于形成细小的液滴。超临
界CO 2 对液滴中溶剂的萃取将导致其中溶质浓度
急剧增大, 当液滴中溶质浓度大于其饱和浓度时, 溶
质将从溶液中快速结晶出来形成颗粒。
实验前, 使用丙酮配制对苯二酚溶液并用定性
滤纸过滤以防阻塞液体泵。检查喷嘴是否正常并安
装收集产品所需的载玻片。装配结晶器并检查气密
性, 启动温度、压力和流速控制装置, 并使其控制在
实验所需的温度、压力和流速要求(实验中CO 2 为
6. 00L öm in~ 10. 00L öm in )。待抗溶剂CO 2 稳定
15m in~ 20m in 后, 开启液体计量系统, 将对苯二酚2
丙酮溶液经喷嘴喷入结晶器, 同时记录操作时间与
溶液流量。观察转子流量计, 使之保持在设定值, 并
通过湿式流量计进行记录校正。在实验操作过程中,
观察与记录系统温度、压力和流量的数值及变化情
况, 并进行调节与控制。
为了确保溶剂不会再次溶解溶质, 在喷射结束
后用CO 2“吹洗”颗粒40m in~ 60m in。此时, 保持
CO 2 的流量在6. 00L öm in~ 10. 00L öm in (室温、常
压)。
在T = 310°C 和p = 8. 0M Pa 的操作条件下, 使
用生物显微镜照片观察了溶液浓度与流速对产品颗
粒形貌和尺寸的影响。
2 实验结果与分析
2. 1 装置可靠性验证
文献[ 5 ]以丙酮为溶剂, 利用连续GA S 过程
(T = 310°C, p = 8. 0M Pa, w = 0. 12 和V = 5mLö
m in) 制备了对苯二酚颗粒。在该条件下, 颗粒呈棒
状与棱柱形。本文以对苯二酚2丙酮2二氧化碳为研
究物系, 实验温度和压力分别控制在310°C 和8. 0
M Pa, 喷嘴孔径为D = 50Lm, 溶液浓度分别为C =
110göL 和5göL , 溶液流速分别为2. 00mL öm in 和
12. 00mL öm in, 抗溶剂流量为V CO 2= 6mL öm in。结
合图2 发现实验在不同溶液流量条件下制备的对苯
二酚颗粒的形貌只有两种: 棒状(小流量: 2. 00mLö
m in ) 和棱柱形(大流量: 12. 00mL öm in)。得到了与
文献[5 ]类似的实验结果, 说明自行搭建的装置具有
一定的可靠性。
2. 2 溶液流速对颗粒形貌与尺寸的影响
图2 (a) 和图2 (b) (C = 110göL ) 是在不同溶液
流量条件下实验得到的颗粒生物显微镜照片。图2
( a) 得到了平均粒径为40Lm~ 50Lm 的棱柱形结
晶; 图2 (b) 中的晶体颗粒呈棒状, 长度约100Lm。由
此可见, 增大溶液流量可以减小颗粒粒径; 在较大的
流量下生成颗粒的形貌是棱柱形, 而在较小的流量
时则是棒状颗粒。产生该现象的原因可以解释如下:
较大的流量在喷嘴出口处流速较大, 从而使其受到
的剪切力较大, 由此形成尺寸较小的液滴, 颗粒粒径
也较小; 反之, 流量较小导致在喷嘴出口处的流速较
小, 从而使其受到的剪切力较小, 形成的液滴尺寸较
大, 生成的颗粒粒径也较大。颗粒形貌由结晶动力学
和结晶时间所决定。对于该物系, 较小流速下, 易于
形成棒状颗粒; 而在大流速下则呈棱柱形。
图2 (c) 和图2 (d) (C = 5göL ) 是另一组流量条
件下得到的颗粒照片。图2 (c) 得到了5Lm~ 10Lm
的棱柱形结晶颗粒; 而图2 (d) 中的样品颗粒呈棒
状, 长度约为8Lm~ 12Lm。可见, 图2 (a) 与图2 (b)
和图2 (c) 与图2 (d) 具有相同的规律。
图2 苯二酚颗粒光学显微镜照片
F ig. 2 Pho tograph s fo r hydroquinone part icles
( a ) —V = 12. 00mL öm in, C = 110göL ; ( b ) —V = 2. 00mLöm in,
C= 110göL ; ( c ) —V = 12. 00mLöm in, C = 5göL ; ( d ) —V =
2. 00mL öm in, C= 5göL
2. 3 溶液浓度对颗粒形貌与尺寸的影响
比较图2 (a) 和图2 (c) , 得到不同浓度条件下颗
粒形貌和尺寸的变化规律。溶液浓度增大, 颗粒粒径
增大; 但溶液浓度对颗粒形貌几乎不产生影响。此规
律亦可由图2 (b) 和图2 (d) 比较中得出。由于溶液浓
度的减小使晶体颗粒尺寸明显减小, 结晶过程中分
子碰撞的机率下降, 可用于晶体成核与生长的物质
减少, 从而造成颗粒直径的大幅度下降。这一结论与
Th iering 等[ 6 ]对甲醇2p 2HBA 2CO 2 体系的实验结果
一致。
3 结论
本研究进行了对苯二酚物系的GA S 过程超细
颗粒制备实验, 将实验结果与文献结果相比较, 验证
了实验装置的可靠性; 考察了实验过程中不同溶液
浓度和气体流量对产品颗粒的粒径和形貌的影响。
结果表明, 在该研究的范围内, 溶液流量增大颗粒粒
径减小, 而溶液浓度增大颗粒粒径增加; 流量较大时
( 12. 00mL öm in) , 产品颗粒为棱柱形晶体, 流量较
小时(2. 00mL öm in) , 产品颗粒为棒状晶体。
参考文献:
[ 1 ] Gallagher P M , Krukonis V J. Gas A ntiso lvent Recrystal2
lization: N ew P rocess to Recrystallize Compounds Inso luble in
SCF [M ]. W ash ington DC: American Chem ical Society,
1989.
[ 2 ] Yeo S D, L im G B, Debenedetti P G, et al. Fo rmation of m i2
croparticulate p ro tein powders using a supercritical fluid anti2
so lvent [J ]. Bio techno logy and Bioengineering, 1993, 41: 3412
346.
[ 3 ] Reverchon E. Supercritical A ntiso lvent P recip itation: Its Ap2
p lication and to M icroparticle Generation and P rocts F rac2
tionation [M ]. F rance N ICE: International Society fo r the
A dvancement of Supercritical F luids, 1998. 2212236.
[ 4 ] Reverchon E, Celano C, Po rta G D. Supercritical antiso lvent
p recip itation: a new technique fo r p reparing subm icronic yttri2
um to imp rove YBCO superconcto rs [ J ]. J M ater Res,
1998, 13 (2) : 2842289.
[ 5 ] W ubbo lts F E, Bruinsma O S L , de Graauw J , et al. Continu2
o s GasA nti2so lvent Crystallization of Hydroquinone from A ce2
tone U sing Carbon D ioxide [M ]. Japan Sendai: International
Society fo r the A dvancement of Supercritical F luids, 1997.
63266.
[ 6 ] Th iering R, Charoenchaitrakoo l R, Tu L S, et al. Crystalliza2
tion of Para2hydroxybenzene A cid by So lvent Expension w ith
Dense Carbon D ioxide [M ]. F rance N ICE: International Soci2
ety fo r the A dvancement of Supercritical F luids, 1998. 2912
F. 制备磺胺醋酰钠时加入醋酐为什么变成乳白色
实验三 磺胺醋酰钠(Sulfacetamide Sodium)的合成
一、实验目的
1. 通过磺胺醋酰钠的合成,了解用控制pH、温度等反应条件纯化产品的方法。 2. 加深对磺胺类药物一般理化性质的认识。
二、实验原理
磺胺醋酰钠用于治疗结膜炎、沙眼及其它眼部感染。磺胺醋酰钠化学名为N-[(4-氨基苯基)-磺酰基]-乙酰胺钠-水合物,化学结构式为:
NH2.H2OSO2NCOCH3Na
磺胺醋酰钠为白色结晶性粉末;无臭味,微苦。易溶于水,微溶于乙醇、丙酮。
合成路线如下:
NH2NH2NaOHpH12-13SO2NCOCH3NaNH2NH2NaOHpH7-8SO2NCOCH3Na+(CH3CO)2OSO2NH2HClpH4-5SO2NHCOCH3
三、主要实验仪器和药品
表一 所用的玻璃仪器及规格
玻璃仪器名称 三颈烧瓶 球形冷凝管 温度计 量筒 胶头滴管
规格 100ml 100℃ 5ml 50ml 1ml
数量 1 1 1 2 2 2
烧杯 玻璃棒 表面皿 布氏漏斗 抽滤瓶
50ml 250ml 1000ml 500ml
3 4 1 3 1 1 1
表二 所用的试剂及规格
药品名称 磺胺 氢氧化钠 乙酸酐 浓盐酸 活性炭
药品厂家
天津市北联精细化学品开发有限公司 上海试剂总厂 广东汕头市西陇化工厂 上海成海化学工业有限公司
药品规格 含量不少于99.5%
含量不少于96.0% 含量不少于99.5% 36%~38%
13.6ml 药品用量 17.2g
表三 所用的设备型号及规格
设备名称 集热式恒温加热磁力搅拌器 电子天平
电热恒温鼓风干燥箱 子华牌循环水真空泵 真空干燥箱 X-4显微熔点仪
SHZ-DⅢ DZF-6020型 SGWX-4 设备规格 DF-101S
DHG-9053A
设备厂家 郑州长城科工贸有限公司
赛多利斯科学仪器(北京)有限公司 上海精宏实验设备有限公司 巩义市予华仪器有限责任公司 上海精宏实验设备有限公司 上海精密科学仪器有限公司
四、实验步骤
(一)磺胺醋酰的制备
1、在装有搅拌子,球形冷凝管及温度计的100 mL三颈瓶中,依次加入转子,磺胺17.2 g,22.5%氢氧化钠水溶液22 mL,于水浴上加热至50℃左右。实验装置如下图所示
图一 磺胺醋酰制备装置图
2、待磺胺溶解后,分次加入醋酐13.6 mL,77% 氢氧化钠12.5 mL(首先,加入醋酐3.6 mL,77% 氢氧化钠2.5 mL;随后,每次间隔5 min,将剩余的77% 氢氧化钠和醋酐分5次交替加入,每次2ml)。加料期间反应温度维持在50~55℃;并保持反应液的pH在12~13之间,加料完毕继续保持此温度反应30 min。(反应完毕应该为透明的溶液。如果PH过高,则有固形物,可能为磺胺双钠,在下述调节PH至7的过程中发现固形物先溶解,而后在pH 接近7的时候又析出固体。) 3、反应完毕,停止搅拌,将反应液倾入250 mL烧杯中,
4、加入20 mL水稀释,于冷水浴(用1000ml大烧杯装适量自来水)中用36%
盐酸调至pH 为7,放置30 min,并不时搅拌以加速固体析出,抽滤,滤饼(磺胺)弃去。
5、滤液用36% 盐酸调至pH为 4~5,此时又有固体析出,再次抽滤,滤饼(磺胺醋酰和双乙酰化合物的混合物)压紧抽干,得黄色粉末。
G. 做对甲基苯乙酮的制备实验时,为什么要将酸酐和无水甲苯的混合后,加入无水氯化铝和无水甲苯的混合物中
这是一个典型的付氏反应, 原理是乙酸酐在三氯化铝的催化下, 在甲专苯的苯环上发生亲电属取代反应。首先将甲苯和无水氯化铝混合, 作为反应物和催化剂的体系。 然后将酸酐溶于甲苯中, 滴加。因为反应是放热的, 所以以滴加来控制反应速度和过程。
H. 透射电镜样品制备方法是什么
透射电镜试样制备:
一、实验内容及目的:了解透射电镜对试样的要求,熟悉透射电镜试样的制备过程,制备一个合格的透射 电镜试样。
二、薄膜样品的制备:用于透射电镜下观察的试样厚度要求在50-200nm 之间,对于不导电的陶瓷材料和脆性材料,最终减薄可采用离子减薄法。
该法是用离子束在样品的两侧以一定的倾角(5-30)轰击样品,使之减薄。由于陶瓷样品硬度高,耐腐蚀,因此,离子减薄的时间长。对于要求较高的金属薄膜样品,在双喷后再进行一次离子减薄,效果会更好。
预减薄
预减薄的目的在于使圆片的中心区域进一步减薄,以确保最终在圆片的中心部位穿孔(其边缘附近区域可供观察),预减薄通常采用专用的机械研磨机,使中心区域减薄至约10μm厚,借助于微处理器控制的精密研磨有时可以获得使电子束透明的厚度(<1μm).有时也用化学方法进行预减薄。
以上内容参考:网络-样品制备