❶ 传热实验装置,换热器水平放置有什么优点
可以依靠重力多次进行换热,要是竖直放置则只能依靠重力进行一次
❷ 科学家是怎样测出电子电荷量的
密里根油滴实验 电子电荷是一个重要的基本物理量,对它的准确测定有很大的意义。1883年由法拉第电解定律发现了电荷的不连续结构;1897年J J 汤姆逊通过对阴极射线的研究,测量了电子的荷质比,从实验上发现了电子的存在;而用个别粒子所带的电荷的方法来直接证明电荷的分立性,以及首先准确测定电子电荷的数值,则是由密立根(Milton)在1911年完成的。本实验就利用密立根油滴实验仪验证电荷的不连续性,并求出电子所带的电量。从实验结果可以看出,任何油滴从空气中捕获的电荷都是最小电荷的整数倍。 密立根油滴实验历来是一个著名而有启发性的实验,它设计巧妙,结果准确。在实验中,认真选择油滴,耐心跟踪和测量,培养一丝不苟的科学实验态度。 实验中要学会选择合适的油滴,并且熟练控制油滴以进行多次测量。计算每个油滴的带电量,这里采用倒过来验证的方法,即用公认的电子电量值去除每个油滴的电量,并取一最接近的整数,用这个整数除油滴的电量,得到电子电荷的测量值。 该实验是一个近代物理实验,难度系数:1.00,适合自动化、电子信息工程、电气工程及其自动化、机械设计制造及其自动化、过程装备与控制工程、材料成型及控制工程、资源勘查工程、勘查技术与工程、船舶与海洋工程等专业以及对近代物理理论和实验感兴趣的同学选做。 实验内容 1、正确选择和控制油滴。一般选择平衡电压在200V以上,匀速下降2mm距离用时间20-30S的油滴。如果油滴过大,下降速度会过快,油滴过小,则布朗运动明显。 2、用平衡法测量油滴匀速下降2mm所用的时间。共选择5颗油滴,每个油滴测量5次。 3、计算每个油滴的带电量,然后计算电子电荷。这里我们采用倒过来验证的方法 ,即用公认的电子电量值去除每个油滴的电量,取一个最接近的整数,再用这个整数除油滴的电量,从而得到电子电荷的测量值。 4、将电子电荷的测量值与理论值进行比较,计算相对百分误差。 仪器简介 密立根油滴仪,包括水平放置的平行极板(油滴盒)、调平装置、照明装置、显微镜、电源、计时器(秒表)、实验用油、喷雾器等。 预习要求 1、通过分析油滴在极板间的受力情况,理解平衡法测量油滴电量公式的推导过程。 2、明白整个实验的大致过程,如选择5个合适的油滴,每个油滴测量多次;计算每个油滴的带电量;求解电子电量。 3、根据要求画出实验数据表格。 问题解答 1、打开仪器电源开关并喷入油雾后,仍看不到油滴,可能的原因有: (1)显微镜调焦不准确性。同学可自己调节。 (2)极板上的小孔被堵塞了。此时应请老师来处理,因为极板上有高压电,折装极板前必须关闭仪器电源! 2、为了证明电荷的不连续性和所有电荷都是基本电荷e的整数倍,并得到基本电荷e值,最有说明力的方法是对实验所测得的各个油滴电量q求最大公约数,这个最大公约数就是基本电荷e,也就是电子电荷。但由于这样处理较繁琐,测量时的误差又可能较大,因而求出最大公约数比较困难。 这是采用的倒过来验证的方法,严格说来只能作为一种实验验证方法。 3、对某一个油滴测量了一次或几次后,监视器屏幕上油滴的象可能会变得不清楚了。这是因为由于空气的影响,油滴上下反复运动几次后,水平方向发生了移动,从而造成显微镜调焦不准了,此 时只要微调显微镜调焦旋钮即可。 思考讨论 1、如何判断油滴是否处在平衡状态? 2、实验中如何选择合适的油滴进行测量? 3、试分析空气浮力对实验结果的影响。 4、在实验过程中,如果未调节器水平螺丝,即极板没有处于水平状态,则对实验结果有什么影响? 5、操作时怎样使油滴在计时开始时已经处于匀速运动状态? 注意事项 1、使用喷雾器往油雾室喷油时,不要连续喷多次,一般喷一下即可。以防堵塞极板上的小孔。 2、正确控制选中的油滴,不要跑出显示器的屏幕。要求每个油滴测量6-10次。 3、实验完毕,记录室温和空气的粘滞系数,数据处理时要用到。
❸ 密立根油滴试验是什么请详细介绍下 装置 原理 结论 地位之类的 谢谢了
密立根油滴实验 mì lì gēn yóu dī shí yàn
密立根油滴实验,美国物理学家密立根所做的测定电子电荷的实验。1907-1913年密立根用在电场和重力场中运动的带电油滴进行实验,发现所有油滴所带的电量均是某一最小电荷的整数倍,该最小电荷值就是电子电荷。
密立根油滴实验的目的
电子电量很小,且获得单个电子也不易,密立根油滴实验通过研究电场中的带点油滴的下落,测定电子的电量。
密立根油滴实验仪
这是一种专为中学设计的仪器。它主要由电源、观察显微镜、油滴室、照明系统等组成。仪器电源在底座内,它将交流220伏输入电压变为直流500伏和交流7伏;观察显微镜带有刻度分划板,便于读出油滴运动的距离,配合计时停表,可测定油滴运动速度,利用齿轮、齿条的调焦,能清晰观察油滴。油滴室内是两块水平放置的平行金属板组成的电容器,电容器上的直流电压在0-500伏内连续可调,平行极板的极性由三挡换向电键转换,电压大小由直流电压表指示,改变电压的大小和方向可以控制油滴在电场中运动的快慢和方向;照明系统采用6-8伏,3瓦灯泡为光源,发热量小,发出的光经聚光镜将平行极板内的油滴照亮,它可绕转臂旋转,便于调节视场照度。
该仪器配有喷雾器、钟表油和水准器等附件。实验中所用停表需另备
密立根油滴实验原理
用喷雾器将油滴喷入电容器两块水平的平行电极板之间时,油滴经喷射后,一般都是带电的。在不加电场的情况下,小油滴受重力作用而降落,当重力与空气的浮力和粘滞阻力平衡时,它便作匀速下降,它们之间的关系是:
mg=F1+B(1)
式中:mg——油滴受的重力,F1——空气的粘滞阻力,B——空气的浮力。
令σ、ρ分别表示油滴和空气的密度;a为油滴的半径;η为空气的粘滞系数;vg为油滴匀速下降速度。因此油滴受的重力为 mg=4/3πa^3δg(注:a^3为a的3次方,一下均是),空气的浮力 mg=4/3πa^3ρg,空气的粘滞阻力f1=6πηaVg (流体力学的斯托克斯定律 ,Vg表示v下角标g)。于是(1)式变为:
4/3πa^3δg=6πηaVg+4/3πa^3ρg
可得出油滴的半径 a=3(ηVg/2g(δ-ρ))^1/2 (2)
当平行电极板间加上电场时,设油滴所带电量为q,它所受到的静电力为qE,E为平行极板间的电场强度,E=U/d,U为两极板间的电势差,d为两板间的距离。适当选择电势差U的大小和方向,使油滴受到电场的作用向上运动,以ve表示上升的速度。当油滴匀速上升时,可得到如下关系式:
F2+mg=qE+B(3)
上式中F2为油滴上升速度为Ve时空气的粘滞阻力:
F2=6πηaVe
由(1)、(3)式得到油滴所带电量q为
q=(F1+F2)/E=6πηad/(Vg+Ve)(4)
(4)式表明,按(2)式求出油滴的半径a后,由测定的油滴不加电场时下降速度vg和加上电场时油滴匀速上升的速度ve,就可以求出所带的电量q。
注意上述公式的推导过程中都是对同一个油滴而言的,因而对同一个油滴,要在实验中测出一组vg、ve的相应数据。
用上述方法对许多不同的油滴进行测量。结果表明,油滴所带的电量总是某一个最小固定值的整数倍,这个最小电荷就是电子所带的电量e。
密立根油滴实验方法
【目的和要求】
学习密立根油滴实验方法,通过对不同油滴所带电量的测量,总结出油滴所带的电量总是某一个最小固定值的整数倍,从而得出存在着基本电荷的结论。通过实验认识电子的存在,认识电荷的不连续性。
【仪器和器材】
密立根油滴实验仪。
【实验方法】
1.将仪器接入220伏交流电源。
2.高压电源调节置于0位置,旋开油滴室盖子,把水准器放置在上极板面上,利用调平螺钉将油滴室内的平行板电容器板面调节水平。调节显微镜目镜,使分划板刻线明显清晰。再把大头针插入上板小孔中,调节光源角度,直到从显微镜中观察大头针周围光场最明亮、范围最大和光强均匀为止,然后拨出大头针拧上盖子准备喷油。由于本步骤要调节电容器极板,谨防极板带电,应由教师调节。
3.用喷雾器将油滴喷入油滴室内,从显微镜中观察油滴运动情况。实验时先找一个合适的油滴(较小的油滴,运动较缓慢,所带电量小于5个基本电量),使它自由落下,然后再加上电场使它向上运动(上升太快或太慢就适当调节电压)。这样在重力和电场力交替作用下,让油滴反复上升、下落若干次,在整个视场内都可以看得很清楚,否则需要重新选择。
4.用停表作记录:记录油滴n次下落一定的距离L(显微镜分划板刻线的距离),所经历的总时间tg总,记录油滴n次上升同一距离L,所经历的总时间tE总(两次记录必须是对同一油滴),用油滴所通过的总距离nL分别除以总时间tg总及tE总就得出vg和vE利用公式(4)算出油滴所带的电量q。
5.按照上述方法选取6-10个不同的油滴进行测量,计算它们各自所带的电量。
6.数据处理:本实验只要求学生进行简单的数字处理和分析。按书后的表格记录数据和计算,该表是用国产油滴仪进行实验所得到的一组数据。
密立根油滴实验注意事项
1.实验完毕即切断电源。
2.本实验重点是实验方法、实验设计思想的学习和训练。特别要强调实验中必须耐心和细心,对实验结果一定要实事求是。
3.注意保护显微镜。所有镜头出厂前均已经过校验,不得自行拆开。镜头上若有灰尘,可用吹气球将灰尘吹去,镜头表面油污可用清洁的软细布沾少量酒精擦拭。
4.实验后用柔软的布将油滴室窗玻璃、机身的油擦拭干净,连同附件装箱放在干燥、通风的地方。
5.由于本仪器要用高压电源,购进仪器后,要检查高压电源部分是否符合安全用电要求。
密立根油滴实验参考资料
实验中的油滴甚为微小,其线度约为微米数量级,可与空气分子的平均自由程相比拟。这样,空气就不能看作是连续的媒质了,所以必须进行修正。经修正应换成
q=6πηad/U(Vg+Ve)/(1+(6.17*10^(-4)/pa)^3/2)
式中油滴的半径虽然也应该予以修正,但由于其修正值很小,在这里我们不予考虑,因此将a代入,P为大气压强(以厘米汞柱为单位)。
关于密立根的油滴实验
1897年汤姆生发现了电子的存在后,人们进行了多次尝试,以精确确定它的性质。汤姆生又测量了这种基本粒子的比荷(荷质比),证实了这个比值是唯一的。许多科学家为测量电子的电荷量进行了大量的实验探索工作。电子电荷的精确数值最早是美国科学家密立根于1917年用实验测得的。密立根在前人工作的基础上,进行基本电荷量e的测量,他作了几千次测量,一个油滴要盯住几个小时,可见其艰苦的程度。
密立根通过油滴实验,精确地测定基本电荷量e的过程,是一个不断发现问题并解决问题的过程。为了实现精确测量,他创造了实验所必须的环境条件,例如油滴室的气压和温度的测量和控制。开始他是用水滴作为电量的载体的,由于水滴的蒸发,不能得到满意的结果,后来改用了挥发性小的油滴。最初,由实验数据通过公式计算出的e值随油滴的减小而增大,面对这一情况,密立根经过分析后认为导致这个谬误的原因在于,实验中选用的油滴很小,对它来说,空气已不能看作连续媒质,斯托克斯定律已不适用,因此他通过分析和实验对斯托克斯定律作了修正,得到了合理的结果。
密立根的实验装置随着技术的进步而得到了不断的改进,但其实验原理至今仍在当代物理科学研究的前沿发挥着作用,例如,科学家用类似的方法确定出基本粒子——夸克的电量。
油滴实验中将微观量测量转化为宏观量测量的巧妙设想和精确构思,以及用比较简单的仪器,测得比较精确而稳定的结果等都是富有启发性的。
❹ 已知二氧化氮的气体的密度比空气的密度大,两个瓶子水平放置
(1)二氧化氮的密度大于空气的密度,如果把二氧化氮气体放到上方的话,由于自身密度大的缘故,二氧化氮分子也会下沉到下方的空气瓶子中去,就不能说明分子在不停地做无规则运动,因此要把密度小的空气瓶子放到上方,把二氧化氮放在下方;
(2)抽掉玻璃板后,可看到两种气体逐渐混合在一起,颜色变得均匀,这是分子运动的结果,是扩散现象;
故答案为:乙;运动.
❺ 如图所示为某同学做“验证力的平行四边形定则”的实验装置,
小于90度平移之后不就超过90度了吗
❻ 如图(甲)所示,研究平抛运动规律的实验装置放置在水平桌面上,利用光电门传感器和碰撞传感器可以测得小
(1)平抛运动水平方向做做匀速运动,x=v 0 t,所以落地点的水平距离d与初速度v 0 成正比,故A正确,B错误; 竖直方向自由落体运动,h=
|