A. 纯电动汽车电机驱动系统有哪几部分组成
电机驱动系统主要由中央控制器、驱动控制器、电动机、冷却系统、机械传动装置等组成。
B. 智能小车是怎么自动转弯的用什么装置
通过地磁进行智能系统导航控制的方法,通过地磁传感器获得智能系统的行驶状态,并对地磁导航角进行误差校正。
无人驾驶采用人工智能算法来完成转向任务,简而言之,无人驾驶汽车就是不断的学习和模仿人们的开车姿势从而达到自主开车的目的。人们在开车时,面对不同大小的弯道,人们总是可以凭借经验来转动方向盘从而通过弯道,而对于无人驾驶汽车来说,我们会定义一个成本函数,用于确定对于待达成的特定转向率的成本,成本函数可以包括一个或者多个个体成本函数,用于计算一个或者多个个体。
而无人驾驶汽车学习的目的,就是使得它的转向率尽可能地接近于人类的水平,也即使得这个成本函数尽可能的小。如上图所示,传感器系统依旧用于采集车辆的各种状态信息,控制系统则用于控制车辆状态。
针对于不同的路况,决策模块决定了如何通过这些不同的路况,决策模块可以根据诸如驾驶或者交通规则来做出此类决定,这些规则就存储在永久性存储装置中。有了这些硬件和软件的基础,无人驾驶车辆就可以完成转向任务了。
如上如所示是用于操作自动驾驶车辆的转向的过程,通过软件以及硬件的组合来完成这个流程。
首先,处理逻辑确定用于自动驾驶车辆的若干转向率候选选项,这里用到了多个成本函数,以便于计算转向率对于自动驾驶车辆的不同影响。
其次,通过不同的成本函数来确定控制转向率的总成本,在候选转向率的选项中选择具有最低总成本的转向率作为自动驾驶车辆的转向率。
最后,通过目标转向率生成转向控制命令用于控制无人驾驶车辆的方向盘,这里需要软件和硬件的配合,才能完成一次车辆的正确转弯。
指被配置为处于自动驾驶模式下的车辆,这种车辆在极少或者没有驾驶员干预的情况下通过导航来行驶。尤其是在面对各种弯道时,更加要求车辆能够及时、迅速的拐弯,这就对于无人驾驶车辆的转弯系统提出了很大的要求。
其实早在17年的5月24日,网络就申请了一项名为“动态调整自动驾驶汽车的转向率的方法”的发明专利(申请号为:201780003089 .9),申请人为网络(美国)有限责任公司。
C. 参加大学生比赛的智能小车传动装置为什么不用齿轮传动而直接用马达驱动
齿轮转动有着结构简单、维修方便、成本较低的优点,但是结构较大。而采用马达直接驱动(术语叫步进电机或伺服电机)可以直接通过电信号来实现减速、加速,所以体积较小,但是它的控制电路为很复杂的集成块电路,结构复杂。
D. 新能源汽车驱动电机的作用
驱动电机既可以将电能转换为机械能驱动汽车行驶,也可以作为发电机将机械能转换为电能,并存储在动力电池内。电机控制器将动力电池的高压直流电变换为驱动电机的高压三相交流电,使驱动电机产生力矩,并通过传动装置将驱动电机的旋转运动传递给车轮,驱动汽车行驶。
驱动电机已经自主开发出满足各类新能源汽车的产品,部分主要性能指标已达到国际先进水平,但是在峰值转速、功率密度及效率方面与国外仍存在一定的差距。峰值转速是电机的重要指标,也是目前国内电机较之国外差距最明显的指标。国内绝大部分永磁同步电机的峰值转速在10000rpm 以下,而国外基本在10000rpm 以上。国内电机在功率方面基本能够达到国际水平,但是在同功率条件下存在重量劣势,因此功率密度存在较大差距。国内的永磁同步电机功率密度多在(1 ~2)kw/kg 区间内,与2020 年3.5kw/kg 的目标值存在较大差距。在电机效率方面,国内电机的最高效率均达到94%~96%,已达到西门子、博世等企业的水平,但是在高效区方面,如系统效率大于80%的区域占比方面尚存在一定差距。电机的高效区占比集中在70%~75%,而国外电机基本达到80%。另外,电机的冷却方式已经从自然冷却逐步发展为水冷,国内电机采用水冷为主,国外先进的电机已经发展到油冷电机。
《节能与新能源汽车技术路线图》分析,驱动电机主要发展趋势有以下几个方面:集成化--与整车的电子控制器的集成和机电耦合的集成;高效化--提高功率密度并降低成本;智能化--与整车传感器、控制器配合不断提升驱动系统的性能。
1.2 驱动电机的主要分类驱动电机历史悠久,在1885 年被美国的尼古拉·特斯拉申请了感应电动机专利,之后不断衍生出各式各样的电动机,被各行各业所广泛使用。下面,按照驱动电机的电源对其进行分类:图1从图1 可见,电机的种类繁多,每个电机都有特点。结合市场,简单比较主流驱动电机的性能,如下表:表1上表的经验性统计,结合新能源汽车复杂的工况:频繁停车启动、加速减速、负载爬坡、持续高速、低速蠕动等分析,交流异步电机和永磁同步电机在尺寸、质量、功率密度、效率等优势明显,因此逐渐成为新能源汽车的主流选择。
2 新能源汽车对驱动电机的性能要求以内燃机和驱动电机为动力的汽车早在19 世纪就开始了较量,经过不断的发展优化、竞争,电动车因充电慢,续航短等劣势成为小众车型,而内燃机最终以其稳定、可靠、加油方便等优势称霸全球。
(图/文/摄: 问答叫兽) @2019
E. 纯电动汽车的三大核心部件是什么
纯电动不等于换发动机 电动车也有三大件和普通的柴油、汽油发动机的卡车相比,纯电动最直接和简单的区别就是发动机不一样,纯电动使用电动机代替了传统的柴油/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量的输出以及调节电动机的转速等等 纯电动卡车,这个名字不经意间就进入了我们的世界,从最开始的单纯的更换电动机到现在的整套纯电动动力链,纯电动卡车已经不再是简单的电动机代替柴油机的时代了。 ● 纯电动不等于换发动机 电动车也有三大件和普通的柴油、汽油发动机的卡车相比,纯电动最直接和简单的区别就是发动机不一样,纯电动使用电动机代替了传统的柴油/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量的输出以及调节电动机的转速等等。目前国内最简单的纯电动卡车就是把柴油机换成电动机,在原来发动机的位置焊接一个支架安装电动机,这样的方式最原始也是最简单的,没有任何的控制系统,这样的纯电动卡车甚至还保留了手动变速箱。经过技术的不断发展,纯电动卡车已经由简单粗暴的更换电动机发展到拥有整套控制系统、电池管理系统、电动机等等。对于一辆成熟的纯电动卡车来说,拥有成熟的三大件(电动机、电池、电控系统)才可以称之为真正的纯电动卡车。 ● 纯电动卡车要求高 电动机是重点1、电动汽车电机应该具备较大的起动转矩、良好的启动性能和良好的加速性能来满足电动汽车的频繁启/停、加/减速和爬坡等要求;2、电动汽车电机应该具备较宽的恒功率范围,以满足电动汽车高速行驶的需要;3、电动汽车电机应该具备较大范围的调速能力,在低速时具有较大的转矩,在高速时具有高功率,能够根据驾驶需要,随时调整电动汽车的行驶速度和相应的驱动力;4、电动汽车电机应该具备良好的效率特性,在较宽的转速/转矩范围内,获得最优的效率,提高一次充电后的持续行驶里程,一般要求在典型的驾驶循环区,获得85%~93%的效率;5、电动汽车电机的外形尺寸要求尽可能小,质量尽可能轻;6、电动汽车电机应该具备良好的可靠性好,耐温和耐潮性能强,能够在较恶劣的环境下长期工作,运行时噪音低,维修方便;7、结合控制器是否能有效的回收制动产生的能量。 ● 电动机种类多 永磁同步电机占多数电动机分为直流电动、异步电动机、永磁同步电动机、开关磁阻电动机等等,这几种电动机各有特点,通过下表就可以直观的看到几种电动机之间的异同点。目前纯电动卡车用的最多的当属永磁同步电动机,同其他几种类型的电动机相比,永磁同步电动机具有效率高、比功率大的特点,但是永磁同步电动机的控制系统相对复杂、成本比较高,一些小型的纯电动卡车企业目前还没有自己的永磁同步电动机的技术。 ● 电池技术不断发展 锂电池已经成为主角在纯电动卡车上另外一个重要的部件就是电池,对于纯电动卡车来说,电池就是保证源源不断的动力的根源,因此纯电动卡车对电池的基本要求大概可以总结为一下几个方面:1、电池的可靠性达到车用需求;2、电池使用寿命长,深度放电时循环次数达到车用要求;3、充电时间短、蓄电池尺寸和质量小、环境适应性强;4、电池在使用过程中单体电池健康状态变化一致,不影响整体性能;5、功率密度和能量密度高、不存在环境污染问题、成本低。通过以上的几点要求我们可以看出纯电动卡车对电池自身的要求也比较高,特别是电池的重量和尺寸上更是要求尽量的轻和小。那么又是怎么衡量一块电池的好坏呢,通过以下几个技术指标就就可以判断一块电池的好坏。容量:在规定条件下,完全充电的蓄电池能够提供的电量,通常用安时(A.h)表示。充电率:蓄电池充电时用安培表示的电流完全充电状态:当蓄电池内所有可利用的活性物质都已转变成完全充电的状态。过充电:完全充电后仍延续的充电。急充电:通常是以高倍率短时间的一种部分充电。涓流充电:为补偿自放电,使蓄电池保持在近似完全充电状态的连续小电流充电。热失控:在恒压充电期间发生的一种临界状态。此时,蓄电池的电流及温度发生一种累积的互相增强的作用并逐渐增强导致蓄电池的损坏。开路电压:开路时,蓄电池正、负极间的电位差。负载电压:蓄电池输出电流时端子间的电压。终止电压:认为放电终止时的规定电压。目前电池技术不断的发展,车用电池已经从普通的铅酸电池发展到了燃料电池,但是目前在纯电动卡车上用的最多的电池是锂电池,锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。一般采用含有锂元素的材料作为电极的电池,是现代高性能电池的代表。锂电池目前在汽车行业里应用最为广泛,发展前景广阔,未来电池发展可能在锂电池上突破;主要有钴酸锂、锰酸锂、磷酸铁锂及三元材料电池。锂电池主要优势如下:单体电池工作电压高达3.7V,是镍镉电池,镍氢电池的3倍,铅酸电池的近2倍。重量轻,比能量大,高达150Wh/Kg,是镍氢电池的2倍,铅酸电池的4倍。体积小,高达到400Wh/L,体积是铅酸电池的二分之一到三分之一。循环寿命长,循环次数可达1000次,使用年限可达3-5年,寿命约为铅酸电池的两到三倍。自放电率低,每月不到5%,无记忆效应,可以随时随地进行充电。无污染,锂电池中不存在有毒物质,因此被称为绿色电池。 ● 保障车辆正常运行 控制系统是关键在纯电动卡车中另外一个部件也是相当的重要,那就是电池管理控制系统,电动汽车电池管理系统BMS主要用于对电动汽车的动力电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保障电动汽车高效、可靠、安全运行。电控系统可以分为BMS系统和显示系统,简单的来说就是BMS系统主要是采集电池的数据,电池充放电状态、电池总电压、电池总电流,每个电池箱内电池测点温度以及单体模块电池电压等。由于动力电池都是串联使用的,所以这些参数的实时,快速,准确的测量是电池管理系统正常运行的基础。剩余电量估算:电池剩余能量相当于传统车的油量。荷电状态(SOC)的估算是了为了让司机及时了解系统运行状况。实时采集充放电电流、电压等参数,并通过相应的算法进行剩余电量的估计。充放电控制:根据电池的荷电状态控制对电池的充放电,当某个参数超标如单体电池电压过高或过低时,为保证电池组的正常使用及性能的发挥,系统将切断继电器,停止电池的能量供给和释放。热管理:实时采集每个电池箱内电池测点温度,通过对散热风扇的控制防止电池温度过高。均衡控制:由于电池个体的差异以及使用状态的不同等原因,电池在使用过程中不一致性会越来越严重,系统应能判断并自动进行均衡处理。故障诊断:电动汽车电池的工作电压一般都比较高(90V-700V),系统应监测供电短路,漏电等可能对人身和设备产生危害的状况。电池状况预测和报警:通过对电池参数的采集,系统具有预测电池组中单体电池性能、故障诊断和提前报警等功能,以便对电池进行维护和更换,以保证安全。信息监控:电池的主要信息在车载显示终端进行实时显示。参数标定:由于不同车型使用的电池类型、数量,每个电池箱容量和数量不同,因此系统应具有对车型、车辆编号、电池类型和电池模式等信息标定的功能。 纯电动不仅仅是换发动机,电动车也有三大件纯电动车使用电动机代替了传统的柴/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量输出以及调节电动机的转速等等。经过技术的不断发展,纯电动汽车已经由简单粗暴的更换电动机发展到拥有整车控制系统(VCU)、电池管理系统(BMS)、电动机等等。 纯电动不仅仅是换发动机,电动车也有三大件纯电动车使用电动机代替了传统的柴/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量输出以及调节电动机的转速等等。经过技术的不断发展,纯电动汽车已经由简单粗暴的更换电动机发展到拥有整车控制系统(VCU)、电池管理系统(BMS)、电动机等等。驱动电机是“心脏”驱动电机以车载电源为动力,驱动车轮行驶,电机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。汽车行驶的特点是频繁地启动、加速、减速、停车等。在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电机具有高的比功率和功率密度。 电池是能量来源在纯电动汽车上另外一个重要的部件就是电池,对于纯电动汽车来说,电池就是保证源源不断的动力的根源,因此纯电动汽车对电池的基本要求大概可以总结为一下几个方面:1、电池的可靠性达到车用需求;2、电池使用寿命长,深度放电时循环次数达到车用要求;3、充电时间短、蓄电池尺寸和质量小、环境适应性强;4、电池在使用过程中单体电池健康状态变化一致,不影响整体性能;5、功率密度和能量密度高、不存在环境污染问题、成本低。电控系统是保障车辆正常运行的关键电控系统是电动汽车的大脑,由各个子系统构成,每一个子系统一般由传感器、信号处理电路、电控单元、控制策略、执行机构、自诊断电路和指示灯组成。在不同类型的电动汽车上,电控系统存在一些区别,但总体来说一般都包括能量管理系统、再生制动控制系统、电机驱动控制系统、电动助力转向控制系统以及动力总成控制系统等。各个子系统功能不是简单的叠加,而是综合各子系统功能来控制电动汽车。 电动车(EV)、混动车(HEV)的各种核心技术,如电池、电机、逆变器、可充电电池、充电器等 日本很厉害,尤其是电池基础技术!电动汽车必须解决好4个方面的关键技术:电池技术、电机驱动及其控制技术、电动汽车整车技术以及能量管理技术。 电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。电动机与驱动系统是电动汽车的关键部件,要使电动汽车有良好的使用性能,驱动电机应具有调速范围宽、转速高、启动转矩大、体积小、质量小、效率高且有动态制动强和能量回馈等特性。电动汽车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁无刷电动机(PMBLM)和开关磁阻电动机(SRM)4类。能量管理系统是电动汽车的智能核心。一辆设计优良的电动汽车,除了有良好的机械性能、电驱动性能、选择适当的能量源(即电池)外,还应该有一套协调各个功能部分工作的能量管理系统,它的作用是检测单个电池或电池组的荷电状态,并根据各种传感信息,包括力、加减速命令、行驶路况、蓄电池工况、环境温度等,合理地调配和使用有限的车载能量;它还能够根据电池组的使用情况和充放电历史选择最佳充电方式,以尽可能延长电池的寿命。 纯电动车和普通的柴油、汽油发动机的车相比,最直接和简单的区别就是发动机不一样,纯电动使用电动机代替了传统的柴油/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量的输出以及调节电动机的转速等等。 电动车(EV)、混动车(HEV)的各种核心技术,如电池、电机、逆变器、可充电电池、充电器等 日本很厉害,尤其是电池基础技术!AutoCTO汽车学院总结,发展电动汽车必须解决好4个方面的关键技术:电池技术、电机驱动及其控制技术、电动汽车整车技术以及能量管理技术。 电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。电动机与驱动系统是电动汽车的关键部件,要使电动汽车有良好的使用性能,驱动电机应具有调速范围宽、转速高、启动转矩大、体积小、质量小、效率高且有动态制动强和能量回馈等特性。电动汽车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁无刷电动机(PMBLM)和开关磁阻电动机(SRM)4类。能量管理系统是电动汽车的智能核心。一辆设计优良的电动汽车,除了有良好的机械性能、电驱动性能、选择适当的能量源(即电池)外,还应该有一套协调各个功能部分工作的能量管理系统,它的作用是检测单个电池或电池组的荷电状态,并根据各种传感信息,包括力、加减速命令、行驶路况、蓄电池工况、环境温度等,合理地调配和使用有限的车载能量;它还能够根据电池组的使用情况和充放电历史选择最佳充电方式,以尽可能延长电池的寿命。 纯电动最直接和简单的区别就是发动机不一样,所以一般认为纯电动汽车的三大核心部件是电动机、电池和电控系统,其中最关键的是电池。 纯电动车使用电动机代替了传统的柴/汽油发动机,以电池组代替了燃油,为电动机提供动力。其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量输出以及调节电动机的转速等等。经过技术的不断发展,纯电动汽车已经由简单粗暴的更换电动机发展到拥有整车控制系统(VCU)、电池管理系统(BMS)、电动机等等。 @2019
F. 新能源汽车电驱系统是怎么
现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。纯电动汽车驱动电机,电力驱动系统类型按电力驱动系统的组成和布置形式不同,纯电动汽车分为机械传动型、无变速器型、无差速器型和电动轮型四种类型。
机械传动型纯电动汽车
由发动机前置后轮驱动的燃油汽车发展而来,保留了内燃机汽车的传动系统,只是把内燃机换成了电动机。这种结构可以提高纯电动汽车的起动转矩及低速时的后备功率,对驱动电动机要求低,可选择功率较小的电动机。 无变速器型纯电动汽车驱动系统的最大特点是取消了离合器和变速器,采用固定速比减速器,通过电动机的控制实现变速功能。这种结构的优点是机构传动装置的质量较轻、体积较小,但对电动机的要求较高,不仅要求有较高的起动转矩,而且要求有较大的后备功率,以保证纯电动汽车的起步、爬坡、加速等动力性能。 无差速器型纯电动汽车结构采用两个电动机,通过固定速比减速器分别驱动两个车轮,每个电动机的转速可以独立调节。当汽车转向时,由电子控制系统实现电子差速,因此,电动机控制系统比较复杂。电动轮型纯电动汽车将电动机直接装在驱动轮内(也称为轮毂电动机),可进一步缩短电动机到驱动车轮之间的动力传递路径,但需要增设减速比较大的行星齿轮减速器,以便将电动机转速降低到理想的车轮转速。这种结构对控制系统控制精度和可靠性的要求较高。电力驱动系统特性 能量转换效率高无污染、零排放、对环境友好灵活方便控制工作状态系统工作状态不会受到外界环境的影响总体重量不变无噪声,对环境没有影响安全性好何为电动汽车三合一电驱系统技术? 电动汽车三合一电驱系统技术是指将电控、电机和减速器集成为一体的技术,随着电动汽车技术的不断演进,集成化设计将无可争辩地成为未来发展的趋势。目前市面上比较前列的电动驱动系统 GKN吉凯恩(纳铁福)在不需要纯电动或混合动力驱动时,可以通过一个集成的切断装置将电动机从传动系统中断开,该装置采用了机电驱动离合器。GKN还对齿轮和轴承布置进行了优化,实现更高的效率、更好地NVH性能和耐久性。 博世Bosch博世Bosch新动力系统e-axle电动轴,使电动轴驱动可提供更佳的续航力。博世BOSCH电驱动桥特点:高度集成化、简化冷却管路和功率驱动线缆、平台化设计灵活适配不同车型。 ZF三合一电驱系统采埃孚(ZF)研发的适用于小型和中型轿车的电动车驱动产品,能很好的适应未来的城市交通状况。利用多面压合连接技术来实现铝制推力杆与钢制横结构的链接,具备电能转化效率高和性能优异的特点。
G. 智能小车是怎么自动转弯的用什么装置
通过地磁进行智能系统导航控制的方法,通过地磁传感器获得智能系统的行驶状态,并对地磁导航角进行误差校正。
无人驾驶采用人工智能算法来完成转向任务,简而言之,无人驾驶汽车就是不断的学习和模仿人们的开车姿势从而达到自主开车的目的。人们在开车时,面对不同大小的弯道,人们总是可以凭借经验来转动方向盘从而通过弯道,而对于无人驾驶汽车来说,我们会定义一个成本函数,用于确定对于待达成的特定转向率的成本,成本函数可以包括一个或者多个个体成本函数,用于计算一个或者多个个体。
而无人驾驶汽车学习的目的,就是使得它的转向率尽可能地接近于人类的水平,也即使得这个成本函数尽可能的小。如上图所示,传感器系统依旧用于采集车辆的各种状态信息,控制系统则用于控制车辆状态。
针对于不同的路况,决策模块决定了如何通过这些不同的路况,决策模块可以根据诸如驾驶或者交通规则来做出此类决定,这些规则就存储在永久性存储装置中。有了这些硬件和软件的基础,无人驾驶车辆就可以完成转向任务了。
如上如所示是用于操作自动驾驶车辆的转向的过程,通过软件以及硬件的组合来完成这个流程。
首先,处理逻辑确定用于自动驾驶车辆的若干转向率候选选项,这里用到了多个成本函数,以便于计算转向率对于自动驾驶车辆的不同影响。
其次,通过不同的成本函数来确定控制转向率的总成本,在候选转向率的选项中选择具有最低总成本的转向率作为自动驾驶车辆的转向率。
最后,通过目标转向率生成转向控制命令用于控制无人驾驶车辆的方向盘,这里需要软件和硬件的配合,才能完成一次车辆的正确转弯。
指被配置为处于自动驾驶模式下的车辆,这种车辆在极少或者没有驾驶员干预的情况下通过导航来行驶。尤其是在面对各种弯道时,更加要求车辆能够及时、迅速的拐弯,这就对于无人驾驶车辆的转弯系统提出了很大的要求。
其实早在17年的5月24日,网络就申请了一项名为“动态调整自动驾驶汽车的转向率的方法”的发明专利(申请号为:201780003089 .9),申请人为网络(美国)有限责任公司。
H. 电动汽车传动装置的作用是什么
传动装置电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动轮驱动时,传动装置的多数部件常常可以忽略。因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器
I. 新能源汽车传动原理
随着时代的发展,新能源汽车渐渐的进入了我们的生活,在二十一世纪的今天,电动汽车又将会成为未来新能源的最终解决方案。毫无疑问,电动汽车最大的优势便是无排放污染。其次电动汽车还具有噪音低,结构简单,使用维修方便等特点。那么新能源汽车原理是什么呢?
新能源汽车原理是什么——电动汽车的心脏:电动机
新能源汽车原理是什么——电动汽车的心脏:电动机
纯电动汽车是完全用电动机来取代发动机驱动的,不少人认为电动机的动力没有发动机好,然而在先进的交流电机的驱动下,现代电动汽车的动力性甚至远远超过了不少大排量内燃机。
电动机可以在相当宽广的速度范围内高效地产生转矩,这意味着电动车甚至只需要单级减速齿轮就可以驱动车辆。
事实上,电动机驱动与发动机相比有两大技术优势:首先,发动机能高效产生转矩时的转速被限制在一个较窄的范围内(即经济运行区),因此需要变速器适应这一特性。而电动机可以在相当宽广的速度范围内高效地产生转矩,这意味着电动车甚至只需要单级减速齿轮就可以驱动车辆。其次,由于高度电气化的控制系统引入,电动机实现动力输出的快速响应能力远高于发动机,这意味着电动机的响应比发动机更加灵敏。
新能源汽车原理是什么——电动车的“油箱”:电池组
新能源汽车原理是什么——电动车的“油箱”:电池组
制约电动汽车发展的主要问题还是集中于电池成本较高,充电时间长,续驶里程较短。近年来,不少汽车公司和研究机构的最新研究正在逐渐弥补电动汽车的这些先天缺陷。目前镍氢电池和锂电池为不少电动车和混合动力车所使用,其中镍氢电池可快速充电,循环寿命长,同时它不存在重金属污染,也被称为“绿色电池”,但是比能量没有锂电池高。锂电池有很多种类,例如锂离子电池、锂熔盐电池、锂聚合物电池,其具备较高的能量密度,等比功率大、比能量高,非常适合作为电动车车载电池。近年来,锂电池的研究使其在寿命和稳定性方面有大幅提升,因此锂电池是未来电动车的主力电池类型。
新能源汽车原理是什么——电动车的神经中枢:电控系统
新能源汽车原理是什么——电动车的神经中枢:电控系统
电力驱动控制系统是电动车的神经中枢,它将电动机,电池和其他辅助系统互为连接并且加以控制。电力驱动控制系统按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。
电力驱动主模块主要由中央控制单元、驱动控制器、电动机、机械传动装置等组成。
中央控
希望对你有帮助望采纳,谢谢!
J. 用于未来智能汽车的创新驱动方案
开发用于未来智能汽车的蓄电池电驱动系统的最大挑战在于针对高效率、低成本以及高舒适性等方面具有竞争力的目标寻找到一个折中方案。为了解决上述目标冲突,德国Darmstedt理工大学在名为“双电驱动装置”(TDT)的研究项目中开发出了一种创新的电动和混合动力系统,在“带有增程器的双电驱动装置”(DE-REX)项目成果的基础上成功地显示出了这种动力总成系统的潜力。1双电驱动装置当前基于动力总成系统的基本型式又提出了一种带有各自的子变速传动机构(TG)并与数个电机(EM)实现集成布置的设计理念,其中基于简单变速器技术的功能系统可集成高效的多档变速器,在此类结构型式中电机也被用于实现例如同步和传递牵引力等变速器功能。同时,这种模块化的双电驱动装置(TDT)模式能被转化成一系列动力总成系统,其不仅包括纯电动车(BEV),而且也包括环境污染较低且适合长途行驶的混合动力车。此外,这种模式的混合动力总成系统方案还采用了一种被称之为“增程器专用变速器”(DRT)的特殊设计理念。在“带有增程器的双电驱动装置”(DE-REX)项目中已构建了一种混合动力结构型式方案,以此能彰显出行驶舒适性和效率方面的潜力以及评估成本的潜力。2DE-REX动力总成系统图1示出了DE-REX动力总成系统架构示意图,其由两个同轴布置的子变速传动机构(TG1和TG2)组成,输入轴能通过由控制机构操纵的爪齿离合器与变速器输出轴连接,而内燃机则能被并联或串联到现有的TG2上。装配了两套DE-REX动力总成系统:一套用于试验台运行,另外还用于效率试验;另一套被集成到一辆演示车上,用于档位变换和运行模式变换试验以及舒适性评价。3换档舒适性评价多档变速器用于电动车是以其舒适的换档过程为基础的。为了研究在DE-REX车辆上的舒适性,不仅在电动车上而且在混合动力车进行了档位变换和运行模式变换试验,并按照客观和主观标准进行评价。按照VDI(德国工程师协会)-2057规程,应用“振动计量值”(VDV)作为客观标准来评价换档过程期间发生的振动。图2示出了DE-REX车辆在部分负荷工况下进行电动换档的试验结果。操作开始时电机1(EM1)以第一档驱动车辆,当需要使档位转换到电机2(EM2)第二档时,EM2的转速就被调节到第二档的额定转速,最后爪齿离合器结合,扭矩就从EM1叠化到EM2,TG1第一档脱开,换档过程就此结束,EM1最终减速至停机状态。所得到的加速度曲线形状表明其并无显著的振动现象,并可得到较低的振动计量值(VDV=0.089m/s1.75)。为了评估即使在负荷较高时纯电动车换至高档的换档舒适性,对不同加速踏板位置(APP)实施换档过程,分别计算VDV,通过传统车辆换高档的分布带来比较试验结果。正如图3所表明的那样,直至70%加速踏板位置时DE-REX车辆的换档舒适性都高于自动变速箱(AT)和双离合器变速箱(DCT),甚至在更大的加速踏板位置时由于其换档舒适性指标仍处于AT和DCT的分布带中,而处于更大的加速踏板位置时VDV增大则归因于换档过程中牵引力的降低,因为在换档过程期间仅配备有一个电机驱动车辆,因而在高负荷时牵引力能实现充分传递。在下一步开发中将对电机在短时间内进行超负荷试验,即使在全负荷时也能进一步提高换档舒适性。为了根据VDV评估验证其换档舒适性,邀请了23位动力总成系统专家作为同车乘客来参与行驶试验。在经历了较低和较高功率需求情况下的数次电动行驶换档过程后,请受试者按照事先规定的说法评价主观的感觉,如图4中示出了结果摘要。动力总成系统专家的主观感觉验证了尤其是在部分负荷行驶时的高换档舒适性,此时通常感觉不到明显的换档过程,即使是长期以来对高负荷换档过程有着细腻感受的乘客也会对此持称赞态度。综合试验结果表明,TDT动力总成系统的换档过程是较为舒适的,因此运行策略能在动力总成系统效率最佳的基础上选择最佳的运行模式而不会受到换档舒适性的限制。4电驱动总成系统效率的试验研究以TDT为基础的动力总成系统效率的提高归因于使用多档变速器与多个电机的结合:(1)多电机型式能使用可根据负荷换档的多档变速器而不会引起附加功率损失的摩擦转换器件;(2)多档变速器型式解决了起步扭矩与车辆最高车速之间的目标冲突,因而与固定档电驱动总成系统相比可降低所要安装的系统电功率,因此能提高负荷率,从而随之提高电机效率;(3)多电机型式能使单个电机停止工作,而继续工作的电机由于避免在部分负荷工况下运行而提高整机效率;(4)此外,还能使用多档多电机动力总成系统,从而使智能运行策略能实现最佳效率下的行驶要求。在DE-REX驱动及其考虑要替代者的试验台测试基础上,对采用自动手动变速箱(AMT)技术的多档多电机的节电潜力与采用一个电机的固定档动力总成系统(BEV-1GR,1档传动比纯电动车)进行比较试验。比较结果示于图5,从现有技术的固定档动力总成系统(1个电机,DE-REX标定到171kW,1档传动比(GR),)开始直至TDT模式(2个电机,每个48kW,2×2档传动比)采用最小起步扭矩(>2500N·m)和所需的最高车速(180km/h)。试验结果表明,采用现有技术的电能消耗量为16.5kW·h/100km是最有效的。为了充分发挥总效率优势,如下介绍一种采用降低系统电功率和固定档变速器的方案(1个电机,DE-REX电机被标定到96kW,一档传动比),虽然采用这种方案通常会使起步扭矩达不到要求,但还是表明TDT效率潜力的重要份额(8.3%)归因于更低的系统电功率。不过为了使减小的系统电功率能满足相关要求,至少需设置两个档位,而相应的多档AMT动力总成系统(1个电机,96kW,两档传动比)通过智能选择档位使得能量消耗进一步降低1.5%,当然换档时需切断牵引力。为了确保较高的换档舒适性,使用了典型的按负荷换档的器件,但是这会对变速器损失和成本产生显著的影响。这种TDT型式(2个电机,2×48kW,2×2档传动比)提供了一种可满足舒适性要求的替代解决方案,而且还通过附加的运行模式以获得附加的节能潜力,从而相比固定档纯电动车可总共获得约10.7%的节能效果。为此,在WLTG试验循环运行期间,智能DE-REX运行策略总会优先选择效率最高的行驶模式:对于低负荷和低车速阶段电机1第一档提供最高的效率,而在高车速时电机2第二档则呈现出一定优势,仅在WLTC循环的行驶时间内才使用两个电机一起驱动。试验台试验结果证实了TDT模式提高效率的潜力大,其为未来的电驱动系统提供了一种舒适智能的解决方案,而且TDT还在系统层面提供了降低成本的潜力。5动力总成系统成本评估为了对成本进行比较评价,必须在考虑所有组成部分的情况下评价总系统成本:尽管必需配备有2个电机和1个多档变速器,但是系统电功率将有所降低,同时要提高效率,从而对于所必需的电动行驶里程能减小蓄电池尺寸和降低成本。特别是为了满足较长行驶里程的技术要求,混合动力TDT模式通过平行的增程器运行提供了一种有利于降低成本的解决方案。大部分行驶里程是电动行驶模式,仅有极少的行驶里程使用混合动力模式。与当今的插电式混合动力车(PHEV)不同,混合动力TDT方案被设计成始终以高效率实现电动行驶,而且没有单纯附加的电气化。图6示出了以适合于长里程行驶的固定档BEV方案为比较基准的成本估价。纯电动TDT在系统层面上能获得约9%的成本优势,混合动力DE-REX的成本位于BEV与PHEV之间,与PHEV相比,由于降低了变速器的机械复杂程度从而具有附加的降低成本潜力,因此在本研究项目中采用DE-REX达到了最低的总成本(BEV-1GR成本的81%),通过考虑应用基于电动和混合动力总成系列模块化型式减小尺寸的效应期望可进一步降低成本。6结语和展望DE-REX研究项目成功地验证了TDT模式概念,试验台上的试验研究结果证实了其降低电能需求的潜力,其提高效率的潜力基于采用两个电机的多档变速器模式,同时为了使用户接受其较高的换档舒适性,而客观的VDV标准和独立专家的主观评价证实了其高换档舒适性。系统的总成本评估表明,与采用现有技术的BEV和PHEV相比,TDT模式具有降低成本的潜力。总之,TDT能为未来的环保通用型混合动力电动车(UHEV)提供创新的增程器专用变速器(DRT)方案。下一步将开发下一代TDT:“双驱动变速器4倍长行驶里程”(Two-DriveTransmission4Long-Range,DE4LoRa)。这种DE4LoRa动力总成系统既能进一步提高效率,又能降低系统复杂性和成本。下载提取码:r7nj【德】A.VIEHMANN等【翻译】范明强【编辑】伍赛特本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。