㈠ 电气自动化专业的应用领域有哪些
自动化、电气工程及其自动化、电气自动化、生产过程自动化、计算机控制技术、电子信息工程、应用电子技术和电力系统自动化...这还有很多的,自动化本身分为电气和仪表二个方向,其实与机械,通讯,计算机等专业交叉很多~
㈡ 电气自动化控制系统的应用及发展趋势
电气自动化控制系统的应用
:
电气自动化控制系统在人们生产生活中的应用是极其广泛的,比如在电力系统就主要表现为下例几个方面:
A计算机处理系统和数据采集。一般包括参数输入,参数显示,性能计算,还有我们所熟知的报表打印,异常报警,事故录入记录,历史数据查证等。
B汽机电液的调节系统。在建国初期,我们国家的社会经济发展还相对落后,那时我国汽机控制常常用的是液压控制系统,随着时代的进步,到了二十世纪,八十年代,我国的控制设备,无论是电气元件还是电液转换器的可靠性都大大提升,伴随着高压抗燃油的发展,使电调系统更好地为汽机配套,更好地实现了转速,电功率,调节级后压力的三个回路控制,接应力启动功能和阀门管理。控制汽轮发电机组也从盘车开始,然后到冲转,暖机,升速,阀切换,并网还有带初负荷,加负荷,最后一直到正常的运行。加入电网的一次调频还有接受电网的调度来改变负荷。更加保证了机组安全,而且还能运行平稳,延长了机组寿命,提高了机组的经济价值,为国民经济的发展,创造了更加有利的条件。
C汽机旁路系统。旁路控制系统是由高/低压旁路压力调节和高/低压旁路温度调节系统组成的,旁路阀门执行器要选择电动还是电液型的,可根据系统运作时对力矩和速度的需求来选择。
D汽机监视保护表。汽机为了杜绝事故的发生,常常在机组的启动,运行及停机过程里,用保护仪表来监视机械工作状况。从二十世纪八十年代以来,我国大量的汽轮发电机组使用单机容易,那么就需要开发相应机械参数的监视保护仪表。包括转速,轴向位移,轴承盖的振,轴振动,鉴相,偏心的角度,相对膨胀,汽缸热膨胀等全套的装置。因此,就能够使机组连锁保护系统有十分准确的保护监视信号。
E机,炉协调系统。协调控制系统是火电站的主控系统,其意义深远。主要任务是控制机组的各输入和输出间的能量平衡和质量平衡。还能不断消除内外干扰,让机组正常运行。主要作用是接受电网负荷高度,加入到调频和调峰中去,控制汽机,锅炉间的能量输入输出平衡,协调好锅炉内的送风,燃料,引风,给水等子系统的控制动作,协调好辅机设备实际能力和机组出力等。
电气自动化控制系统的未来发展趋势
:
很多控制系统的厂商逐渐接受了计算机领域的许多技术和电气技术相结合,计算机在电气自动化技术中发挥着很重要的作用。而Internet和以太网技术更是带来了电气自动化的改头换面,全新革命。这也是为了更好地适应市场,科技和社会等多方面的需求,当然电子商务的发展更是加速了这一过程。网络和多媒体技术也同样适用于电气自动化领域,并且前景大好。虚拟现实技术和视频处理技术,对设计未来自动化产品设备很有参考价值,也因为,软件的开发速度超快,也加速了被广泛和普通的应用于日常生产生活的进程,而也能够明了电气自动化控制系统的发展趋势,正逐渐从单一设备的发展变化成向集成化多元化系统化方向发展。
㈢ 试分析电气自动化在电气工程中的应用
电气自动化技术在电气工程中的应用方面的论文
论文写作者来说,最好拟一个比较详细的写作提纲,不但提出论文各部分要点、而且对其中所涉及的材料和材料的详略安排以及各部分之间的相互关系等都有所反映,写作时即可得心应手。技术在电气工程自动化中应用智能化技术在电气工程自动化中的应用
【摘要】全面实现电子工程自动化是我国电子工程改革的方向,电子工程自动化的发展建立在计算机科学技术发展的基础上。随着一种新型模拟人智能的计算机科学技术的创新和发展,电子工程自动化也有了大的突破。那么智能化技术到底是如何在电气工程自动化中大显身手的,未来智能化技术在电气工程应用的发展方向是什么,本文将从分析阐述模糊逻辑、专家系统、人工神经网络和遗传算法这四种典型的智能技术的应用角度切入,解决以上提出的问题。
【关键词】计算机科学技术;电气自动化;智能化技术
电气自动化的发展是离不开计算机科学技术发展,随着计算机学科新分支——人工智能技术的诞生和发展,电气自动化也有了一定程度新突破。
一、智能技术的应用是电气自动化发展的新突破
电气自动化程度是衡量一个国家工业科技水平高低的标尺,是电气工程发展的必由之路和最终目的。电气自动化应用可以减少电气工人劳动强度、提高电气控制的精确度和电气设备设计速度等。电气自动化主要体现在三方面:电气化工程信息自动采集、信息数据自动化统计分析计算和电器设备自动化控制。
电气自动化发展要依靠计算机科学技术发展,计算机科学技术发展是电气自动化发展的基石:电力系统信息采集、信息数据分析计算、电力系统管理控制无一不用到计算机技术。所以,作为计算机科技的新分支在电气自动化系统遇到问题时,智能系统通过在相关数据库中查找行业专家
㈣ 电气自动化干什么的
自动化是一个将宏观视野融入更大领域的专业。其实电和气动的再生涉及到很多方面,只是你观察不到而已。1.对于交通方面,电气化铁路道路,比如轻轨、地铁、铁路、磁悬浮悬浮列车,包括现在绝大多数的列车,都是通过电气化自动遥控的。\x02天空中的飞行器、卫星发射、发射等。2.工业、石油、化工、电力、生产等所有领域。主要依靠气、电自动化进行操作、生产、加工、监督、控制和维护。例如煤制油、煤制氢、煤发电、化肥厂、炼油厂钢铁生产、各种自动化半自动生产线、蒸汽汽车生产、加工、包装、传输、油田采油、天然气日常运行维护、远程监控和程序控制、远程控制系统等。,各方面基本都要用到电空专业知识。3.民用方面,民用警报,3.民用方面,民用报警、火灾报警系统、暖通系统、安防系统、自动加工、配电系统、供电系统、银行系统,包括我们平时的信用卡系统等。必须全部使用电气自动化知识。
㈤ 电气自动化在传感器技术中的应用。
自动控制是指在没有人直接参与的情况下,利用自动控制装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预订的规律运行。而暖通中央空调系统在楼宇系统中属于设计和运行最为繁杂的系统,其中涉及到不同厂商的设备要集中在一个连环的循环系统内运行,在负荷需求发生变化时,要及时调整设备运行以保证空调末端舒适度。仅通过手动操作只会带来系统运行的不平衡和设备的不合理运行,所以就需要空调系统控制自动化来弥补这一方面。
国内在上世纪90 年代引入楼宇自控的概念和系统,而暖通冷机群控作为是楼宇自控系统中的一个子系统才刚刚在国内兴起,目前的大多数的国内项目,冷机群控子系统基本只是简单的逻辑连锁控制或数据采集、监测。但是随着大型新建公共建筑、系统节能改造项目地不断递增,政府和客户也愈发对暖通系统的优化运行加以重视,功能也不将不再局限于简单的数据采集,更加注重设备间的控制逻辑和功能。
因为空调自控系统有其特殊性,在调试过程中它是需要自控技术、空调技术、弱电技术、网络技术之间的结合,所以对客户来讲,在系统前期设计、设备选型和后期操作人员水平都要求比较高,从而导致客户在之前对空调群控的投入并不够,不过目前相对于暖通设备耗能占整个楼宇高比例而言,从长远考虑,客户也开始更愿意加大对这方面的投入。
以下是空调自控在系统运行中所实现的功能举例:
—对于常见的一次泵定流量、一次泵变流量和一二次泵变流量的水系统,对水泵、阀门、冷却塔等设备进行集中监控,基于采集的参数进行机组加减控制、启停顺序控制,使机组的运行冷量与实际的负荷需求相匹配,提供各种控制策略,例如重置系统设置点、负荷侧旁通阀控制和冷却塔侧控制等,提供给操作者方便地监控系统和故障诊断方法。
—对于热回收系统、蓄能(冰蓄冷)系统、冷却塔免费供冷等系统,通过自控实现阀门切换、控制进出水温度等功能。
空调设备的特点是功率大,运行时间长,使用范围广。空调的能量消耗在发达国家的总能耗中占有相当大比重,节能是设计空调控制系统时的一项主要指标。空调控制属于过程控制(见过程控制系统)。大多数空调控制系统为反馈控制系统。随着人类对空气环境要求的日益提高,一门综合研究和处理空调、采暖和通风的技术──人工气候环境工程正在迅速发展。
较完善的空调控制系统由4个部分组成。
①空气状态参数的检测检测系统由传感器、变送器和显示器组成。传感器是检测空气状态参数的主要环节。在空调控制系统中常用的传感器有温度传感器、湿度传感器、压力传感器等。传感器的惯性和精度对空调控制系统的精度影响较大。空调系统属于分布参数系统。空调区内各处的空气状态参数表现为一个分布场,它取决于气流组织和负荷分布等因素。空调控制系统只能保证传感器所处空间位置的空气参数的控制精度。要使整个空调区内取得良好的空调效果,还必须合理地选定传感器的设置位置。
②空气状态参数的自动调节自动调节是空调控制的核心部分。多数空调系统的被调参数为温度和湿度。空调控制中温度和湿度自动调节系统(图1)的各个组成部件的功能与温度控制系统中的同类部件相同。调节器多采用位式调节器或PID调节器,有些情况下也采用分程、反馈加前馈、串接等调节方式。在这种常规调节系统中,两个被调参数被分别控制,它们之间的耦合关系则被视为干扰,须在设计中加以考虑。图2为典型的空调及其控制系统的组成。这种系统利用加热器、冷却器、加湿器等装置并采用改变送风量、改变新风与回风比例等方法,按预定控制规律对被调参数(温度、湿度和压力)实现自动调节。其中调节装置可采用模拟量或数字式仪表,也可用数字计算机来代替(图2中虚线框内的部分)。直接采用计算机来实现空调控制时,可使被调参数间实现解耦控制(见解耦控制问题),进而可实现适应控制(见适应控制系统)。 ③空调工况的判断及其自动切换空调的最优工况(工作状况)会随建筑物外部的气候条件和内部的负荷状况而漂移。通常可按季节负荷事先绘制出建筑物空调的全年工况分区图。在判断工况时,由于量测精度的限制,工况分区内会出现边界重叠现象。当工况自动切换时,要保证系统稳定,在边界重叠区不出现“竞争”和振荡,转换的时间间隔不能小于制冷机等设备所允许的最短启、停时间。
④设备和建筑物的安全防护为保证空调系统安全运行,所有设备均设有专门的安全防护控制线路。例如只能在有风时才接通电加热器。当建筑物出现火情时,防护装置会自动迅速切断有关风路或整个空调系统,并启动相应排烟风机。
70年代以来,由于微型计算机的普及,电子计算机开始用作空调控制的核心部件。直接数字控制技术得到广泛应用。空调设备和控制系统一体化成为空调控制技术更新的重要方向。由多台计算机组成的分级分布式空调控制系统开始用于大型多功能建筑物或建筑群。80年代,随着节能问题的日益突出,在满足使用要求前提下,以冷量、热量和电量消耗最少为目标的空调控制优化软件的开发受到广泛重视。
㈥ 自动化技术的应用
工业自动化是自动化技术应用的一个最为重要的方向。其具体运用的方面有:
计算机辅助设计(CAD)和计算机辅助制造(CAM) 综合办公自动化(OA)(例如:门禁系统、资讯科技稽核) 过程控制与自动化仪器仪表人工智能技术
自动化技术的进步推动了工业生产的飞速发展,尤其是在石油、化工、冶金、轻工业等行业,由于采用自动化仪表和集中控制装置,促进了连续生产过程自动化的发展,大大提高了劳动生产率。用自动化装置管理化工生产过程的方法称为化工自动化。
㈦ 我国电气自动化的发展方向和新技术的运用
电气自动化与电气工程及其自动化的区别是:电气自动化一般偏于控制理论和实践。你不要说你准备搞设计~ 工业自动化仪表:重点发展基于现场总线技术的主控系统装置及智能化仪表、特种和专用自动化仪表;全面扩大服务领域,推进仪器仪表系统的数字化、智能化、网络化,完成自动化仪表从模拟技术向数字技术的转变,5年内数字仪表比例达到60%以上;加速具有自主知识产权的自动化软件的商品化。
电工仪器仪表:重点发展长寿命电能表、电子式电能表、特种专用电测仪表和电网计量自动管理系统。到2005年,中低档电工仪器仪表国内市场占有率要达到95%;到2010年,高中档电工仪器仪表国内市场占有率应达到80%。
科学测试仪器:重点发展过程分析仪器、环保监测仪器仪表、工业炉窑节能分析仪器以及围绕基础产业所需的汽车零部件动平衡、动力测试及整车性能检测仪、大地测量仪、电子速测仪、测量型全球定位系统以及其他实验机、实验室仪器等新产品。产品以技术含量较高的中档产品为主,到2005年在总产值中占50%~60%。
环保仪器仪表:重点发展大气环境、水环境的环保监测自动化控制系统产品,鉴于加强环保执法力度加快环保建设步伐,加大环保建设投资、培育环保产业这一国民经济新增长点的需要,面对我国5000多个环境检测站和大量的城镇污水处理及企业废水处理这个巨大的市场,今后环保仪器仪表工业产品市场将有大幅度的增长。据有关方面不完全统计,1998年我国环保仪器仪表及监控系统产值约11.7亿元,到2005年将扩至42亿元达到20世纪90年代后期国际先进水平,国内市场占有率达到50%~60%,而到2010年将扩至110亿元,到2010年国内市场占有率达到70%以上。由此可见,其市场前景十分广阔。
分析化学仪器:重点研究方向包括:一是高通量分析,即在单位时间内可分析测试大量的样品。二是极端条件分析,其中单分子单细胞分析与操纵为目前热门的课题。三是在线、实时、现场或原位分析,即从样品采集到数据输出,实现快速的或一条龙的分析。四是联用技术,即将两种(或两种以上)分析技术联接,互相补充,从而完成更复杂的 分析任务。联用技术及联用仪器的组合方式,特别是三联甚至四联系统的出现,已成为现代分析仪器发展的重要方向。五是阵列技术,如果把联用分析技术看成计算机中的串行方法,那么阵列技术就等同于计算机中的并行运算方法。和计算机一样,阵列方法是大幅度提高分析速度或样品批处理量的最佳方案。一旦将并行阵列思路与集成和芯片制作技术完美结合,分析化学就将向新的领域进发。
仪器仪表元器件:“十五”及2010年以前,尽快开发出一批适销对路、市场效果好的产品,品种占有率达到70%~80%,高档产品市场占有率达到60%以上。通过科技公关、新品开发,使产品质量水平达到国际20世纪90年代末水平,部分产品接近国外同类产品先进水平。
医疗仪器,重点发展医用光学仪器;以数字成像、高档黑白超、彩超、彩超换能器为研发关键技术的超声医用仪器;X线图像处理系统,开放式超导型核磁共振系统等大型医疗仪器和临床信息系统;高能智能化肿瘤治疗大型仪器系统。
根据我国国民经济和社会发展提出的需求,在充分认识到国际仪器仪表发展的趋势后,国家制定出仪器仪表发展的战略目标:在未来10~15年内,充分利用我国经济高速发展和巨大的市场优势,大力推进新技术新工艺在仪器仪表中的应用研究,掌握各类仪器仪表的设计、生产工艺等关键技术,使我国仪器仪表产业总体水平同国际水平的差距缩短到3~5年,约30%的产品达到国际同期先进水平,国产仪器仪表在大工程中的配套能力达到85%以上,在国内市场需求中占领75%以上的份额。
现代仪器仪表在当今社会具有重要的作用和地位。面对我国国民经济、科学技术、国防建设以及社会生活各方面发展的迫切需求,仪器仪表必须加快发展。
㈧ 自动化设备的主要应用有哪些
纺织行业:电脑缝纫机,3d试衣间,裁布机,读皮机等;
金融行业:ATM,VTM,排队机,查询机等;
轨道交通:取票机,道闸收费,进出口道闸,轨道调度和控制系统等;
高速公路:高速公路收费,电子警察,电子指示牌,ETC等;
医疗行业:B超,永磁行业的核磁,ct和DR,血液分析仪,脑电波监测,麻醉机,肠道镜,肛肠诊断仪,碎石机,肿瘤放射机,肿瘤检测仪,阴道诊断仪,乳房诊断仪,健康小屋项目,DNA分析仪,药房自动化控制等;
环境行业:cob氨氮在线监测仪,烟气监测仪,水纹检测系统,污水处理厂,海盐营养仪,农业灌溉智能系统等;
汽车行业:机器手焊接系统,驾考系统,轮胎缺陷系统,4轮定位仪,汽车检测仪等;
㈨ 如何用电力电子装置提高电力系统的稳定性
电力系统的任务是为人们日常生活、企业科研生产提供电力资源,而是社会经济能否稳定发展的重要依托。电力电子装置的应用贯穿电力系统的发电、配电、变电和输电等各个阶段,电力系统若想实现高可靠性、高稳定性和高效性,必须采用高度智能化的电力电子装置。与此同时,传统电力系统的发电方式往往使用不可再生能源,在造成严重的环境污染的同时能源的利用率低下,已不能满足社会的需求,对电力系统进行改进势在必行。在构建新型电力系统中必然会使用电具有较高科技水平的电力电子装置。因此,研究电力电子装置在电力系统中的应用具有重要的现实意义。
1 电力电子装置和电力系统的发展
随着大容量、远距离电力资源传输的需求逐渐提高,电力系统势必步入智能化、自动化发展的道路。目前,我国电力系统的智能化水平逐渐提升,在全国各地均可以使用电能,电力系统的规模位于世界前列。电力电子装置作为电力系统的重要基础,虽然起步较晚,但发展速度迅猛。电力电子装置的不断发展与改善同时也极大促进了电力网络的迅速发展。较为突出的改进为电力能源传输介质由传统的电缆传输转变为光纤传输;关键技术壁垒由硬件设计转变为软件设计;装置由传统的半控型装置逐步发展为全控型装置,目前已经发展到复合型装置;控制方法由传统的模拟控制转变为数字控制等等。然而,我国电力系统与发达国家相比仍存在着一定的差距,主要表现为智能化水平较低、科技含量较低、创新性技术应用较少等等。因此,我国电力行业的相关科技人才应该对电力电子装置进行深入的科学研究并将其先进的应用到电力系统的构建中,从而促进我国电力行业以及社会经济的进一步发展。
2.我国电力电子装置在电力系统中的应用
2.1 发电阶段
传统的电力系统通常利用不可再生能源进行发电,资源有限且会造成一定的环境污染。新型电力系统应因地制宜,利用当地环保的可再生能源,如风能、势能等,同时致力于进一步提高能源的利用效率,提高环保能源的使用率,本文将从风力发电、水力发电和太阳能发电三方面进行介绍电子电力装置在发电中的应用。
2.1.1 风力发电
由于风力变化极快,需要电力电子装置对风能进行整流、逆变后将其转变为可供人使用、具有稳定电压、频率的电能资源,最为普遍的装置为风力变流器。利用变流器中拓扑结构分层改变电能的容量和电压,增加了风力发电的效率。
2.1.2 水力发电
水力发电装置通过调节水库的高低位置的变化通过水力势能的改变进行发电。水力发电中发电机采用交流励磁技术,极大地加快了发电的速度,其核心电力电子装置为交流发电机组励磁。在交流励磁的控制系统原理简单,利用交流频率的改变直接调节对水压及流量的大小,可以实现快速、准确的水力发电,有效改善了水力发电站的发电。效率
2.1.3太阳能发电
太阳能发电需要的电力电子装置包括将太阳能转变为电能的光伏阵列原件、处理不稳定电能的滤波器、变压器、逆变器等装置。目前,太阳能发电系统的应用还存在一定的不足,如光伏阵列存在多峰值问题,有待进一步进行深入研究。
2.2 储能阶段
由于可再生能源的产生具有季节性、实时性,同时生活生产中使用电能也存在高峰期和低谷期,这就要求进行电能的储存,从而提高现有电力系统的稳定性和可靠性。本文将从目前在我国应用较为广泛的电池储能装置、水力储能装置和风力储能装置几个方面进行概述。
2.2.1 电池储能装置
我国对于电池储能装置的研究与其他其他储能方式相比时间较早,可以将任意发电装置产生的电力资源转化为电池中的电能。其原理为利用小功率直流变换器是电池中的电流平稳;利用拓扑结构将电池集成实现电压的高低和电流的变化;利用电压型四象限变换器在实现功率的调节。利用电力电子装置实现储能的最优化、损耗的最小化的储能系统。
2.2.2 水力储能装置
水力发电的储能装置一般采用抽水储能,常见的方法为利用抽水蓄能机组中励磁电流的频率和幅值的转换实现电力功率的转换,从而实现电力供能中调峰填谷、备用紧急能源等不同的作用。
2.2.3 风力储能装置
风力储能装置利用压缩空气进行储能,利用空气压缩机将剩余的电力资源用空气的压力进行存储,电能不足时,将空气的势能转化为电能进行发电。
2.3 输电阶段
电力系统若想在输电领域中实现长距离、高容量和低损耗的电力传输,需要电力电子装置进行协助降低电能的损耗,如换流器、变流器。在输电过程中长距离、高容量的电力传输一旦遇到意外灾害可能会造成严重的经济损失,电力电子装置能够及时的发现传输电力过程中的异常状况,根据具体的情况进行决策,以免产生重大的经济损失和资源浪费。
2.4 智能电网
智能电网是高度自动化、高度智能化的电力资源传输网络,利用自动化控制技术可对任意网络节点进行监控,实现节点间电力资源的双向流动。智能电网中采用功率变换器对用户的功率进行调节。利用电力电子装置的集成可实现电网中控制器通过通信系统进行协同工作,实现电网的自动化控制,增强智能电网的稳定性和可靠性。
2.5 提高电能利用率
由于自然中可再生资源如水力、风力或是太阳能并非是长时间供应的,但是对于电能的需求却逐年增加,因此电力系统必须降低电能的损耗、提高电能的使用效率。其中,链式静止同步补偿器可以通过无功补偿降低电压的扰动、维护电力系统的稳定性;谐波治理装置可以降低电网中的谐波,抑制不必要的能量损耗;动态电压恢复器通过对电压暂降进行补偿,降低电压引起的电力设备的损害,从而保障电力系统的稳定性和可靠性运行。
3 电力电子装置发展的建议
目前,我国在电力电子装置的应用方面已经取得了较大的突破,但是距离世界顶级的电力系统中电力电子装置的应用还有一定的差距。针对电力资源的大量需求和电力系统改善的需要,电力电子装置应该加强以下几个方面的研究。首先,增强电力系统的智能化,通过电力电子装置的一体化设计,实现电力系统的自动化控制。其次,在发电阶段加强风力发电换流器的可靠性与太阳能发电中逆变器的稳定性。再次,研究其他可再生能源发电的可行性与适用性。最后,增加电力系统出现故障时的应急措施,通过不断改进控制算法增强电力系统进行资源优化配置的能力,提高电力能源的使用效率。
4 总结
电力电子装置是电力系统的重要基础,在保障电力系统及时、准确和可靠运行等方面发挥举足轻重的作用。换言之,电力电子装置科技水平的高低直接影响电力系统自动化水平的高低,直接决定我国经济的发展。因此,我国必须注重电力电子装置的科研与开发,促进电力单位或企业与高校或其他科研单位的合作,致力于将先进的电力电子装置应用于电力系统中,以便进一步满足社会发展对电力资源日益增加的需求。
参考文献:
[1] 姜建国.乔树通.郜登科.电力电子装置在电力系统中的应用[J].电力系统自动化,2014,3:2-5.
[2] 周孝信.陈树勇.鲁宗相.电网和电网技术发展的回顾与展望——试论三代电网[J].中国电机工程学报,2013,33(22):1-11.
[3] 国家电网公司“电网新技术前景研究”项目咨询组.大规模储能技术在电力系统中的应用前景分析[J].电力系统自动化,2013,37(1):3-8.