A. 家用空气检测仪有什么好的选择
很多人搬新家或者装修新房子的时分,最忧虑的一个问题就是空气中的甲醛。家装甲醛超支一直是悬在每家每户头上的一把利剑,如果人长期生活在甲醛超支的环境下,会引起慢性中毒,轻则发作头痛、头晕、咳嗽、伤风,严峻的可导致白血病,气胸,生殖才能缺失,甚至死亡。可是普通人就算感觉再活络,也无法精确感知甲醛的含量,这个时分肯定要借助专业的仪器——空气检测仪。
再说空气检测仪之前,先给大家介绍一下室内空气污染,而提起空气污染,人们便会联想到城市上空的雾霾,但其实,容易被忽视的室内空气污染往往会造成更大的要挟,世界卫生组织已将其列入人类健康十大要挟之一。全国首份针对城市学龄儿童家庭的《室内空气质量认知与行为查询》出炉。查询显现,近多半受访学龄儿童家庭以为,室外空气污染“更严峻”,普遍低估了室内空气污染的危害。
人们的日常活动有70-90%都处于室内,儿童呆在家里的时刻或许更久,而人均室内PM2.5的吸入量是室外的4倍,室内空气污染的影响现已高出室外空气污染影响5到10倍。可是查询显现,家长和孩子对室内空气污染注重度并不高,六成家庭以为室外空气污染对儿童的伤害更大,这就造成了有的时分孩子生病了还不知道是什么原因引起的。所以室内环境问题相同要使我们注重。
现在市场上空气质量检测仪品种繁多,让消费者颇有眼花缭乱、无从选择的感觉。从检测手法上讲,这些检测仪能够分为两类:一类是运用红外粉尘传感器的,我们且称之为“红外检测仪””,另一类是运用高精度激光传感器的,我们且称之为“激光检测仪”“。”红外检测仪”的结构和电路比较简单,价格较低,一般在200元以内,但其最大硬伤是检测成果不精确。“激光检测仪”本钱相对高一些,但其检测精确性好,近年来现已为越来越多的消费者所承受和喜爱,成为检测仪的干流。从哪找美观又实用,操作简便的仪器呢?寻遍了茫茫产品,小编终究看中了一款赛纳威的空气检测仪,能够说是完美符合上述条件要求。
CW-HAT200&CW-HAT200S高精度手持式PM2.5检测仪是深圳赛纳威专用于测量空气中PM2.5(可入肺颗粒物)及PM10(可吸入颗粒物)数值的专用检测仪器。 在应用高灵敏度微型激光传感器技术基础上,自主开发出的集空气动力学、数字信号处理、光机电一体化的高科技产品;该仪器具有测试精度高、性能稳定、多功能性强、操作简单方便的特点,可广泛适用于公共场所环境及大气环境的测定 ,还可用于空气净化器净化效率的评价分析。
直读实时粉尘浓度,数值方式显示
创新性电子切割技术
光散射式原理测试精度高
快速响应测试
操作简单,无需维护
高效大容量锂电池供电
智能识别自动关机,最大限度节省电量
数据存储(可选)
B. pm2.5空气质量传感器有哪些
国内目前PM2.5空气质量传感器挺多的,但是性能和精度来说千差万别。
今天给大家推荐一款设计超薄、精度高、响应快的pm2.5空气质量传感器。
Gravity: PM2.5空气质量传感器
C. 国内PM2.5检测仪器是什么原理
目前测量PM2.5的传感器无非是红外和激光两种方法,而激光又分为浊度法和粒子计数(激光切割)法。
红外法和浊度法:
红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边是发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。
实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不精准。
激光法和粒子计数法:
相关的论文很多,就是激光散射的方法,并不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的例子直接大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘吧传感器堵死了,自然也不可能测到。
缺点是激光的寿命较短,如果连续运行的话基本上也就一年多的寿命而已,这还是厂家优化算法之后能够达到的寿命,但在绝大多数场合已经够用了,而且如果不连续运行,激光的寿命还能够更长。
赛纳威CW-76S工地扬尘传感器(粉尘检测仪)是集空气动力学、数字信号处理、光电一体化的高科技产品,主要应用于检测大气中的粉尘质量浓度(PM值),适用于建筑工地、城市网格化监测、移动监测等领域和场合,是大气质量检测系统的核心模块。
D. 环境监测系统
该系统应用复广泛,不管是技术先进的城制市、还是数字化媒体行业、高速旋转的信息化城市、建筑工地还是物联网等等都可以使用该系统。【广州富森】环境监测系统主要用在工业园区、施工工地、城绿化、生活娱乐场所的扬尘监控。
E. 无人机用于大气监测,是怎么检测的呢
在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。
此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区;有人飞机只能在数百米及以上的高度飞行;气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。
无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,将大气监测传感器与无人机相结合,通过网络建立传感系统监测,具有立体监测、响应速度快、监测范围广、地形干扰小等优点,是今后进行大气突发事件污染源识别和浓度监测的重要发展方向之一。
无人机大气监测系统标准监测参数包括:一氧化碳、二氧化硫、二氧化氮、臭氧、可挥发性有机物以及颗粒物PM2.5、PM10等;无人机在飞抵目标地点后进行数据收集,将收集到的数据通过GPRS传送到地面数据处理系统进行处理分析。
无人机大气监测系统主要包括无人飞行器、气体检测传感器、 数传/GPRS、地面站/服务器、 数据处理软件等构成。
监测模块的传感器元器件检测方法主要有电化学检测(测量SO2、CO、NO2、O3等常规气体)、光电粒子检测(测量VOCs等)、激光散射检测(测量PM2.5、PM10等)。
专门监测大气监测领域环境空气质量传感器,包括有毒气体传感器A4/B4系列、VOCs检测传感器PID-AH以及PM2.5、PM10颗粒物检测器OPC-N3,目前已在大气监测领域得到了广泛的应用。
F. 大气环境监测
大气环境中CO2浓度的监测是目前确定CO2是否泄漏较为有效和快捷的手段之一,其主要目的是发现来自于储存工程可能的泄漏,以及项目周边环境有没有受到负面影响。目前最常用的技术有红外线气体检测技术、大气CO2示踪、陆地生态系统通量观测三种。
1.光学CO2传感器
绝大多数CO2浓度监测技术都是基于CO2近红外(IR)吸收光谱特征设计的,并且都可以做到实时监测和在线数据传输。由于CO2在一些近红外光谱段有着较强的吸收特性,同时其他气体在相应的光谱范围内的吸收特性较弱,从而使得一些近红外波段成为探测和监测CO2的良好途径。CO2对于近红外4.25μm太阳辐射具有较强的吸收特征,因此该波段对于探测大气中的CO2非常敏感(图10-2)。大部分固定和移动式的商业化CO2监测设备都是利用这一近红外通道设计和制造的。CO2另一个较强的近红外吸收通道是2.7μm,但其吸收强度仅有4.25μm处的1/10。这个通道对于监测CO2也非常敏感,并且基本不受其他气体的干扰。该通道被美国国家航空航天局(NASA)的火星探险号用于探测CO2浓度。2μm处也是一个比较有潜力的通道,但CO2在该通道的吸收率仅为在4.25μm处的1/250,这一弱吸收通道已经被用来探测燃烧环境中的CO2浓度。在4.41~4.45μm处,13CO2具有较强的吸收特性。由于13C的浓度要远低于12C的浓度(大约为其的1/100),所以这一通道可以用来探测CO2浓度较高的环境,探测范围可以达到0.27%。CO2在1.57μm处仍有一个吸收谷,在这一波段的吸收率很低,约为在2μm 处的1/100。但这一波段几乎完全不受其他气体的干扰,所以这一弱吸收波段不适宜短程CO2监测(例如燃烧室等),但却在CO2浓度处于典型大气浓度范围时,是长程CO2浓度监测的理想波段(Shu1er et al.,2002)。
CO2浓度监测仪和涡度相关法都只能监测较小范围内的CO2浓度。当需要监测较大范围(几公里范围)的大气中CO2浓度变化情况时,就需要采用开放路径监测设备,例如使用激光发射出电磁波(选择CO2较为敏感的吸收波段),然后接收从地表反射回来的电磁波,由于发射和反射的电磁波受到了不同物质的吸收(例如大气中的CO2),所以可以通过分析接收到的电磁波的衰减程度,在较大范围内监测CO2浓度变化。激光雷达技术就是一种光探测技术,当前激光及差分吸收雷达技术已经被用于CO2浓度监测。
如果需要在更大范围内监测CO2浓度,例如几千平方千米或者更大,则就需要使用卫星遥感技术(激光也属于遥感技术的一种)。尽管当前已经有利用卫星遥感探测大气CO2浓度的技术和应用,例如日本的温室气体观测卫星(GOSAT)、欧洲太空局ENVISAT卫星上搭载的SCIAMACHY等,但当前的CO2遥感监测精度相对CO2地质储存的需求仍存在较大差异。但这类技术无疑是高效、高频率、低成本CO2浓度监测的最佳选择,随着技术进步,遥感技术必将在CO2地质储存环境监测中发挥越来越重要的作用。
G. 大气污染物的监测方法是什么
K-EP60大气环境监测站即微型空气质量在线监测系统,集成多类环境检测传感器,实现实时监测气象参数(温度、湿度、大气压、风速、风向)与空气八因子(PM2.5、PM10、CO、NOx、SO2、O3、VOC、可定制气体)指数。本监测站使用太阳能电池供电,并使用锂电池进行能源储备,保证数据采集全天候进行。大气环境监测站采集到现场数据通过无线3G/4G或有线网络将监测数据传输至监测平台,多台监测站分布于某片区域,组成一个有效的监测网络,并把数据通过监控平台展现给管理方,方便管理方制定环保决策。
H. 室内空气质量检测仪的室内检测规则及标准
规则
一,民用建筑工程根据控制室内环境污染的不同要求,划分为以下两类。
1、Ⅰ类民用建筑工程:住宅、医院、老年建筑、幼儿园、学校教室等民用建筑工程。
2、Ⅱ类民用建筑工程:办公楼、商店、旅馆、文化娱乐场所、书店、图书馆、展览馆、体育馆、公共交通等侯室、餐厅、理发店等民用建筑工程。
二, 民用建筑工程验收时,应抽检有代表性的房间室内环境污染物浓度,抽检数量不得少于5%,并不得少于3间;房间总数少于3间时,应全数检测。
三,民用建筑工程验收时,凡进行了样板间室内环境污染物浓度检测且检测结果合格的,抽检数量减半,并不得少于3间。
民用建筑工程验收时,室内环境污染物浓度检测点应按房间面积设置。
1、房间使用面积小于50m2时,设1个检测点。
2、房间使用面积小于50~100m2时,设2个检测点。
3、房间使用面积大于100m2时,设3~5个检测点。
6.0.14 当房间内有2个及以上检测点时,应取各点检测结果的平均值作为该房间的检测值。
6.0.15 民用建筑工程验收时,环境污染物浓度现场检测点应距内墙面不小于0.5m、距楼地面高度0.8~1.5m。检测点应均匀分布,避开通风道和通风口。
室内空气质量标准:
室内空气质量标准(GB/T 18883-2002)附录A
附录A
(规范性附录)室内空气监测技术
1, 范围。
本附录规定了室内空气监测时的选点要求、采样时间和频率、采样方法和仪器、室内空气中各种参数的检验方法、质量保证措施、测试结果和评价。
2, 选点要求
采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于50m2的房间应设(1~3)个点;50m2~100m2设(3~5)个点;100m2以上至少设5个点。在对角线上或梅花式均匀分布。
采样点应避开通风口,离墙壁距离应大于0.5m。
3,采样点的高度:原则上与人的呼吸带高度相一致。相对高度0.5m~1.5m之间。
采样时间和频率
年平均浓度至少采样3个月,日平均浓度至少采样18h,8h平均浓度至少采样6h,1h平均浓度至少采样45min,采样的时间应涵盖通风最差的时间段。
4, 采样方法和采样仪器
根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于50dB(A)。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。
筛选法采样:采样前关闭门窗12h,采样时关闭门窗,至少采样45min。
累积法采样:当采用筛选法采样达不到本标准要求时,必须采用累积法(按年平均、日平均、8h平均值)的要求采样。
5, 质量保证措施
气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。
流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过5%。采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准5个点,绘制流量标准曲线。记录校准时的大气压力和温度。
空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。
仪器使用前,应按仪器说明书对仪器进行检验和标定。
在计算浓度时应用下式将采样体积换算成标准状态下的体积。
6, 每次平行采样,测定之差与平均值比较的相对偏差不超过20%。
(8)大气境质量检测装置扩展阅读:
本仪器适用范围:
适用于监理、监测机构、治理公司、装修装饰公司、建筑公司、车间厂矿、也可用于科研、教学、实验室。
本仪器适用场所:居室、办公室、宾馆、饭店、商场等场所,本仪器外型美观,携带方便,适合现场使用。
I. 什么是大气污染 如何监测
大气污染是由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象 。
大气污染物由人为源或者天然源进入大气(输入),参与大气的循环过程,经过一定的滞留时间之后,又通过大气中的化学反应、生物活动和物理沉降从大气中去除(输出)。如果输出的速率小于输入的速率,就会在大气中相对集聚,造成大气中某种物质的浓度升高。当浓度升高到一定程度时,就会直接或间接地对人、生物或材料等造成急性、慢性危害,大气就被污染了。
K-EP60大气环境监测站即微型空气质量在线监测系统,集成多类环境检测传感器,实现实时监测气象参数(温度、湿度、大气压、风速、风向)与空气八因子(PM2.5、PM10、CO、NOx、SO2、O3、VOC、可定制气体)指数。本监测站使用太阳能电池供电,并使用锂电池进行能源储备,保证数据采集全天候进行。大气环境监测站采集到现场数据通过无线3G/4G或有线网络将监测数据传输至监测平台,多台监测站分布于某片区域,组成一个有效的监测网络,并把数据通过监控平台展现给管理方,方便管理方制定环保决策。
J. 空气质量检测采样装置
气体采样要数据精确,需要用等速采样法。
一般采用电子的大气分析采样仪。可以检测很多东西,比如SO2,NOx,灰尘浓度啊。