1. 大学物理实验报告怎么写 (半导体热敏电阻的温度特性)
摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性
1、引言
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三 实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。
5、内热效应的影响
在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。
6、实验小结
通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。
参考文献:
[1] 竺江峰,芦立娟,鲁晓东。 大学物理实验[M]
[2] 杨述武,杨介信,陈国英。普通物理实验(二、电磁学部分)[M] 北京:高等教育出版社
[3] 《大学物理实验》编写组。 大学物理实验[M] 厦门:厦门大学出版社
[4] 陆申龙,曹正东。 热敏电阻的电阻温度特性实验教与学[J]<
2. 求大学物理实验预习报告~测热敏电阻的温度特性
摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性
1、引言
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三 实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。
5、内热效应的影响
在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。
6、实验小结
通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。
3. 非平衡电桥测电阻
直流电桥测量准确,灵敏度高,具有重要的应用价值。按使用的方式可分为平衡电桥和非平衡电桥。
平衡电桥是通过平衡调节,把待测电阻与标准电阻进行比较直接得到待测电阻值。如惠斯顿电桥。然平衡电桥只能用于测量具有相对稳定状态的物理量。但实际工程上和科学实验中,物理量往往是连续变化的,这些量只能采用非平衡电桥才能测量。它直接测量电桥输出的电压与电流的变化,通过必要的运算处理最终得到电阻值。若在电桥后连接计算机,对电桥输出进行采样处理即可迅速得到实验的数据与结果。
非平衡电桥原理如图1所示:
在
B、D之间接一
负载电阻Rg,只要测
量电桥输出Vg、Ig,
即可得到RX值。
.............................
1、实验开始前,所有导线,特别是加热炉
与温控仪之间的信号输入线应连接可靠。
2、传热铜块与传感器组件,出厂时,已由
生产厂家调节好,不能随意拆卸。
3、温控仪机箱后部的熔丝管应选用11.5A.
4、实验完毕后,应切断电源。
4. 求图中电容的充放电时间充满电后电容两端电压约为9.59v 放电电阻为R9求充放电时间 谢
摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性
1、引言
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -
5. 求物理论文(热敏电阻器温度特性测量)
摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性
1、引言
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三 实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。
5、内热效应的影响
在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。
6、实验小结
通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。
6. 大学物理实验温度传感器的特性研究bn大概是多少
实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
7. 非平衡电桥用途
电桥的的基本原理是通过桥式电路来测量电阻,从而得到引起电阻变化的其它物理量,如温度、压力、形变等,桥式电路在检测技术、传感器技术中的应用非常广泛。根据电桥工作时是否平衡来区分,可将电桥分为平衡电桥与非平衡电桥两种。平衡电桥一般用于测量具有相对稳定状态的物理量,非平衡电桥往往和一些传感器元件配合使用.某些传感器元件受外界环境(压力、温度、光强等)变化引起其内阻的变化,通过非平衡电桥可将阻值转化为电压输出,从而达到观察、测量和控制环境变化的目的。非平衡电桥在传感技术中已得到广泛应用,非平衡电桥电路是传感技术中的重要组成部分。
【实验目的】
1.了解与掌握非平衡电桥的工作原理,研究非平衡电桥的电压输出特性。
2.掌握与学习用非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法。 3.初步学习非平衡电桥的设计方法,根据不同被测对象灵活选择不同的桥路形式进行测量。
【实验仪器】
FQJ型非平衡直流电桥、升温加热炉与温度控制器、待测电阻。
【实验原理】
1.非平衡电桥的工作原理
非平衡电桥的原理图如图5.7.1所示,当调节R1、R2和R3,使桥的B、D两端电势相等,这时电桥达到平衡。如果将平衡电桥中的待测电阻换成电阻型传感器,当外界条件(如温度、压力、形变等)改变时,传感器阻值会有相应变化,B、这时电桥处于非平衡状态。D两端电势不再相等,
假设B、D之间有一负载电阻Rg,其输出电压
S
A
g
图5.7.1 非平衡电桥
Ug。如果使R1、R2和R3保持不变,那么Rx变化
时Ug也会发生变化。根据Rx与Ug的函数关系,通过检测桥路的非平衡电压Ug,能反映出桥臂电阻Rx的微小变化,测量外界物理量的变化,这就是非平衡电桥工作的基本原理。
当桥臂电阻取不同的值时,电桥可以分为三类:
(1)等臂电桥:R1=R2=R3=Rx=R
(2)输出对称电桥,也称卧式电桥:R1=Rx=R,R2=R3=R',且R≠R'。 (3)电源对称电桥,也称立式电桥:R3=Rx=R,R1=R2=R',且R≠R'。 当负载电阻Rg→∞,即电桥输出处于开路状态时,Ig=0,仅有电压输出并用U0表示,若后面接数字电压或高输入阻抗放大器时即属于此种情况。
根据分压原理,设ABC半桥的电压降为Us,输出电压为U0:
U0=UBC-UDC=
RxR3R2Rx-R1R3
Us-Us=Us (5.7.1)
R1+RxR2+R3R1+RxR2+R3
当满足条件R1R3=R2Rx,电桥输出U0=0,即电桥处于平衡状态,这称为电桥平衡条件。为了测量的准确性,在测量的起始点,电桥必须调到平衡,这称为预调平衡。这样调节可以使电桥的输出只与某一臂的电阻变化有关。
若R1、R2、R3固定,设Rx为温度的函数Rt=R(t)=Rx,则当温度从t0→t0+∆t时,
Rx→R0+∆Rx,因电桥不平衡而产生的电压输出为:
U0(t)=
R2∆Rx
⋅Us (5.7.2)
R1+R0+∆RxR2+R3设电桥的比率R1R2=K,待测桥臂的相对变化为δ=∆RxR0,则式(5.7.2)表示为
U0(t)=
Kδ
Us (5.23.3)
1+K+δ1+K由式(5.7.3)可知,当待测桥臂的相对变化很小,即δ
U0=
Kδ
1+K2
Us (5.7.4)
2. 非平衡电桥的工作特性
(1) 非平衡电桥的电压输出灵敏度
定义Su=∆U∆Rx为电桥的输出电压灵敏度,则
Su=
K
1+K+δ2
Us (5.7.5)
从式(5.7.5)可知,电桥的输出灵敏度由选择的电桥比率K、待测桥臂的相对变化量δ及电源电压Us来决定。当电源电压不变时,输出电压灵敏度Su将随δ和K的变化而改变。在平衡态附近,即δ→0时,输出电压灵敏度称为零点灵敏度S0
S0=
K
1+K2
Us (5.7.6)
当K=1时,电桥的输出电压灵敏度最大,为
Smax=
(2) 非平衡电桥的非线性误差
8. 大学物理实验报告。关于用电量热器测液体比热容的。
热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。因此,热敏电阻一般可以分为:
Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件
常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件
常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理
【实验装置】
FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
·物理实验报告 ·化学实验报告 ·生物实验报告 ·实验报告格式 ·实验报告模板
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三 实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。
5、内热效应的影响
在实验过程中,由于利用非平衡电桥测量热敏电阻时总有一定的工作电流通过,热敏电阻的电阻值大,体积小,热容量小,因此焦耳热将迅速使热敏电阻产生稳定的高于外界温度的附加内热温升,这就是所谓的内热效应。在准确测量热敏电阻的温度特性时,必须考虑内热效应的影响。本实验不作进一步的研究和探讨。
6、实验小结
通过实验,我们很明显的可以发现热敏电阻的阻值对温度的变化是非常敏感的,而且随着温度上升,其电阻值呈指数关系下降。因而可以利用电阻—温度特性制成各类传感器,可使微小的温度变化转变为电阻的变化形成大的信号输出,特别适于高精度测量。又由于元件的体积小,形状和封装材料选择性广,特别适于高温、高湿、振动及热冲击等环境下作温湿度传感器,可应用与各种生产作业,开发潜力非常大。
9. 怎么利用电桥平衡条件测未知电阻
直流电桥测量准确,灵敏度高,具有重要的应用价值。按使用的方式可分为平衡电桥和非平衡电桥。
平衡电桥是通过平衡调节,把待测电阻与标准电阻进行比较直接得到待测电阻值。如惠斯顿电桥。然平衡电桥只能用于测量具有相对稳定状态的物理量。但实际工程上和科学实验中,物理量往往是连续变化的,这些量只能采用非平衡电桥才能测量。它直接测量电桥输出的电压与电流的变化,通过必要的运算处理最终得到电阻值。若在电桥后连接计算机,对电桥输出进行采样处理即可迅速得到实验的数据与结果。
非平衡电桥原理如图1所示:
在
b、d之间接一
负载电阻rg,只要测
量电桥输出vg、ig,
即可得到rx值。
.............................
1、实验开始前,所有导线,特别是加热炉
与温控仪之间的信号输入线应连接可靠。
2、传热铜块与传感器组件,出厂时,已由
生产厂家调节好,不能随意拆卸。
3、温控仪机箱后部的熔丝管应选用11.5a.
4、实验完毕后,应切断电源。
10. 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系 要公式
根据半导体理论,一般半导体材料的电阻率 和绝对温度 之间的关系为
(1—1)
式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因而热敏电阻的电阻值 可以根据电阻定律写为
(1—2)
式中 为两电极间距离, 为热敏电阻的横截面, 。
对某一特定电阻而言, 与b均为常数,用实验方法可以测定。为了便于数据处理,将上式两边取对数,则有
(1—3)
上式表明 与 呈线性关系,在实验中只要测得各个温度 以及对应的电阻 的值,
以 为横坐标, 为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数 下式给出
(1—4)
从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻 在不同温度时的电阻值,可由非平衡直流电桥测得。非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻 ,只要测出 ,就可以得到 值。
当负载电阻 → ,即电桥输出处于开
路状态时, =0,仅有电压输出,用 表示,当 时,电桥输出 =0,即电桥处于平衡状态。为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = RX,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:
(1—5)
在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥 , ,且 ,则
(1—6)
式中R和 均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究
根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和 的值,以确保电压输出不会溢出(本实验 =1000.0Ω, =4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性
温度℃ 25 30 35 40 45 50 55 60 65
电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据
i 1 2 3 4 5 6 7 8 9 10
温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根据表二所得的数据作出 ~ 图,如右图所示。运用最小二乘法计算所得的线性方程为 ,即MF51型半导体热敏电阻(2.7kΩ)的电阻~温度特性的数学表达式为 。
4、实验结果误差
通过实验所得的MF51型半导体热敏电阻的电阻—温度特性的数学表达式为 。根据所得表达式计算出热敏电阻的电阻~温度特性的测量值,与表一所给出的参考值有较好的一致性,如下表所示:
表三 实验结果比较
温度℃ 25 30 35 40 45 50 55 60 65
参考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
测量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相对误差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
从上述结果来看,基本在实验误差范围之内。但我们可以清楚的发现,随着温度的升高,电阻值变小,但是相对误差却在变大,这主要是由内热效应而引起的。