⑴ 审核误差的可能来源有哪些
误差主要有四个方面的来源: 一.装置误差,即由于计量装置本身不完善和不稳定所引起的计量误差。它包括: ⑴标准器误差。标准器的量值(标称值)与其自身体现出来的客观量值之间有差异,从而使标准器自身带有误差; ⑵仪器仪表误差,仪器仪表因受到设计原理、制造与安装、调整与使用等方面问题的影响而引起的误差; ⑶辅助设备误差,各种辅助器具引起的误差。 二.环境误差,即由于各种环境因素与测量所要求的条件不一致及其随时间和空间位置的变化引起的测量装置和被测量本身的变化而造成的误差,这些因素包括温度、大气压、湿度、震动、电磁场、风效应、空气含尘量等。 三.人员误差。测量人员由于受分辨能力、反应速度、固有习惯和操作熟练程度的限制以及疲劳或一时疏忽等生理、心理上的原因所造成的误差,如视差、观察误差、估读误差等。 四.方法误差。采用近似的或不合理的测量方法和计算方法而引起的误差,如在计算中取π≈3.1416以近似代替圆周率所造成的计算结果的误差。
⑵ 什么是测量装置误差
属于系统误差的一种,由装置本来的误差决定。这是由于仪器本身的缺陷或没有按规定条件使用仪器而造成的。如仪器的零点不准,仪器未调整好,外界环境(光线、温度、湿度、电磁场等)对测量仪器的影响等所产生的误差。
http://ke..com/view/53641.htm
⑶ 求电子秤允许误差计算方法
电子秤的误差用检定分度值e表示,电子秤属于三级衡器III.最小称量是20e 新电子秤的允许误差: 1、必须使用标准砝码进行检测, 2、0-最小称量误差为0, 3、1/3最大称量的允许误差为1e, 4、最大称量的允许误差为2e, 使用中的电子秤的允许误差是新的2倍。 举例:最大称量150公斤, 分度值50克。 1、0-最小称量[1000克]为0误差, 2、1/3最大称量[50公斤]的允许误差为50克, 3、最大称量[150公斤]的允许误差为100克 经过以上检测误差合格的电子秤,在计量性能方面是基本合格的。 当然,还有许多检测项目,比如,零点稳定性;最小鉴别力;偏载误差;去皮特性;过载特性,抗电磁能力;产品标识等。 希望能够给你一点帮助,不足之处请指正。
⑷ 流量计误差如何计算
一般的流量计的误差为示值相对误差。其中示值可以为直接显示值,也可以为间接显示值。示值相对误差:(流量计示值-标准装置的标准值)/标准装置的标准值*100%。作为某一流量下的流量计的示值误差。相对于流量计误差需要做几组不同的流量点,作为判定。
⑸ 机床的误差包括哪些方面
1.1 机床的原始制造误差
是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
1.2 机床的控制系统误差
包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。
1.3 热变形误差
由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。
1.4切削负荷造成工艺系统变形所导致的误差
包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。
1.5 机床的振动误差
在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。导致加工工件的表面质量恶化和几何形状误差。
1.6 检测系统的测试误差
包括以下几个方面:
(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;
(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。
1.7 外界干扰误差
由于环境和运行工况的变化所引起的随机误差。
1.8 其它误差
如编程和操作错误带来的误差。
上面的误差可按照误差的特点和性质,归为两大类:即系统误差和随机误差。
数控机床的系统误差是机床本身固有的误差,具有可重复性。数控机床的几何误差是其主要组成部分,也具有可重复性。利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。
随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,难于推广。
2几何误差补偿技术
针对误差的不同类型,实施误差补偿可分为两大类。随机误差补偿要求“在线测量”,把误差检测装置直接安装在机床上,在机床工作的同时,实时地测出相应位置的误差值,用此误差值实时的对加工指令进行修正。随机误差补偿对机床的误差性质没有要求,能够同时对机床的随机误差和系统误差进行补偿。但需要一整套完整的高精度测量装置和其它相关的设备,成本太高,经济效益不好。文献[4] 进行了温度的在线测量和补偿,未能达到实际应用。系统误差补偿是用相应的仪器预先对机床进行检测,即通过“离线测量”得到机床工作空间指令位置的误差值,把它们作为机床坐标的函数。机床工作时,根据加工点的坐标,调出相应的误差值以进行修正。要求机床的稳定性要好,保证机床误差的确定性,以便于修正,经补偿后的机床精度取决于机床的重复性和环境条件变化。数控机床在正常情况下,重复精度远高于其空间综合误差,故系统误差的补偿可有效的提高机床的精度,甚至可以提高机床的精度等级。迄今为止,国内外对系统误差的补偿方法有很多,可分为以下几种方法:
2.1单项误差合成补偿法
这种补偿方法是以误差合成公式为理论依据,首先通过直接测量法测得机床的各项单项原始误差值,由误差合成公式计算补偿点的误差分量,从而实现对机床的误差补偿。对三坐标测量机进行位置误差测量的当属Leete, 运用三角几何关系,推导出了机床各坐标轴误差的表示方法,没有考虑转角的影响。较早进行误差补偿的应是Hocken教授,针对型号Moore 5-Z(1)的三坐标测量机,在16小时内,测量了工作空间内大量的点的误差,在此过程中考虑了温度的影响,并用最小二乘法对误差模型参数进行了辨识。由于机床运动的位置信号直接从激光干涉仪获得,考虑了角度和直线度误差的影响,获得比较满意的结果。1985年G. Zhang成功的对三坐标测量机进行了误差补偿。测量了工作台平面度误差,除在工作台边缘数值稍大,其它不超过1μm,验证了刚体假设的可靠性。使用激光干涉仪和水平仪测量得的21项误差,通过线性坐标变换进行误差合成,并实施了误差补偿。X-Y平面上测量试验表明,补偿前,在所有测量点中误差值大于20μm的点占20%,在补偿后,不超过20%的点的误差大于2μm,证明精度提高了近10倍。
除了坐标测量机的误差补偿以外,数控机床误差补偿的研究也取得了一定的成果。在1977年Schultschik教授运用矢量图的方法,分析了机床各部件误差及其对几何精度的影响,奠定了机床几何误差进一步研究的基础。Ferreira和其合作者也对该方法进行了研究,得出了机床几何误差的通用模型,对单项误差合成补偿法作出了贡献。J.Ni et al更进一步将该方法运用于在线的误差补偿,获得了比较理想的结果。Chen et al建立了32项误差模型,其中多余的11项是有关温度和机床原点误差参数,对卧式加工中心的补偿试验表明,精度提高10倍。Eung-Suk Lea et al几乎使用了同G. Zhang一样的测量方法,对三坐标Bridge port铣床21项误差进行了测量,运用误差合成法得出了误差模型,补偿后的结果分别用激光干涉仪和Renishaw的DBB系统进行了检验,证明机床精度得以提升。
2.2误差直接补偿法
这种方法要求精确地测出机床空间矢量误差,补偿精度要求越高,测量精度和测量的点数就要求越多,但要详尽地知道测量空间任意点的误差是不可能的,利用插值的方法求得补偿点的误差分量,进行误差修正,该种方法要求建立和补偿时一致的绝对测量坐标系。
1981年,Dufour和Groppetti在不同的载荷和温度条件下,对机床工作空间点的误差进行了测量,构成误差矢量矩阵,获得机床误差信息。将该误差矩阵存入计算机进行误差补偿。类似的研究主要有A.C.Okafor et al,通过测量机床工作空间内,标准参考件上多个点的相对误差,以第一个为基准点,然后换算成绝对坐标误差,通过插值的方法进行误差补偿,结果表明精度提高了2~4倍。Hooman则运用三维线性(LVTDS)测量装置,得到机床空间27个点的误差(分辨率0.25μm,重复精度1μm),进行了类似的工作。进一步考虑到温度的影响,每间隔1.2小时测量一次,共测量8次,对误差补偿结果进行了有关温度系数的修。这种方法的不足之处是测量工作量大,存储数据多。目前,还没有完全合适的仪器,也限制了该方法的进一步运用和发展。
2.3相对误差分解、合成补偿法
大多数误差测量方法只是得到了相对的综合误差,据此可以从中分解得到机床的单项误差。进一步利用误差合成的办法,对机床误差补偿是可行的。目前,国内外对这方面的研究也取得一定进展。
2000年美国Michigan大学Jun Ni教授指导的博士生Chen Guiquan做了这样的尝试,运用球杆仪(TBB)对三轴数控机床不同温度下的几何误差进行了测量,建立了快速的温度预报和误差补偿模型,进行了误差补偿。Christopher运用激光球杆仪(LBB),在30分钟内获得了机床的误差信息,建立了误差模型, 在9个月的时间间隔内,对误差补偿结果进行了5次评价,结果表明,通过软件误差补偿的方法可
⑹ 传感器迟滞误差公式
迟滞误差计算公式:灵敏度s=△x/△y,迟滞误差γh=△hmax/yfs×100%,非线性误差γl=+-△lmax/yfs×100%。
传感器从原理上主要分为压阻式、电容式、电感式、压电式、光电式等。其中,电容式触觉传感器因其结构简单、易于轻量化和小型化、不受温度影响等优点得到广泛的研究和应用。
简介
传感器(英文名称:transcer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。
⑺ 电能计量装置的综合误差多少为合格
呵呵
看具体的装置要求。
0.5级的装置,综合误差不得超过0.5,内控0.4。
0.2级的装置,综合误差不得超过0.2,内控0.15。
0.1级的装置,综合误差不得超过0.1,内控0.05。
⑻ 仪器的允许误差怎么计算
多量程的仪器,按照各量程的准确度等级分别进行计算,如:
“0~300mv 的精度为 0.025%+2digits ”的允差为300*0.025%+2个读数(看实际分辨力而定)。
“300mv~3V的精度为 0.025%+4digits”的允差为(3000-300)0.025%+4个读数mV其它量程的也是这样进行计算。
各类仪器仪表按不同特征,例如功能、检测控制对象、结构、原理等再分为若干小类或子类。工业自动化仪表按功能右分为检测仪表、显示仪表、调节仪表和执行器等。
(8)计算检测装置误差扩展阅读:
温度计可根据用途和测量精度分为标准温度计和实用温度计2类,标准温度计的精度高,它主要用于校正其它温度计。实用温度计是指所供实际测温用的温度计,主要有实验用温度计、工业温度计、气象温度计、医用温度计等。
中学实验室常用载重100 g(感量为0.1 g)和200 g(感量为0.2 g)2种。载重又叫载物量,是指能称量的最大限度。感量是指天平误差(±),例如感量为0.1 g的托盘天平。表示其误差为±0.1 g,因此它就不能用来称量质量小于0.1 g的物品。
圆底烧瓶一般用作加热条件下的反应容器。而平底烧瓶用于不加热条件下的气体发生器,也常用来装配洗瓶等。由于平底烧瓶底部平面较小,其边缘又有棱,因此应力较大,加热时容易炸裂。所以它一般不用于加热条件下的反应容器。
⑼ 如何区别仪表的基本误差和允许误差
根据张宏建的《自动检测技术与装置》第二版,基本误差是标准条件下全量程范围内被测量对应绝对误差的最大值,是表征仪表基本性能的重要指标。准确度,又名满刻度相对误差,是基本误差与量程的百分比。而允许误差是仪表生产厂家设置的误差限制,稍比基本误差大,仪表使用时不应该超过这个允许误差。
强调,以上内容来自教科书。某些人回答的完全是错的