Ⅰ 离子交换树脂的分离原理
原理是这两种物质在树脂上的吸附能力不一样,在洗脱剂的作用下,移动的速度也不一样。乳糖醛酸可以电离成阴离子,与树脂上的阳离子有较强的作用,而葡萄糖是中性的,作用较弱。
Ⅱ 树脂组合产品如何把它分开
摘要 :将混有阳树脂的阴树脂倒入缸内进行搅拌、待静止后,阴、阳树脂自然分离
Ⅲ 分离纯化树脂分离原理是什么
一般常规树脂分为离子交换树脂和吸附树脂,离子交换树脂一般是通过离子作用力进行交换分离,树脂上官能团带有某电性,需要交换的离子带有相反电性通过离子的交换实现不同离子的分离。吸附树脂一般通过孔道中范德华力、氢键、亲疏水性或极性等作用力实现分离。
产品详情
Ⅳ 目前高速混床树脂分离监控方法都有哪些哪种方法比较好用
常用的混床失效树脂体外分离监控方法有以下四种:光电检测法、色标检测法、电导率检测法、超声波检测法。
光电检测法:仅对树脂层剖面上的一点进行检测,且无法很好地适应外部环境的变化,树脂输送流量有较大变化,树脂使用过程中颜色逐渐发生变化后,就难以准确判断树脂分离输送终点。
色标检测法:受树脂颜色变化的影响较大,检测过程中干扰因素多,不可靠。
电导率检测法:操作复杂、准备时间长,容易操作失败。
超声波检测法:树脂层下降时的层态与理论不同,决定了此方法不可靠,而且探头深入塔内,容易被树脂粘附和损坏。
这4种方法各有利弊,但都受树脂分离输送条件的影响较大,免不了需要运行人员现场观测和干预,这是上述四种方法在火电厂的应用可靠性较差、往往被退出运行的主要原因。
西安热工院有一款新型的智能监控装置——IRIC树脂输送图像识别及智能控制仪。它是西安热工研究院2012年开发完成的新型树脂分离监控装置,融合了国际领先的树脂界面图像识别技术、人工智能及自动化控制等先进技术及热工院的最新科研成果,解决了长期困扰发电厂的凝结水精处理混床树脂程控传输的难题,产品已经在国内多家电厂成功应用。具体可上网查看,链接地址:http://www.tpri.com.cn/news/13/news_536.html
IRIC的性能特点:
(1)解决了阳阴树脂界面不清晰时输送终点的判断问题。克服了目前常用的电导法和光电法等方法在使用过程中失灵的问题,提高了混床出水水质。
(2)实现了树脂输送的远程监测和自动控制。操作人员可以直接观察到树脂分离输送的过程,可以了解到树脂的比例变化、是否成功分层,树脂输送步序是否执行完毕等信息。能够实现自动控制,解决了目前需要人工干预的情况,提高了可靠性,降低了运行人员的工作强度。
(3)保证了混床树脂输送量的准确性。一方面可避免混床树脂体积和配比发生混乱,另一方面可使已经发生混乱的混床树脂体积和配比,在树脂分离输送过程中自行调整到合理水平。
(4)延长了混床的周期运行时间。能够在不改变分离塔结构的情况下,改变阳阴树脂比例,大幅度提高混床的周期运行时间。
(5)安装方便,维护简单。监测装置在分离塔外部用支架安装,不需要打开现有设备。由于分离塔是间断运行的,所以能够在机组运行期间安装。通过调整参考线位置即可调整树脂分离输送终点,维护简单。
Ⅳ 什么是热水浸提法实验室操作.实验装置是什么样的
多糖(polysacharides,PS),又称多聚糖,是由10个以上的单糖通过苷键连接而成的,具有广泛生物活性的天然大分子化合物.它广泛分布于自然界高等植物、藻类、微生物(细菌和真菌)与动物体内.20世纪60年代以来,人们逐渐发现多糖具有复杂的、多方面的生物活性和功能[1]:(1)多糖可作为广谱免疫促进剂,具有免疫调节功能,能治疗风湿病、慢性病毒性肝炎、癌症等免疫系统疾病,甚至能抗AIDS病毒[2].如甘草多糖具有明显的抗病毒和抗肿瘤作用[10],黑木耳多糖、银杏外种皮多糖和芦荟多糖可抗肿瘤和增强人体免疫功能[3-5].(2)多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用.如柴胡多糖具有抗辐射,增强免疫功能等生物学作用[6],麦冬多糖具有降血糖及免疫增强作用[7-8],动物黏多糖具有抗凝血、降血脂等功能[9].(3)多糖能控制细胞分裂和分化,调节细胞的生长与衰老.如爬山虎多糖具有抗病毒和抗衰老作用[10],银杏外种皮粗多糖具有抗衰老、抗过敏、降血脂、止咳祛痰、减肥等功能[11]. 另外,多糖作为药物,其毒性极小,因而多糖的研究已引起人们极大的兴趣. 由于多糖具有的生物活性与其结构紧密相关,而多糖的结构又是相当复杂的,所以在这一领域的研究相对缓慢.但人们在多糖的分离提取与纯化方面已做出了不少工作. 1. 多糖的提取[12] 1.1 热水浸提法: 1.1.1多糖提取条件的优选根据文献报道[13]:影响热水浸提多糖的因素主要有提取时间、提取次数、溶剂体积、浸提温度、pH值、醇析浓度和植物颗粒大小等.在试验前对上述多种因素利用正交实验法做出优选,才能选出最佳提取方案. 1.1.2其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪.原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M氢氧化钠作为提取溶剂)提取多糖.温度控制在90-100℃,搅拌4-6小时,反复提取2-3次.得到的多糖提取液大多较粘稠,可进行吸滤.也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和).然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀.然后依次用乙醇、丙酮和乙醚洗涤.将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥).干燥后可得粉末状的粗多糖. 1.2 微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中[14]. 由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率.而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清[15]. 聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(28.46%). 1.3 超声辅助法:其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]. 超声波辅助法与常规提取法相比,具有提取时间短、产率高、无需加热等优点[17]. 1.4 索氏提取法:将植物粉末置于索氏提取器中,加入石油醚,60℃-90℃条件下提取至无色(一般为6小时).过滤,滤渣挥发干燥完溶媒后加入80%乙醇,再提取6小时,过滤,滤渣乙醇挥发干燥后加蒸馏水.回流提取2次,趁热过滤,滤液减压浓缩,再除蛋白,醇沉,除色素.60℃干燥,称重. 1.5 醇提法:先后将90%和50%乙醇加入植物粉末中,振荡充分再抽滤.滤液中加入足量无水乙醇,至于4℃冰箱中过夜.减压抽滤,再除去色素,得多糖粗品,在60℃通风干燥箱中干燥,再置干燥皿中恒重保存. 醇提法方法简单,易于操作,但提取率较低,乙醇使用量大,不宜大规模提取使用. 1.6 其它方法:多糖的提取方法还有稀碱液浸提法、稀酸液浸提法、酶法等.但由于稀酸、稀碱条件下,易使多糖发生糖苷键的断裂,部分多糖发生水解而使多糖的提取率减少,因而很多试验中避免采用稀碱液浸提法和稀酸液浸提法. 2. 多糖的纯化 2.1 多糖中杂质除去方法 粗多糖中往往混杂着蛋白质、色素、低聚糖等杂质,必须分别除去. 2.1.1 除蛋白质采用醇沉或其它溶剂沉淀所获得的多糖,常混有较多的蛋白质,脱去蛋白质的方法有多种:如选择能使蛋白质沉淀而不使多糖沉淀的酚、三氯甲烷、鞣质等试剂来处理,但用酸性试剂宜短,温度宜低,以免多糖降解.常用的方法有[19]: 2.1.1.1 沙维积法(Sevag法)[20]:根据蛋白质在氯仿等有机溶剂变性而不溶与水的特点,将多糖水溶液、氯仿、戊醇(或正丁醇)之比调为25:5:1或25:4:1,混合物剧烈振摇20到30分钟,蛋白质与氯仿-戊醇(或正丁醇)生成凝胶物而分离,然后离心,分去水层和溶剂层交界处的变性蛋白质.此种方法较温和,在避免降解上有较好效果,但效率不高,如五味子多糖的提取实验中要重复处理达三十几次.并且每次除去蛋白质变性胶状物时,不可避免的溶有少量多糖,另外少量多糖与蛋白质结合的蛋白聚糖和糖蛋白,在处理时会沉淀下来,造成多糖的损失.如能配合加入一些蛋白质水解酶,再用Sevage法效果更佳. 2.1.1.2 三氟三氯乙烷法[21]:多糖溶液与三氟三氯乙烷等体积混合,低温下搅拌10min左右,离心得上面水层,水层继续用上述方法处理几次,即得无蛋白质的多糖溶液,此法效率高,但溶剂沸点较低,易挥发,不宜大量应用. 2.1.1.3 三氯醋酸法:在多糖水溶液中滴加5%-30%三氯醋酸,直至溶液不再继续混浊为止,在5-10℃放置过夜,离心除去沉淀即得无蛋白质的多糖溶液.此法会引起某些多糖的降解. Sevag法、三氟三氯乙烷法和三氯醋酸法三种方法均不适合糖肽,因糖肽也会像蛋白质那样沉淀出来.对于对碱稳定的糖蛋白,在硼氢化钾存在下,用稀碱温和处理,可以把这种结合蛋白质分开[1]. 2.1.1.4 酶解法[22]:在样品溶液中加入蛋白质水解酶,如胃蛋白酶、胰蛋白酶、木瓜蛋白酶、链霉蛋白酶等,使样品中的蛋白质降解.通常将其与Sevag法综合使用除蛋白质效果较好. 2.1.1.5 盐酸法[23]:取样品浓缩液,用2mol/L盐酸调节其PH至3,放置过夜,在3000r/min条件下离心,弃去沉淀,即脱去蛋白质. 另有李知敏[23]和叶将瑜[25]等人分别在植物多糖实验中证明:盐酸法、三氯乙酸法及Sevag法脱蛋白率分别为72.5%、46.1%和42.3%,多糖的损失率分别为15.1%、6.1%和14.3%.盐酸法脱蛋白率高,但多糖的损失率也较高;三氯乙酸法较温和,但除蛋白效率不高;Sevag法的脱蛋白效果不及前两种. 2.1.1.6 其它方法:可以加入5%ZnSO4溶液和饱和Ba(OH)2溶液,振荡后离心去蛋白.此法除蛋白不够彻底,可结合Sevag法使用.还可在提取液中加入50%的TCA溶液至沉淀完全,在4000r/min的条件下离心10min,收集上清液,即为除蛋白液.还有人使用4:1的氯仿-乙醇溶液除蛋白,将混合液清摇,再静置,取上清液.此过程需重复多次方可除尽蛋白. 除去蛋白质的样品用紫外分光光度计检验,观察在280mm处是否有吸收,如果无吸收则表明蛋白质已经除尽[24]. 2.1.2 除色素 2.1.2.1活性炭(activated carbon)除色素[12]:活性炭属于非极性吸附剂,有着较强的吸附能力,特别适合于水溶性物质的分离.它的来源充足,价格便宜,上柱量大,适用于大量制备性分离.目前用于色谱分离的活性炭主要分为粉末状活性炭、颗粒状活性炭、锦纶活性炭三种.一般情况下,尽量避免用活性炭处理,因为活性炭会吸附多糖,造成多糖的损失. 2.1.2.2对于植物来源的多糖,可能含有酚型化合物而颜色较深,这类色素大多呈负性离子,不能用活性炭吸收剂脱色,可用弱碱性树脂DEAE纤维素或DuoliteA-7来吸附色素. 2.1.2.3若糖和色素时结合的,易被DEAE纤维素吸附,不能被水洗脱,这类色素可进行氧化脱色:以浓氨水或NaOH液调至PH8.0左右,50℃以下滴加H2O2至浅黄色,保温2小时. 2.1.2.4 依次用丙酮、无水乙醚和无水乙醇洗涤多糖,即可得到较为纯净的多糖.此法较为简单,便于操作,多糖损失也较小. 2.1.2.5 用4:1的氯仿-正丁醇除色素.操作简单,多糖有一定损失. 2.1.2.6发酵来源的多糖颜色一般较浅,色素含量较少,一般可不除色素. 2.1.2.7对于动物,微生物等提取得到的多糖也可根据不同情况按上述方法处理. 2.1.3 除低聚糖等小分子杂质 2.1.3.1采用逆向流水透析法.即准备好一桶蒸馏水,用一根导管将水通入透析袋的烧杯底部,另用一根导管将水引出,根据水量控制流速,使水缓慢流动48小时.这样得到的就是多糖的半精品. 2.1.3.2利用溶液浓度扩散效应,将分子量小的物质如无机盐、低聚糖等从透析袋渗透到袋外的蒸馏水中,不断换水即可保持浓度差,从而除尽小分子杂质.具体的做法是根据多糖溶液的体积截取相应长度的透析袋,用透析夹夹住一端,灌入多糖液,离液面2-3cm处夹紧透析袋,置于一大烧杯中,注入蒸馏水至完全浸没透析袋后,用磁力搅拌器慢速搅拌,每12小时换一次水,重复3-4次. 2.2 多糖的纯化方法 纯化是将多糖混合物分离为单一多糖的过程,纯化的方法主要有以下几种: 2.2.1 分部沉淀法 根据各种多糖在不同浓度的低级醇或丙酮中具有不同溶解度的性质,逐次按比例由小到大加入甲醇或乙醇或丙酮,收集不同浓度下析出的沉淀,经反复溶解与沉淀后,直到测得的物理常数恒定(最常用的是比旋光度测定或电泳检查).这种方法适合于分离各种溶解度相差较大的多糖.为了多糖的稳定,常在pH7进行,唯酸性多糖在pH7时-COOH是以-COO` 离子形式存在的,需在pH2-4进行分离,为了防止苷键水解,操作宜迅速.此外也可将多糖制成各种衍生物如甲醚化物、乙酰化物等,然后将多糖衍生物溶于醇中,最后加入乙醚等极性更小的溶剂进行分级沉淀分离. 2.2.2 盐析法 在天然产物的水提液中,加入无机盐,使其达到一定浓度或饱和,促使有效成分在水中溶解度降低沉淀析出,与其它水溶性较大的杂质分离.常做盐析的无机盐的有氯化钠、硫酸钠、硫酸镁、硫酸铵等. 2.2.3 季铵盐沉淀法 季铵盐及其氢氧化物是一类乳化剂,可与酸性糖形成不溶性沉淀,常用于酸性多糖的分离.通常季胺盐及其氢氧化物并不与中性多糖产生沉淀,但当溶液的PH增高或加入硼砂缓冲液使糖的酸度增高时,也会与中性多糖形成沉淀.常用的季铵盐有十六烷基三甲胺的溴化物(CTAB)及其氢氧化物(cetyl trimethyl ammonium hydroxide,CTA-OH)和十六烷基吡啶(cetylpyridinm hydroride,CP-OH).CTAB或CP-OH的浓度一般为1%-10%(W/V)的多糖溶液中,酸性多糖可从中性多糖中沉淀出来,所以控制季铵盐的浓度也能分离各种不同的酸性多糖.值得注意的是酸性多糖混合物溶液的PH要小于9,而且不能有硼砂存在,否则中性多糖将会被沉淀出来. 2.2.4 柱层析:包括纤维素柱层析、纤维素阴离子交换柱层析、凝胶柱层析、亲和层析、高压液相层析和其它柱层析.如用活性炭及硅胶做载体的柱层来分离多糖;或用硼砂型的离子交换树脂分离中性多糖. 纤维素柱层析 纤维素柱层析对多糖的分离既有吸附色谱的性质,又具有分配色谱的性质,所用的洗脱剂是水和不同浓度乙醇的水溶液,流出柱的先后顺序通常是水溶性大的先出柱,水溶性差的最后出柱,与分级沉淀法正好相反. 纤维素阴离子交换柱层析 最常见的交换剂为DEAE-纤维素(硼酸型或碱型),洗脱剂可用不同浓度的碱溶液、硼砂溶液、盐溶液等.此方法目前最为常用.它一方面可纯化多糖,另一方面还适于分离各种酸性多糖、中性多糖和粘多糖. 凝胶柱层析 凝胶柱层析可将多糖按分子大小和形状不同分离开来,常用的凝胶有葡聚糖凝胶(sephadex G)、琼脂糖凝胶(sepharose bio-gel A)、聚丙烯酰胺凝胶(bio-gel P)等,常用的洗脱剂是各种浓度的盐溶液及缓冲液,但它们的离子强度最好不低于0.02.出柱的顺序是大分子的先出柱,小分子的后出柱.由于糖分子与凝胶间的相互作用,洗脱液的体积与蛋白质的分离有很大的差别.在多糖分离时,通常是用孔隙小的凝胶如sephadex G-25、G-50等先脱去多糖中的无机盐及小分子化合物,然后再用孔隙大的凝胶sephadex G-200等进行分离.凝胶柱层析法不适合于粘多糖的分离. 亲和层析 用凝聚素(一般是蛋白质和糖蛋白)做亲和色谱来分离多糖. 高压液相层析 2.2.5 制备性区域电泳 分子大小、形状及所负电荷不同的多糖其在电场的作用下迁移速率是不同的,故可用电泳的方法将不同的多糖分开,电泳常用的载体是玻璃粉.具体操作是用水将玻璃粉拌成胶状、柱状,用电泳缓冲液(如0.05mol/L硼砂水溶液,PH9.3)平衡3天,将多糖加于柱上端,接通电源,上端为正极(多糖的电泳方向是向负极的),下端为负极,其单位厘米的电压为1.2-2V,电流30-35MA,电泳时间为5-12小时.电泳完毕后将玻璃粉载体推出柱外,分割后分别洗脱、检测.该方法分离效果较好,但只适合于实验室小规模使用,且电泳柱中必须有冷却夹层. 2.2.6 金属络合物法 常用的络合剂有费林溶液、氯化铜、氢氧化钡和醋酸铅等. 2.2.7 其它方法:纯化除采用上述方法外,还有超过滤法(多糖溶液通过各种已知的超过滤膜就能达到分离)、活性炭柱色谱.另据报道,国外多采用的LKB柱色谱系统,用比旋度、示差折射及紫外检测多糖,各组分的峰位自动记录,分离效果好且方便. 2.3 多糖纯度的鉴定 2.3.1超离心法 由于微粒在离心力场中移动的速度与微粒的密度、大小和形状有关,故当将多糖溶液进行密度梯度超离心时,如果是组分均一的多糖,则应呈现单峰.具体的做法是将多糖样品用0.1molNaCl或0.1molTris盐缓冲溶液配制成1%-5%的溶液,然后进行密度超离心,待转速达到恒定后(通常是60000r/min),采用间隔照明的方法检测其是否为单峰. 2.3.2高压电泳法 由于中性多糖导电性差、分子量大、在电场中的移动速度慢,故常将其制成硼酸络合物进行高压电泳.多糖的组成不同、分子量不同,其与硼酸形成的络合物就不同,在电场作用下的相对迁移率也会不同,故可用高压电泳的方法测定多糖的纯度.通常高压电泳所用的支持体是玻璃纤维纸、纯丝绸布、聚丙酰铵凝胶、纤维素醋酸酯薄膜等.缓冲液是PH9.3-12的0.03-0.1mol的硼砂溶液,电压强度约为30-50V/cm,时间是30-120min.由于电泳时会产生大量的热,所以要有冷却系统,将温度维持在0℃左右,否则会烧掉支持体.一般单糖、低聚糖因醛基而发生的颜色反应在多糖上不明显,电泳后常用的显色剂是p-茴香胺硫酸溶液(p-anisidine)和过碘酸希夫试剂等. 2.3.3凝胶柱层析 常用的凝胶是Sephadex、Sepharose、Sephacryl,展开剂为0.02-0.2molNaCl溶液或0.04mol吡啶与0.02醋酸1:1的缓冲溶液,柱高和柱直径之比大于40. 2.3.4旋光测定法 在多糖水溶液中加入乙醇使其浓度为10%左右,离心得沉淀.上清液再加入乙醇使其浓度为20%-25%,离心所得二次沉淀,比较二次沉淀的比旋度.如果比旋度相同则为纯品,否则为混合物. 2.3.5其它方法:官能团摩尔比恒定法,即如为纯品两次分离所得产物的官能团如-COOH、-NH2、-SO3H、-CHO等摩尔比应该恒定.类似的方法还有示查折射法、HPLC法等.此外德国常用高压液相法来检测多糖纯度,结果可靠. 必须注意的是:纯度检查一般要求有上述两种方法以上的结果才能肯定.
Ⅵ 水溶性酚醛树脂胶制备实验装置
四口瓶、搅拌、控温装置、冷凝器、真空装置等
Ⅶ 如何将混合的阴阳离子交换树脂分开
在生产上,阴、阳离子交换树脂会不可避免的造成混合,例如布水装置泄漏,树脂捕捉器坏,阳离子交换树脂会进入阴床造成阴、阳树脂混合。若混合后会致使阴床产水水质差,周期制水量减少,或在存放时误装等。
漂莱特阴阳离子交换树脂分离方法有下几种(1)在容器内,底部进水,上部排水,底流量,利用阴、阳树脂的密度差进行分离。
(2)用10%的NaOH溶液。将混有阳树脂的阴树脂倒入缸内进行搅拌、待静止后,阴、阳树脂自然分离。少量树脂可以用这种方法,生产上大量树脂一般不用,主要考虑人身安全。
W③用浓度为25%以上的食盐水分离。用两只以上的大缸,注入1/2的除盐水,加入NaCL,浓度超过25%,然后将树脂倒入后搅拌,待静止后将上部阴树脂用网捞出装入袋内,阳树脂下沉。
Ⅷ 离子交换树脂法的应用有哪些
离子交换树脂法的应用有哪些
用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述.
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式.然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中.注意防止气泡进入树脂层.
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换.交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等.
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程.选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱.
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液.对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性.
离子交换技术在富集和分离微量或痕量元素方面应用很广.例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离.锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来
Ⅸ 怎样用离子交换树脂进行分离操作
用百分之3的酸HCL泡阳树脂3-4个小时,用百分之4的碱NaOH泡阴树脂3-4个小时。用软水洗,洗到PH为7左右,反复三次,树脂就可以混合在一起做水用了。
Ⅹ 求问怎么用离子交换树脂层析分离混合氨基酸
【原理】离子交换树脂是一种合成的高聚物,不溶于水,能吸水膨胀。高聚物分子由能电离的极性基团及非极性的树脂组成。极性基团上的离子能与溶液中的离子起交换作用,而非极性的树脂本身物性不变。通常离子交换树脂按所带的基团分为强酸(=R=S03H)、弱(=COOH)、强碱 (=N+=R:)和弱碱(=NH2=NHR=NR2)。
离子交换树脂分离小分子物质如氨基酸、腺苷、腺苷酸等是比较理想的。但对生物大于物质如蛋白质是不适当的,因为它们不能扩散到树脂的链状结构中。故如分离生物大子、可选用以多糖聚合物如纤维素、葡聚糖为载体的离子交换剂。
本实验用磺酸阳离子交换树脂分离酸性氨基酸(天冬氨酸)、中性氨基酸(丙氨酸)碱性氨基酸(赖氨酸)的混合液。在特定的pH条件下,它们解离程度不同,通过改变脱液的pH或离子强度可分别洗脱分离。
【材料】1.实验器材层析柱(1.6X20cm);恒流泵;梯度混合器;试管及试管架;紫外分光光度计、磺酸阳离子交换树脂(Dowex 50)
2.实验试剂
(1)2mol/L HCl
(2)2mol/L NaOH
(3)0.1mOl/L HCl
(4) 0.1mol/L NaOH
(5)pH4.2的柠檬酸缓冲液:0.lmol/L柠檬酸54m1加0.1mol/L柠檬酸钠46ml
(6)pH5的醋酸缓冲液:0.2mol/L NaAc 70ml加 0.2mol/L HAc 30ml
(7)0.2%中性茚三酮溶液:0.2g茚三酮加100ml丙酮
(8)氨基酸混合液:丙氨酸、天冬氨酸、赖氨酸各10m1加0.1mol/L HCl 3m【方法】
1. 树脂的处理
100ml烧杯中置约10g树脂,加25ml 12mo1/L HCl搅拌2h,倾弃酸液,用蒸馏水充洗涤树脂至中性。加25ml 12mol/L NaOH至上述树脂中搅拌2h,倾弃碱液,用蒸馏水洗涤至中性。将树脂悬浮于50ml pH4.2柠檬酸缓冲液中备用。
2. 装柱取直径0.8cm~1.2cm、长度 10cm~12cm的层析柱,底部垫玻璃棉或海绵圆垫,自顶部注入经处理的上述树脂悬浮液,关闭层柱出口,待树脂沉降后,放出过量的溶液,在加入一些树脂,至树脂沉积至8cm~10cm高度即可。于柱子顶部继续加入pH4.2柠檬酸缓冲液洗涤,使流出液pH为4.2为止,关闭柱子出口,保持液面高出树脂表面1cm左右。
3. 加样、洗脱及洗脱液收集
打开山口使缓冲液流出,待液面几乎平齐树脂表面时关闭出口(不可使树脂表面干燥)。用长滴管将15滴氨基酸混合液仔细直接加到树脂顶部,打开出口使其缓慢流入柱内。当液面刚平树脂表面时,加入0.1mol/L HCl 3ml,以10滴/min~12滴/min的流速洗脱,收集洗脱液,每管20滴,逐管收存。当HCl液面刚平树脂表面时,用1m1 pH4.2柠檬酸缓冲液冲洗柱壁一次,接着用2ml pH4.2柠檬酸缓冲液洗脱,保持流速10滴/min~12滴/min并注意勿使树脂表面干燥。
在收集洗脱液的过程中,逐管用茚三酮检验氨基酸的洗脱情况,方法是:于各管洗脱液中加10滴pH5醋酸缓冲液和10滴中性茚三酮溶液,沸水浴中煮10min,如溶液呈紫蓝色,表示已有氨基酸洗脱下来。显色的深度可代表洗脱的氨基酸浓度,可比色测。
在用pH4.2柠檬酸缓冲液把第二个氨基酸洗脱出来之后,再收集两管茚三酮反应阴性部分,关闭层析柱出口,将树脂顶部剩余的pH4.2柠檬酸缓冲液移去。
于树脂顶部加入2ml 0.1mo1/L NaOH,打开出口使其缓慢流入柱内,按上面I续用0.1mo1/L NaOH洗脱并逐管收集 (注意仍然保持流速10滴/min~12滴/min),每管20滴。做洗脱液中氨基酸检验,在第三个氨基酸用0.1mo1/L NaOH洗脱下来以后,再继续收集两管茚三酮反应阴性部分。
最后以洗脱液管号为横坐标,洗脱液各管光密度(以水作空白,在570nm波长读取吸光度)或颜色深浅(以 -,±,+,++...表示)为纵坐标作图,即可画出一条洗脱曲线。
【注意事项】
1. 一直保持流速10滴/min~12滴/min,并注意勿使树脂表面干燥。
2. 在装柱时必须防止气泡、分层及柱子液面在树脂表面以下等现象发生。