导航:首页 > 装置知识 > 第二次世界大战后自动化装置

第二次世界大战后自动化装置

发布时间:2022-12-10 03:47:41

A. 自动化的发展介绍

1946年,美国福特公司的机械工程师D.S.哈德最先提出“自动化”一词,并用来描述发动机汽缸的自动传送和加工的过程。50年代,自动调节器和经典控制理论的发展,使自动化进入以单变量自动调节系统为主的局部自动化阶段。60年代,随现代控制理论的出现和电子计算机的推广应用,自动控制与信息处理结合起来,使自动化进入到生产过程的最优控制与管理的综合自动化阶段。
70年代,自动化的对象变为大规模、复杂的工程和非工程系统,涉及许多用现代控制理论难以解决的问题。这些问题的研究,促进了自动化的理论、方法和手段的革新,于是出现了大系统的系统控制和复杂系统的智能控制,出现了综合利用计算机、通信技术、系统工程和人工智能等成果的高级自动化系统,如柔性制造系统、办公自动化、智能机器人、专家系统、决策支持系统、计算机集成制造系统等。
自动装置的出现和应用是在18世纪。自动化技术形成时期是在18世纪末~20世纪30年代。1788年英国机械师J.瓦特发明离心式调速器(又称飞球调速器),并把它与蒸汽机的阀门连接起来,构成蒸汽机转速的闭环自动控制系统。瓦特的这项发明开创了近代自动调节装置应用的新纪元,对第一次工业革命及后来控制理论的发展有重要影响。人们开始采用自动调节装置,来对付工业生产中提出的控制问题。这些调节器都是一些跟踪给定值的装置,使一些物理量保持在给定值附近。自动调节器应用标志着自动化技术进入新的历史时期。进入20世纪以后,工业生产中广泛应用各种自动调节装置,促进了对调节系统进行分析和综合的研究工作。这一时期虽然在自动调节器中已广泛应用反馈控制的结构,但从理论上研究反馈控制的原理则是从20世纪20年代开始的。1833年英国数学家C.巴贝奇在设计分析机时首先提出程序控制的原理。1939年世界上第一批系统与控制的专业研究机构成立,为20世纪40年代形成经典控制理论和发展局部自动化作了理论上和组织上的准备。
20世纪40~50年代是局部自动化时期第二次世界大战时期形成的经典控制理论对战后发展局部自动化起了重要的促进作用。在问题的过程中形成了经典控制理论﹐设计出各种精密的自动调节装置﹐开创了系统和控制这一新的科学领域。这一新的学科当时在美国称为伺服机构理论﹐在苏联称为自动调整理论﹐主要是解决单变量的控制问题。经典控制理论这个名称是1960年在第一届全美联合自动控制会议上提出来的。1945年后由于战时出版禁令的解除﹐出现了系统阐述经典控制理论的著作。1945年美国数学家维纳﹐N.把反馈的概念推广到一切控制系统。50年代以后﹐经典控制理论有了许多新的发展。。经典控制理论的方法基本上能满足第二次世界大战中军事技术上的需要和战后工业发展上的需要。但是到了50年代末就发现把经典控制理论的方法推广到多变量系统时会得出错误的结论。经典控制理论的方法有其局限性。
20世纪40年代中发明的电子数字计算机开创了数字程序控制的新纪元﹐虽然当时还局限于自动计算方面,但ENIAC和EDVAC的制造成功﹐开创了电子数字程序控制的新纪元。电子数字计算机的发明为60~70年代在控制系统中广泛应用程序控制和逻辑控制以及广泛应用电子数字计算机直接控制生产过程奠定了基础。
20世纪50年代末起至今是综合自动化时期,这一时期空间技术迅速发展,迫切需要解决多变量系统的最优控制问题。于是诞生了现代控制理论。现代控制理论的形成和发展为综合自动化奠定了理论基础。同时微电子技术有了新的突破。1958年出现晶体管计算机,1965年出现集成电路计算机,1971年出现单片微处理机。微处理机的出现对控制技术产生了重大影响﹐控制工程师可以很方便地利用微处理机来实现各种复杂的控制,使综合自动化成为现实。“自动化(Automation)”是美国人D.S.Harder于1936年提出的他认为在一个生产过程中,机器之间的零件转移不用人去搬运就是“自动化”。

B. 自动控制系统的发展及技术现状是什么

1基本概念

如图4-1所示框图说明了控制系统的基本概念,动作信号通过(经由)控制系统元件后,提供一个指示,此系统的目的就是将变量c控制于该指示内。一般来说,被控变量为系统的输出,而动作信号为系统的输入。举一个简单的例子,汽车的方向控制(Steering Control),两个前轮的方向可视为被控制变量,即输出;而其方向盘的位置可视为输入,即动作信号e。再如,若我们要控制汽车的速度,则加速器的压力总和为动作信号,而速度则视为被控变量。

图4-13自动化生产线

5)大系统理论的诞生

系统和控制理论的应用从60年代中期开始逐渐从工业方面渗透到农业﹑商业和服务行业,以及生物医学﹑环境保护和社会经济各个方面。由于现代社会科学技术的高度发展出现了许多需要综合治理的大系统,现代控制理论又无法解决这样复杂的问题,系统和控制理论急待有新的突破。在计算机技术方面,60年代初开始发展数据库技术,1970年提出关系数据库,到80年代数据库技术已经达到相当的水平。60年代末计算机技术和通信技术相结合产生了数据通信。1969年美国国防部高级研究局的阿帕网(ARPA)的第一期工程投入使用取得成功,开创了计算机网络的新纪元。数据库技术和计算机网络为80年代实现管理自动化创造了良好的条件。管理自动化的一个核心问题是办公室自动化,这是从70年代开始发展起来的一门综合性技术,到80年代已初步成熟。办公室自动化为管理自动化奠定了良好的基础。

国际自动控制联合会(IFAC)于1976年在意大利的乌第纳召开了第一届大系统学术会议,于1980年在法国的图鲁兹召开第二届大系统学术会议。美国电气与电子工程师学会(IEEE)于1982年10月在美国弗吉尼亚州弗吉尼亚海滩举行了一次国际大系统专题讨论会。1980年在荷兰正式出版国际性期刊《大系统──理论与应用》。这些活动标志着大系统理论的诞生。

6)人工智能和模式识别

用机器来模拟人的智能,虽然是人类很早以前就有的愿望,但其实现还是从有了电子计算机以后才开始的。1936年,图灵提出了用机器进行逻辑推理的想法。50年代以来,人工智能的研究是基于充分发挥计算机的用途而展开的。

早期的人工智能研究是从探索人的解题策略开始,即从智力难题﹑弈棋﹑难度不大的定理证明入手,总结人类解决问题时的心理活动规律,然后用计算机模拟,让计算机表现出某种智能。1948年美国数学家维纳在《控制论》一书的附注中首先提出制造弈棋机的问题。1954年美国国际商业机器公司(IBM)的工程师塞缪尔应用启发式程序编成跳棋程序,存储在电子数字计算机内,制成能积累下棋经验的弈棋机。1959年该弈棋机击败了它的设计者。1956年赫伯特·西蒙和艾伦·纽厄尔等研制了一个称为逻辑理论家的程序,用电子数字计算机证明了怀特海和罗素的名著《数学原理》第二章52条定理中的33条定理。1956年M.L.明斯基、J.麦卡锡、纽厄尔、西蒙等10位科学家发起在达特茅斯大学召开人工智能学术讨论会,标志人工智能这一学科正式诞生。1960年人工智能的4位奠基人,即美国斯坦福大学的麦卡锡、麻省理工学院的明斯基、卡内基梅隆大学的纽厄尔和西蒙组成了第一个人工智能研究小组,有力地推动了人工智能的发展。从1967年开始出版不定期刊物《机器智能》,共出版了9集。从1970年开始出版期刊《人工智能》。从1969年开始每两年举行一次人工智能国际会议(IJCAI)。这些活动进一步促进了人工智能的发展。70年代以来微电子技术和微处理机的迅速发展,使人工智能和计算机技术结合起来。一方面在设计高级计算机时广泛应用人工智能的成果,另一方面又利用超级微处理机实现人工智能,大大地加速了人工智能的研究和应用。人工智能的基础是知识获取﹑表示技术和推理技术,常用的人工智能语言则是LISP语言和PROLOG语言,人工智能的研究领域涉及自然语言理解﹑自然语言生成﹑机器视觉﹑机器定理证明﹑自动程序设计﹑专家系统和智能机器人等方面。人工智能已发展成为系统和控制研究的前沿领域。

1977年E.A.费根鲍姆在第五届国际人工智能会议上提出了知识工程问题。知识工程是人工智能的一个分支,它的中心课题就是构造专家系统。1973—1975年费根鲍姆领导斯坦福大学的一个研究小组研制成功一个用于诊治血液传染病和脑膜炎的医疗专家系统MYCIN,能学习专家医生的知识,模仿医生的思维和诊断推理,给出可靠的诊治建议。1978年费根鲍姆等人研制成功水平很高的化学专家系统DENDRAL。1982年美国学者W.R.纳尔逊研制成功诊断和处理核反应堆事故的专家系统REACTOR。中国也已经研制成功中医专家系统和蚕育种专家系统。现在专家系统已应用在医学﹑机器故障诊断﹑飞行器设计﹑地质勘探﹑分子结构和信号处理等方面。

为了扩大计算机的应用,使计算机能直接接受和处理各种自然的模式信息,即语言﹑文字﹑图像﹑景物等,模式识别研究受到人们的重视。1956年,塞尔弗里奇等人研制出第一个字符识别程序,随后出现了字符识别系统和图像识别系统,并形成了以统计法和结构法为核心的模式识别理论,语音识别和自然语言理解的研究也取得了较大进展,为人和计算机的直接通信提供了新的接口。

60年代末到70年代初美国麻省理工学院﹑美国斯坦福大学和英国爱丁堡大学对机器人学进行了许多理论研究,注意到把人工智能的所有技术综合在一起,研制出智能机器人,如麻省理工学院和斯坦福大学的手眼装置﹑日立公司有视觉和触觉的机器人等。由于机器人在提高生产率,把人从危险﹑恶劣等工作条件下替换出来,扩大人类的活动范围等方面显示出极大的优越性,所以受到人们的重视。机器人技术发展很快,并得到越来越广泛的应用,并在工业生产﹑核电站设备检查﹑维修﹑海洋调查﹑水下石油开采﹑宇宙探测等方面大显身手,正在研究中的军用机器人也具有较大的潜在应用价值。关于机器人的设计﹑制造和应用的技术形成了机器人学。

总结人工智能研究的经验和教训,人们认识到,让机器求解问题必须使机器具有人类专家解决问题的那些知识,人工智能的实质应是如何把人的知识转移给机器的问题。1977年,费根鲍姆首倡专家系统和知识工程,于是以知识的获取﹑表示和运用为核心的知识工程发展起来。自70年代以来,人工智能学者已研制出用于医疗诊断﹑地质勘探﹑化学数据解释和结构解释﹑口语和图像理解﹑金融决策﹑军事指挥﹑大规模集成电路设计等各种专家系统。智能计算机﹑新型传感器﹑大规模集成电路的发展为高级自动化提供了新的控制方法和工具。

50年代以来,在探讨生物及人类的感觉和思维机制,并用机器进行模拟方面,取得一些进展,如自组织系统﹑神经元模型﹑神经元网络脑模型等,对自动化技术的发展有所启迪。同一时期发展起来的一般系统论﹑耗散结构理论﹑协同学和超循环理论等对自动化技术的发展提供了新理论和新方法。

C. 自动化立体仓库的发展历史和起源

自动化立体仓库的产生和发展是第二次世界大战之后生产和技术发展的结果。50年代初,美国出现了采用桥式堆垛起重机的高架仓库;50年代末60年代初出现了司机操作的巷道式堆垛起重机高架仓库;1963年美国率先在高架仓库中采用计算机控制技术,建立了第一座计算机控制的高架仓库。此后,自动化高架仓库在美国和欧洲得到迅速发展,并形成了专门的学科。60年代中期,日本开始兴建高架仓库,并且发展速度越来越快,成为当今世界上拥有自动化高架仓库最多的国家之一。
我国对高架仓库及其物料搬运设备的研制开始并不晚,1963年研制成第一台桥式堆垛起重机(机械部北京起重运输机械研究所负责),1973年开始研制我国第一座由计算机控制的自动化高架仓库(高15米,机械部北京起重运输机械研究所负责),该库1980年投入运行。到目前为止,据不完全统计,我国高架仓库数量已超过500座。高架仓库由于具有很高的空间利用率、很强的入出库能力、采用计算机进行控制管理而利于企业实施现代化管理等特点,已成为企业物流和生产管理不可缺少的技术,越来越受到企业的重视。
自动化高架仓库应用范围很广,几乎遍布所有行业。在我国,自动化高架仓库应用的行业主要有机械、制药、IT、冶金、化工、航空航天、电子、食品加工、烟草、家电、印刷、配送中心、机场、港口等。

阅读全文

与第二次世界大战后自动化装置相关的资料

热点内容
东莞市永克五金制品有限公司怎么样 浏览:586
江玲皮卡车仪表盘左上角是什么表 浏览:485
流体压强和流速关系的实验装置 浏览:494
如何抓轴承 浏览:471
口罩超声波机怎么调 浏览:998
导缆装置的位置与作用 浏览:796
阀门的芯体里是什么材料 浏览:216
餐厅纸巾生产设备需要多少钱一套 浏览:987
电冰箱制冷系数测量实验装置 浏览:472
电动车前工具箱怎么换 浏览:431
11年捷达车空调不制冷怎么回事 浏览:878
用cad画五金制品难吗 浏览:799
广东直销美容仪器怎么样 浏览:95
人防密闭阀门套什么定额 浏览:537
老款思域后轮轴承怎么拆 浏览:40
天然气阀门井钥匙创新 浏览:702
什么地方卖吸氧器材 浏览:98
实验室化学反应装置图 浏览:793
铸造银条模具什么材质 浏览:413
轴承加工什么工艺 浏览:494