导航:首页 > 装置知识 > 机器人行走装置设计

机器人行走装置设计

发布时间:2022-12-08 13:09:27

『壹』 收集的几种连杆机构:机器人行走背后的机械原理(二)

克兰连杆机构是一个六杆机构,相对于四杆的切比雪夫机构有着更好的受力性能。其一般被用作仿生蜘蛛,拥有急回特性。

1、单个克兰连杆

2、四腿行走机构(四个克兰机构)

3、六腿行走机构(六个克兰机构)

使用乐高积木搭建的Trotbot腿机构机器人

在国外网站上搜到的大型Trotbot腿机构的机器人

Make杂志网站 https://makezine.com/2017/01/12/lego-trotbot/

6腿Ghassaei行走机构

是由Jansen发明的,用于模拟平稳行走,Jansen利用这种连杆制造了著名的海滩巨兽,这种连杆兼具美学价值和技术优势,通过简单的旋转输入就可模仿生物行走运动,这种连杆已经用于行走机器人和步态分析。图为单个Jansen 连杆机构。

2腿Jansen行走机构

4腿Jansen行走机构

6腿Jansen行走机构

瑟·严森(Theo Jansen)

出生于1948年,荷兰动能艺术家。瑟·严森求学于代尔夫特理工大学物理系,后转为学习绘画。20世纪80年代因“飞行UFO项目”成名。20世纪90年代开始“海滩野兽”系列动能艺术项目,在世界各地做展。严森上世纪70年代毕业于荷兰的代尔夫特理工大学物理系。那时正值“嬉皮士年代”,深受嬉皮士文化影响的严森开始转行学习艺术。20世纪80年代末,他开始给一家杂志社写专栏,每天都要尝试用不同的眼光来看待世界,寻找看现实的新颖的角度。“海滩怪兽”最初就出现在他的笔下。他构思了这样一个动物,一个能够在海滩上独立生存的简单“生物”。对于“海滩怪兽”,严森最初的想法是建造一些能够采集沙子,搭建沙丘的机器人,这样,当海平面上升时,这些机器人就可以拯救人类不被海水淹没。半年后,他开始利用塑料管建造这些“怪兽”。

杨森采用平凡的PVC等材料,通过精确运算,近30年,几乎以一己之力,在荷兰海边反复实验,创造出自行扑食、运动的新生命体。他的行动呈现出个体的想象力与可能性。科学的艺术性,感性与理性的均衡。引发人们重新反思对恒心,或者说对意义与生命和时间的理解。也对已有的知识和概念提供了革命性的新视角。对于生物学、宗教和艺术都拓展出新的疆域。对于如何作出生活选择、理解自我和自然、衡量追求理想的心态等处世态度,做出了具有启示性的贡献。

荷兰海滩怪兽的Jansen行走机构

这些“怪兽”的“细胞”不过是一些简单的黄色塑料管,顶多就加上一个“脑袋”———一个塑料柠檬汁瓶子。

在它们的身体中央,往往带有一个可转动的“脊椎”。“脊椎”转动能牵动每根脚趾,并引起一系列复杂运动。这其中最关键的就是12根决定脚趾运动方式的塑料管。不同的“怪兽”,这些塑料管的间距也不同,将这些间距标注出来,能得到11个数字。严森将其看成是怪兽的基因。“这些基因符号是11个数字。我将之称为11个神圣的数字。”严森说。

怪兽的“腿”和“脚”如同车轮,它们也由塑料管搭建。“和普通的车轮一样,车轮的轴停留在同一水平线上,髋关节也停在同一水平线上。”

怪兽还有各种“器官”,让它可以躲避天敌和环境的危险。“鼻子”就是这样一个设置。平时,怪兽都走在柔软温湿的海滩上,鼻子对着风的方向,当遇到海水或干的沙子的时候,它便会立刻停下来反方向行走。海滩上最大的危险就是海水,“它们很容易被淹死”,严森笑说。他给“海滩怪兽”们增添了感知海水的能力,所谓的感应器也不过就是一个小瓶。连接小瓶的管道平时触地吸入空气,但一旦吸入水时就会排斥,发出呲呲的声音,这就是遇到危险的警告,怪兽便会立即掉头回去。当暴风雨来临时,大风会驱动鼻子像打桩机一样打桩,将整个身体都固定在沙子里,以防被风暴吹走。

神经组织类似计算机

“怪兽”的大脑是由“神经细胞”———柠檬汁小瓶组成的。这大脑虽然简单,可运作基本原理却和计算机一样。计算机依靠电流的有无进行2进制的运算,对“怪兽”来说,空气扮演了电流的角色。有风吹过时,小瓶感受到压力,无风的时候,则没有压力。

依靠这个因素,“怪兽”的“大脑”也在进行着2进制的运算。严森说,今后这些“怪兽”还可以演化出“测时”机制,与海潮涨落同期进行。这样,它们就可以知道什么时候海潮会来,可以及时躲到沙丘里去。

因为可以进行2进制的计算,“怪兽”的“大脑”中还带有一个步伐计数器,可以计算走了几步,感知自己面对大海的方位,为自己勾画出“世界”的形象。

严森说,人类对世界的认知是十分复杂的,但对于“海滩怪兽”来说,认知却极其简单———一侧是海洋,一侧是沙丘。这么一来,如此简陋的“神经细胞”一样可以运作良好。

在一些怪兽身上,还带有简单的“胃”,可以储存风能。一旦风停了,又正好遇到涨潮,这些剩余的风能足够驱动怪兽逃回沙丘避难。“这些怪兽是按照基因解码演化的族群,有优势的基因就会复制繁衍下来。”严森称,因为这些怪物的设计是按照基因算法而来的。因此,最成功的家族成员们在今后会将基因符号延续下去。

Jansen行走机构的动能艺术

作为学科学出身的严森,他的头脑中先行产生了很多关于生命思考的理论,如对称性、繁殖、进化顺序等等,这背后都有着一系列的机械原理,将其运用到艺术创作中来,就成为了一种特殊的艺术形式:“动能艺术”。严森已经完成了“海滩怪兽”构想中的最基本功能,如独立行走,躲避天敌,繁衍生命,随着演化的进行,这些怪兽越来越得以离开人的帮助,生存技巧越来越强,严森在主页上写道:“我希望有一天这些动物可以在海滩上成群生活,过自己的日子。” 

Theo Jansen发明的海滩怪兽身上最重要的部位,就是它们的“仿生腿”(Jansen 连杆机构)。在经历过无数次对动物的行走姿态观察,与上万次的电脑测算之后,泰奥·杨森终于找到了一个最优的方案,让这些软管构架起来的怪兽腿部,可以以最高效的姿态模仿动物的腿部进行行走。这样的“仿生腿”,最重要的是要确保最下端的足部,在行走的环节保持相当长一段时间的匀速直线。

每一只“仿生腿”,都又是利用了基本的三角桁架结构,还有黄金比例的几何学。

泰奥·扬森把实验后所得的比例称为“13个神圣数字”。而这13这个数值指的就是脚上每个关节骨架的长度,他们之间相对应的比例关系让整体行动起来流畅自如。

Theo Jansen 的工作间

『贰』 一台移动的小型机器人有哪些结构

到目前为止,地面移动机器人的行驶机构主要分为履带式、腿式和轮式三种。这三种行驶机构各有其特点[2]。

(1)履带

履带最早出现在坦克和装甲车上,后来出现在某些地面行驶的机器人上,它具有良好的稳定性能、越障性能和较长的使用寿命,适合在崎岖的地面上行驶,但是当地面环境恶劣时,履带很快会被磨损甚至磨断,沉重的履带和繁多的驱动轮使得整体机构笨重不堪,消耗的功率也相对较大。此外,履带式机构复杂,运动分析及自主控制设计十分困难。

(2)腿式

腿式机构具有出色的越野能力,曾经得到机器人专家的广泛重视,取得了较大的成果。根据腿的数量分类,有三腿、四腿、五腿和六腿等各种行驶结构。这里我们简单介绍一种典型的六腿机构。

一般六腿机构都采用变换支撑腿的方式,将整体的重心从一部分腿上转移到另一部分腿上,从而达到行走的目的。行走原理为:静止时,由六条腿支撑机器人整体。需要移动时,其中三条腿抬起成为自由腿(腿的端点构成三角形),机器人的重心便以谌条支撑腿上,然后自由腿向前移动,移动的距离和方位由计算机规划,但必须保证着地时自由腿的端点构成三角形。最后支撑腿向前移动,重心逐渐由支撑腿过渡到自由腿,这时自由腿变成支撑腿,支撑腿变成自由腿,从而完成一个行走周期。

腿式机器人特别是六腿机器人,具有较强的越野能力,但结构比较复杂,而且行走速度较慢。

(3)轮式

轮式机器人具有运动速度快的优点,只是越野性能不太强。现在的许多轮式己经不同于传统的轮式结构,随着各种各样的车轮底盘的出现,实现了轮式与腿式结构相结合,具有与腿式结构相媲美的越障能力。如今人们对机器人机构研究的重心也随之转移到轮腿结合式机构上来了。

本文设计的移动机器人不仅要求具有一般轮式机器人移动速度快、控制简单的特点,还要具有较好的越障能力,因此本文选择轮腿式相结合的轮腿机构作为行驶机构。

2.1.2 驱动形式的选择

驱动部分是机器人系统的重要组成部分,机器人常用的驱动形式主要有液压驱动、气压驱动、电气驱动三种基本类型[3]。

(1)液压驱动

液压驱动是以高压油作为介质,体积较气压驱动小,<率质量比大,驱动平稳,且系统的固有效率高,快速性好,同时液压驱动调速比较简单,能在很大范围实现无级调速。但由于压力高,总是存在漏油的危险,这不仅影响工作稳定性和定位精度,而且污染环境,所以需要良好的维护,以保证其可靠性。液压驱动比电动机的优越性就是它本身<安全性,由于电动机存在着电弧和引爆的可能性,要求在易爆区域中所带电压不超过9V,但液压系统不存在电弧问题。

(2)气压驱动

在所有的驱动方式中,气压驱动是最简单的。使用压力通常在0.4~0.6Mpa,最高可达1Mpa。用气压伺服实现高精度是困<的,但在满足精度的场合下,气压驱动在所有的机器人驱动形式中是质量最轻、成本最低的。气压驱动主要优点是气源方便,驱动系统具有缓冲作用,结构简单,成本低,可以在高温、粉尘等恶劣的环境中工作。其缺点是:功率质量比小,装置体积大,同时由于空气的可压缩性使得机器人<任意定位时,位姿精度不高。

(3)电气驱动

电气驱动是利用各种电机产生的力或转矩,直接或经过减速机构去驱动负载,减少了由电能变为压力能的中间环节,直接获得要求的机器人运动。电气驱动是目前机器人是用得最多的一种驱动方式。其特点是易于控制,运动精度高,响应快,使用方便,驱动力较大,信号监测、传递、处理方便,成本低廉,驱动效率高,不污染环境,可以采用多种灵活的控制方案。

『叁』 科技小制作介绍:简易机器人

活动目的: 面向机器人的初学者,设计了这个因振而动的小机器人,人的行走是要靠肢体的摆动,同样机器人的移动也离不开振动,利用电动机上的偏心块产生振动,改变四肢的方向,可以让机器人,作蹦跳、前进、倒退等动作。

活动内容: 1. 电动机、电机卡、小木板、电池盒、偏心小木块各一个,大头针四个、小锤子、2节5号电池。

2.制作步骤:①把电机卡在木板上;②在电机轴上插上偏心小木块;③把四个大头针依次插到木板下端的小眼中;④粘好电池盒;⑤接好导线即可。

3探究与创新:使用时,用手把电池盒上的插头插到电机的接线柱上(作为开关),调整四个大头针(脚)的朝向,如向后弯曲有利于行走,如果直立的话就会乱跳,非常有趣。试试看,你能让它后退吗?你能把它作成刷帚机器人吗?你能和同伴作拨河、竞速比赛吗?给它作个漂亮的外壳。

『肆』 机器人自动跟随是如何实现的,使用的什么技术

智能跟随系统采用微型天线整列和无线通信技术。

能精确测量人员佩戴的标签到跟随模块的距离以及角度,无遮挡情况下测距精度可以到10厘米,角度测量精度可以到5度,作用距离可以到20米,而且抗干扰能力强,不受光线等环境的影响,功耗低,体积小。

人员佩戴模块和机器人跟随模块通信的时候,通过电磁波的飞行时间测量出人员到机器人的距离,通过测量微型天线阵列上相位差来计算出人员相对机器人的方向,将这些信息送给机器人的处理器来调整运动控制单元,从而达到智能跟随的目的。

智能搬运机器人采用uwb跟随,通过与人协作,将机器的高效不知劳累,与人的灵活相结合。实现了零散重物的高效安全搬运。

『伍』 机器人独立行走需要哪些传感器及设计模块包含哪些

感知系统是机器人能够实现自主化的必须部分。这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。 根据传感器的作用分,一般传感器分为: 内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。 外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。 根据传感器的运行方式,可以分为: 被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。 主动式传感器:传感器会发出探测信号。比如超声波,红外,激光。但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。 传感器一般有以下几个指标: 动态范围:是指传感器能检测的范围。比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。比如超声波传感器对近距离的物体无法测量。 分辨率:分辨率是指传感器能测量的最小差异。比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。当然越高分辨率的传感器价格就越贵。 线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。 频率:是指传感器的采样速度。比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。 下面介绍一下常用的传感器: 编码器:主要用于测量电机的旋转角度和速度。任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

『陆』 机器人行走轴(地轨)由那几个部分构成

机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。
各个组成部分的作用:
一、执行机构
动装置发出的系统指令;

二、驱动装置是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。
三、检测装置
是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。
四、控制系统
常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;

『柒』 收集的几种连杆机构:机器人行走背后的机械原理(一)

机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构。

连杆机构(Linkage Mechanism)

又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。

由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。

主要特征

连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。

优点:

(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。

(2)改变杆的相对长度,从动件运动规律不同。

(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。

(4)连杆曲线丰富,可满足不同要求。

缺点:

(1)构件和运动副多,累积误差大、运动精度低、效率低。

(2)产生动载荷(惯性力),且不易平衡,不适合高速。

(3)设计复杂,难以实现精确的轨迹。

网络的相关词条图片如下

下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。

平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。机构类型有曲柄摇杆机构、铰链四杆机构、双摇杆机构等。

1、曲柄摇杆机构(Crank rocker mechanism )

曲柄摇杆机构是指具有一个曲柄和一个摇杆的铰链四杆机构。通常,曲柄为主动件且等速转动,而摇杆为从动件作变速往返摆动,连杆作平面复合运动。曲柄摇杆机构中也有用摇杆作为主动构件,摇杆的往复摆动转换成曲柄的转动。曲柄摇杆机构是四杆机构最基本的形式 。主要应用有:牛头刨床进给机构、雷达调整机构、缝纫机脚踏机构、复摆式颚式破碎机、钢材输送机等。

2、双曲柄机构(Double crank mechanism )

具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。

双曲柄机构类型分类

【1】不等长双曲柄机构

说明:曲柄长度不等的双曲柄机构。

结构特点:无死点位置,有急回特性。

应用实例:惯性筛

【2】平行双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相同的双曲柄机构。

结构特点:有2个死点位置,无急回特性。

应用实例:天平

【3】反向双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相反的双曲柄机构。

结构特点:无死点位置,无急回特性。

运动特点:以长边为机架时,双曲柄的回转方向相反;以短边为机架时,双曲柄回转方向相同,两种情况下曲柄角速度均不等。

应用实例:汽车门启闭系统

3、铰链四杆机构(Hinge four-bar mechanism)

铰链是一种连接两个刚体,并允许它们之间能有相对转动的机械装置,比如门窗用的合页,就是一种常见的铰链。由铰链连接的四连杆就叫铰链四杆机构。所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之後,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。

铰链四杆机构可以通过以下方法演化成衍生平面四杆机构。

(1)转动副演化成移动副。如引进滑块等构件。以这种方式构成的平面四杆机构有曲柄滑块机构、正弦机构等。

(2)选取不同构件作为机架。以这种方式构成的平面四杆机构有转动导杆机构、摆动导杆机构、移动导杆机构、曲柄摇块机构、正切机构等。

(3)变换构件的形态。

(4)扩大转动副的尺寸,演化成偏心轮机构 。

4、双摇杆机构(Double rocker mechanism)

双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。 机构中两摇杆可以分别为主动件。当连杆与摇杆共线时,为机构的两个极限位置。双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

双摇杆机构的两连架杆都不能作整周转动。三个活动构件均做变速运动,只是用于速度很低的传动机构中 。双摇杆机构在机械中的应用也很广泛,手动冲孔机,就是双摇杆机构的应用实例,比如说吧飞机起落架,鹤式起重机和汽车前轮转向机构都是双摇杆机构。

判别方法

1.最长杆长度+最短杆长度 ≤ 其他两杆长度之和,连杆(机架的对杆)为最短杆时。

2. 如果最长杆长度+最短杆长度 >其他两杆长度之和,此时不论以何杆为机架,均为双摇杆机构。

5、连杆机构的理论应用

动力机的驱动轴一般整周转动,因此机构中被驱动的主动件应是绕机架作整周转动的曲柄在形成铰链四杆机构的运动链中,a、b、c、d既代表各杆长度又是各杆的符号。当满足最短杆和最长杆之和小于或等于其他两杆长度之和时,若将最短杆的邻杆固定其一,则最短杆即为曲柄。若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则

a、 取最短杆的邻杆为机架时,构成曲柄摇杆机构;

b、 取最短杆为机架时,构成双曲柄机构;

c、 取最短杆为连杆时,构成双摇杆机构;

若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,不论以哪一杆为机架,只能构成双摇杆机构。

急回系数

在曲柄等速运动、从动件变速运动的连杆机构中,要求从动件能快速返回,以提高效率。即k称为急回系数。曲柄存在条件参考图 

压力角

如图中的曲柄摇杆机构,若不计运动副的摩擦力和构件的惯性力,则曲柄a通过连杆b作用于摇杆c上的力P,与其作用点B的速度vB之间的夹角α称为摇杆的压力角,压力角越大,P在vB方向的有效分力就越小,传动也越困难,压力角的余角γ称为传动角。在机构设计时应限制其最大压力角或最小传动角。

死点

在曲柄摇杆机构中,若以摇杆为主动件,则当曲柄和连杆处于一直线位置时,连杆传给曲柄的力不能产生使曲柄回转的力矩,以致机构不能起动,这个位置称为死点。机构在起动时应避开死点位置,而在运动过程中则常利用惯性来过渡死点。

6、平面四杆机构一些案例

切比雪夫连杆机构其实是和霍肯连杆机构是属于同一种形式的四连杆机构,其轨迹点都是在连杆两端谁在的直线上。霍肯连杆机构的轨迹点是在两端点连线的延伸线上,而切比雪夫连杆机构的轨迹点是在两端点连线的中间。如下:

切比雪夫连杆机构的动态演示

1、切比雪夫(1821~1894)

俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。切比雪夫在概率论、数学分析等领域有重要贡献。在力学方面,他主要从事这些数学问题的应用研究。他在一系列专论中对最佳近似函数进行了解析研究,并把成果用来研究机构理论。他首次解决了直动机构(将旋转运动转化成直线运动的机构)的理论计算方法,并由此创立了机构和机器的理论,提出了有关传动机械的结构公式。他还发明了约40余种机械,制造了有名的步行机(能精确模仿动物走路动作的机器)和计算器,切比雪夫关于机构的两篇著作是发表在1854年的《平行四边形机构的理论》和1869年的 《论平行四边形》。

理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。

2、切比雪夫连杆机构经常被用于模拟机器人的行走

根据公式i=3n-2m

(n为活动构件数目,m为低副数目)

可得自由度i=1

3、切比雪夫连杆机构被广泛运用在机器人步态模拟上,从动图上也能看出,它的轨迹底部较为平稳,步态方式非常像四足动物,收腿动作有急回特性。根据下图WORKING MODEL仿真分析可得,在X轴上,也能看出它的急回特点。

4、嵌入汽缸的切比雪夫直线机构的运动

动图 

5、使用切比雪夫连杆机构的行走桌子

常见到有人遛狗溜猫,但你绝对没见过人溜桌子的,拜荷兰设计师Wouter Scheublin的脑洞所赐,荷兰人民倒是有幸见到过这一奇葩景象,有人推着一张桌子在路上行走,而有着八条腿的桌子就运动着自己的腿,走的蹭蹭蹭的,场景怪异中带着搞笑,让人印象深刻。那么桌子是怎么行走的呢?其实并没有用上什么高科技,它只是通过精细的机械传动机构动起来而已。设计师受到俄罗斯数学家切比雪夫的理论启发,并将它应用到桌子中,所以这张160斤重的桌子轻轻推拉就能走,而且走的异常平稳,不比轮子差。

每条桌腿与桌板之间,都采用精细的木质结构打造。当用手推动桌子时,给力的一方会使桌腿不断前进,通过力臂的摇摆和连接处木质结构,会把力传递到对面的桌腿使之向前移动,然后桌子就能满街跑了。

『捌』 电子科大外骨骼机器人助力老兵重新站立行走,这款机器人的运作原理是什么

这款机器人的运作原理是机械、电子、医学、人工智能之间的高度配合,根据正常人的运动数据来实现人机交互,根据所收集的腿疾患者的数据搭建系统平台,通过数据分析,驱动机器产品的运转,从而实现腿疾患者的行走和运动。科研团队突破了很多难题,逐步建立起了拥有电子科大标签的完整系统平台和核心算法。

电子科大团队日夜奋战,用了五年时间,终于研发出了这个产品,在研发这一款产品的时候,由于我们中国人的身高、体重以及肢体行动方面的数据信息与外国人有很大的区别,因此,电子科大研究团队在没有借鉴知识的情况下,从零开始潜心研究,用时五年,完成了这项设计。这个科研团队还在继续研究,励志要把人工智能的作用发挥到极致,下一个产品要努力完成传感器与数据信息的连接,大大提升智能度。

『玖』 .机器人机械机构由哪几部分组成,每一部分的作用是什么

  1. 机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。

  2. 机器人一般由执行机构、驱动装置、检测装置和控制系统和复杂机械等组成。

  3. 执行机构即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。

  4. 驱动装置是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。它输入的是电信号,输出的是线、角位移量。机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此外也有采用液压、气动等驱动装置。

  5. 检测装置是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。作为检测装置的传感器大致可以分为两类:一类是内部信息传感器,用于检测机器人各部分的内部状况,如各关节的位置、速度、加速度等,并将所测得的信息作为反馈信号送至控制器,形成闭环控制。一类是外部信息传感器,用于获取有关机器人的作业对象及外界环境等方面的信息,以使机器人的动作能适应外界情况的变化,使之达到更高层次的自动化,甚至使机器人具有某种“感觉”,向智能化发展,例如视觉、声觉等外部传感器给出工作对象、工作环境的有关信息,利用这些信息构成一个大的反馈回路,从而将大大提高机器人的工作精度。

  6. 控制系统。一种是集中式控制,即机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。

『拾』 站立行走不是梦!盘点外骨骼机器人产品

一、Rewalk

Rewalk是一个由以色列制造商ReWalk机械公司设计制造的外骨骼系统,主要用途是协助下肢瘫痪的病人能够再次站立行走,是目前全球最成功的外骨骼康复机器人之一。

ReWalk Robotics旗下共有两款产品,分别是ReWalkPersonal和ReWalk Rehabilitation。前者主要适合家庭、工作或社交环境中使用,通过传感器和监控器,使患者站立、和爬楼。后者则是用于临床修复,为瘫痪患者提供物理治疗方式,包括减缓瘫痪导致的肢体疼痛、肌肉痉挛、帮助肠道消化系统、加速新陈代谢等。

ReWalk系列机器人主要由3个部分组成:1、软件控制系统;2、机械支撑和动力系统;3、传感器系统。ReWalk系列机器人采用了体感芯片,捕捉患者的肢体动作,帮助行走。通过电池驱动关节部位的电机,组成电动腿部结构,在行走过程中可以感应患者重心的变化,模仿自然行走的步态,并能根据实际情况控制步行速度。患者可自行完成安装和拆卸。

不过,接近7万美元的ReWalk产品实在昂贵。ReWalk公司希望各保险公司、政府项目来为瘫痪患者来承担费用,比如退伍军人管理局和政府医疗项目等。

二、赛百达因”(Cyberdyne)

日本科技公司“赛百达因”(Cyberdyne),它创造了全球首个获得安全认证的外骨骼机器人。

HAL-5是一款半机器人,拥有自我拓展和改进功能。HAL-5是一款可以穿在身上的机器人,高1600毫米,重23公斤,利用充电电池(交流电100V)驱动,工作时间可达到近2小时40分钟。它具有能按照人(即穿着者)的意志而动作的随意制御功能,同时还具有机械性的自律制御功能,它使人的脑神经和筋骨系统与机器人成为一个整体结构,并作为人体的一部分发挥相应的功能。

这款产品最吸引人的地方是意念控制。它的身体会根据大脑向筋骨系统发出的运动指令而动作,身体在动作的时候,会有微弱的生物电位信号溢出到皮肤的表面,HAL就是在测得皮肤表面的生物电位信号的同时,通过安在关节部位的动力装置来发挥作用的。

HAL-5可以帮助佩戴者完成站立、步行、攀爬、抓握、举重物等动作。在2010年的时候,双腿因车祸而造成瘫痪的48岁日本人内田靖史,借助HAL外骨骼系统成功登上了瑞士阿尔卑斯山海拔4000多米的布来特峰,使得CYBERDYNE名声大噪。不过由于价格定位在15万美元,能购买的人群相当有限。由于产品不菲的使用成本,所以公司使用租借的方式来分散化高昂的费用,比如每月大约1700美元的价格(租赁时间如果超过一年将获得更低廉得月租费用)进行租赁使用。目前,致力于开发出更轻便且更便宜的型号,相信届时将有更多的人凭借这一技术恢复行动能力

三、松下可穿戴外骨骼

松下一直在研究动力外骨骼装置。2015年网络消息显示,松下最外骨骼装置AWN-03已经开始量产。AWN-03在设计上进行了大幅改良,它采用松下最新的小型高功率马达控制体积,碳纤维材料和树脂传动齿轮的利用使其相比金属制品轻了50%。松下AWN-03当时预计售价100万日元(约合人民币5.03万元),月产能约1000台。现在具体售价不详。

松下三款属于“外骨骼”的装备,代号为 AWN-03、PLN-01、Power Loader,三者基本架构相似,功能也相近。当外骨骼的传感器检测到使用者弯腰举起重物时,电机通过传动装置为人体的四肢提供外部动力,减少人体的负担。

三、Phoenix SuitX

2016年上半年,加州公司suitX发布了宣称全球价格最实惠的可移动机械外骨骼Phoenix,不面向的是残疾人士,其利用发动机帮助穿戴者移动双腿。后来,这家公司带来了一款非发动机版的机械外骨骼--MAX(全称Molar Agile Exoskeleton),它能让更多的人的生活变得更加轻松。据了解,MAX主要为在建筑工地、工厂、仓库等需要搬运重物的工作场所的人员设计。

极简的设计外加先进的嵌入式智能微小组件是Phoenix能够控制其重量和成本的重要原因,外骨骼设计采用模块化设计,主要分为一个髋关节模块,2个膝关节模块和2个脚模块,客户可以单独使用或连接在一起,形成一个完整的系统。SuitX可以在用户不脱下来的情况下完成坐在轮椅上然后站起来继续行走然后再坐下的整个过程,操作起来也十分方便。

四、ExoAtlet

是一家成立于 2010 年的初创公司,由俄罗斯政府级的孵化器 Skolkovo 扶持。于 2009 年由时任总统的梅德韦杰夫宣布成立。

ExoAtlet Ⅰ基本适用于任何下半身瘫痪的患者,只要上肢功能基本完整(因为需要拄着拐杖),它能帮助患者实现基本的行走、爬楼梯及一些特殊的训练动作。ExoAtlet Pro 功能更多:测量脉搏、电刺激、给予既定的行走模式(让病人训练不同种类的步态,比如原地踏步)等。

发明者介绍,在为期 13 个临床实验阶段,至少有 65 位患者使用了 ExoAtlet,总行程达 143 公里,“ExoAtlet 已经被证明是安全的”。据悉,目前 ExoAtlet 已经完成了第六代样机,然而研发时间只花费了约 2 年半,其团队从最初的 5 人发展到目前的 25 人。

五、傅利叶智能

2017年3月17日,傅利叶智能在上海国际贵都大酒店举行了一场发布会,推出了公司下肢康复机器人Fourier X1。公司CEO顾捷在会上提出了上述关于器官的说法,并表示,近视眼患者戴上一副眼镜就可以和正常人一样看书,无法行走的残疾人如果穿上一套外骨骼机器人,就可以像普通人那样迈步行走,那么这种机器人也会成为一些残障人士的「器官」

Fourier X1通过19个不同的传感器和11个分布式CPU模块,能够“感知”患者在步行中的变化,“思考”患者的意图并通过电机帮助患者“执行”步行动作,通俗来讲就是使得机器人拥有了“触觉”。同时,机构上还设计了直观的指示灯,可以看到患者的力量变化。

国外平均一台机器人的价格在60万元~100万元,普通百姓购买压力极大。而傅利叶智能此次发布的下肢外骨骼机器人Fourier X1产品,据估算,投入市场后其价格将为国外同类产品的1/3至1/5。

六、尖叫科技S1

国内创业团队尖叫科技展示了其最新的外骨骼产品 S1,CTO 李牧然介绍说,相比国外的外骨骼产品,S1 将大幅降低外骨骼产品的价格门槛。价格方面,公司十分保守地表示「将在 10 人民币以内」

S1 整体材料使用了铝镁合金和碳纤维,在兼顾韧性和强度同时,很好地控制了材料成本;膝盖和髋关节部位有两处驱动电机,可以支持使用者完成站立、行走、攀爬楼梯等动作,自由度可以满足下肢日常活动的需要;同时,S1 在尺寸上将提供多个型号,每个型号还能进行一定的微调,可以很好地适配不同用户的体型。

(样机行动图)

七、迈步机器人BEAR H1

2017年11月11日下午,深圳市迈步机器人科技有限公司在深圳发布其首款面向偏瘫患者的外骨骼机器人BEAR H1。这款机器人指向非常明确:帮助那些偏瘫患者们重新站立行走。

BEAR H1拥有带动力的6关节(双侧髋、膝、踝),和髋部旋转辅助关节,可实现自然步态,适合身高150-190cm之间,体重小于85Kg的患者使用,并且其外骨骼尺寸可调,步态监测评估系统,还可通过触摸屏实时展示。

迈步机器人CEO陈功透露,迈步的外骨骼机器人产品投入市场后,不仅功能更多,价格将只有国外同类产品一半甚至1/3,在价格上优势明显。

八、大艾机器人

目前,大艾已经推出了 AiLegs 双足型下肢外骨骼康复训练机器人与 AiWalker 移动台架型下肢外骨骼康复训练机器人两款核心产品。

AiLegs 主要针对中后期康复阶段患者的训练。其产品由钛合金打造,重约 20 公斤,续航能力达 8 小时,最高承重达 100 公斤,可以根据患者不同的体型快速调节尺寸,方便多人使用。AiLegs 外形酷似人体下肢,腰部和腿部分别设有固定带,同时装有多个传感器、驱动器和控制器,患者可以通过控制器控制机器人前进的速度,使机器人能以类人的自然行走步态、真实的行走方式,支撑并带动下肢运动功能障碍患者进行康复训练。且能够进一步挖掘激发患者残存的肌体功能,纠正患者的行走姿态,以达到重塑患者行走能力的目的。

AiWalker 功能类似,但其配有类似学步车的移动台架,可以供早期康复患者使用。在康复训练行走过程中对患者腰部以上身体形成有效支撑、稳定骨盆。同时也适合对不同体重的患者进行减重式康复训练。

注明:以上素材来自网络公开报道整理加工,如有不妥,请留言联系。

阅读全文

与机器人行走装置设计相关的资料

热点内容
东莞市永克五金制品有限公司怎么样 浏览:586
江玲皮卡车仪表盘左上角是什么表 浏览:485
流体压强和流速关系的实验装置 浏览:494
如何抓轴承 浏览:471
口罩超声波机怎么调 浏览:998
导缆装置的位置与作用 浏览:796
阀门的芯体里是什么材料 浏览:216
餐厅纸巾生产设备需要多少钱一套 浏览:987
电冰箱制冷系数测量实验装置 浏览:472
电动车前工具箱怎么换 浏览:431
11年捷达车空调不制冷怎么回事 浏览:878
用cad画五金制品难吗 浏览:799
广东直销美容仪器怎么样 浏览:95
人防密闭阀门套什么定额 浏览:537
老款思域后轮轴承怎么拆 浏览:40
天然气阀门井钥匙创新 浏览:702
什么地方卖吸氧器材 浏览:98
实验室化学反应装置图 浏览:793
铸造银条模具什么材质 浏览:413
轴承加工什么工艺 浏览:494