❶ 东营凹陷营透镜状砂岩油藏成藏过程二维数值模拟
解国军1,2金之钧1
(1.中国石化石油勘探开发研究院,北京100083;2.中国石油大学(北京)资源与信息学院,北京102249)
摘要 为了对东营凹陷营11 透镜状砂岩油藏的成藏机理进行深入研究,以掌握该类油藏成藏的主要影响因素,本文利用可压缩多孔介质油水两相渗流的基本原理,对其成藏过程进行了二维数值模拟。模拟过程中考虑了砂体区地层沉积(剥蚀)、地层厚度变化、岩石孔渗条件变化、流体物性的变化、毛管压力、相对渗透率和油气生成等一系列过程和参数。模拟再现了石油在砂体中聚集的过程,模拟的砂体的最终含油饱和度及分布与现实情况基本吻合。通过模拟和分析表明,围岩和砂体的毛管压力差异才是驱动石油在类似营11这样的透镜状砂岩油藏中聚集的根本动力,而这一驱动力是由于围岩和砂体物性上的差异以及油气的生成两种因素结合在一起而形成的。
关键词 透镜状砂岩油藏 成藏过程 数值模拟 两相流动 毛管压力 东营凹陷
Two Dimensional Numerical Simulation of Oil-trapping Process of Ying11 Lentoid Sand Reservoir of Dongying Depression
XIE Guo-jun1,2,JIN Zhi-jun1
(1.Exploration & Proction Research Institute,SINOPEC,Beijing100083;2.Resource and Communication Collage,China University of Petroleum,Beijing102249)
Abstract The oil-trapping process of Ying11 lentoid sand reservoir of Dongying Depression is numerically simulated on two dimension condition based on the theory of two-phase fluid flow in compactable porous media in order to thoroughly study the oil accumulation mechanism and master the dominating influential factors of this kind of reservoirs.The various related processes and parameters considered in the simulating process are sedimentation/denudation,the thickness of strata,the porosity and permeability of rock,the physical properties of fluids,capillary pressure,relative permeability,and oil generation.The oil accumulation process in the reservoir reappears in the simulation,and the oil saturation and distribution accord with the real situation.It is indicated that the fundamental driven force for oil accumulation in lentoid sand reservoir as Ying11 is the difference of the capillary pressures built up between the source rock and reservoir,and the driven force forms from the combination of the difference of the physical properties between source rock and reservoir and the oil generation.
Key words lentoid sand reservoir oil-trapping process numerical simulation two phase fluid flowcapillary pressure Dongying Depression
原生透镜状砂体油藏是一类典型的砂岩岩性油藏,这类油藏一般是由浊积岩砂体被低渗透性泥页岩包围所形成的,砂体内油气来源于周围的源岩,东营凹陷的营11砂体油藏就是这类油藏的典型代表。由于完全被泥岩所包围,因此对于这种油藏形成的油水交替机理在人们看来具有不同于构造或地层油藏的特殊性。关于这类砂体油藏的成藏机理和影响因素,前人有过多种有益的实验研究和理论探索。陈章明等[1]、李丕龙等[2]通过成藏物理模拟试验对原生岩性砂体的成藏过程和影响因素进行了分析。王宁等在岩性油藏成藏过程中考虑了成藏的动力和阻力两种因素[3];庞雄奇等则从“成藏门限”的角度对砂岩透镜体的成藏控制条件进行了分析[4]。李丕龙等提出了“相”、“势”控油理论,对包括透镜状砂体油藏在内的隐蔽油藏的形成机制进行了分析[5]。隋风贵对浊积砂体油气成藏的主控因素进行了定量分析[6]。
然而无论是上述的实验研究还是理论分析,基本上都是从定性或半定量的角度对该类油藏的成藏过程机理进行的讨论,或只是对这类油藏的含油性相关影响因素进行了分析,而没有涉及其成藏机理,因此都无法更详细地了解原生岩性油藏成藏的整个过程及控制机理。由于透镜体油藏的成藏过程是与其围岩紧密相关的,因此,理解砂体的成藏过程必须将砂岩体的演化过程与围岩的演化过程结合起来统一考虑。本文则是从演化的观点,利用定量的方法,综合考虑地层沉降、温压变化、砂体和围岩物性变化、孔隙流体物性变化、石油生成等各种相关过程,模拟处于围岩包围中的营11透镜体油藏成藏的整个过程,并分析其成藏机理和含油性的主要控制因素。通过对该油藏成藏过程的二维数值模拟,可以更深刻地了解这类油藏成藏过程中的油水交替过程及其力学机制,为探讨这类油藏的成藏机理及其影响因素提供了很好的例证。
1 模拟模型的建立
由于营11透镜状砂岩油藏在成藏过程中涉及由于压实作用而导致围岩和砂体的变形以及油水两相流体在其中的流动过程,并且岩石的变形和流体流动是相互影响的,因此这是一个可变形多孔介质两相流动的流固耦合问题。
与二次运移相比,油气从低渗透源岩中的排出(初次运移)一直是比较难以理解的现象。从油气自源岩中排出的相态来看,现在普遍被接受的观点是大多数油气是通过独立相态排出的[7],而油气排出的主要动力则来源于压实及生烃等作用产生的过剩地层压力[7~9]。描述流体在多孔介质中低速流动的通用方法是依据达西定律给出的,虽然对于在低渗透性泥页岩地层中达西定律是否适用还存在疑问,但其作为一种描述孔隙流体流动速度和压力关系的有效手段还是被广泛应用于各种排烃模拟中[10~13]。为了模拟石油从源岩中排出并进入被其所包围的砂岩中聚集这一过程,本次模拟也采用了基于达西定律的油水两相渗流模型。模型中油相和水相的压力差即为毛管压力。
由均匀介质弹性力学的广义胡克定律可以推出其应变和应力之间的关系。但对于地质过程的模拟,地层压实作用不同于弹性力学所描述的微小变形过程,从长时间看是一种非弹性的大变形过程,而对于这一过程的地质描述一般采用一种近似的简化关系,即将这种变形转化为岩石孔隙度与其所受到的垂向有效应力之间的指数关系[13~15]。根据Terzaghi方程,垂向有效应力可用岩石总负载与孔隙流体压力之差来表示[10,16]。
生油泥岩可视为由干酪根、无机杂基和孔隙3个部分组成,其中干酪根与无机杂基构成生油岩的骨架。为了处理问题简单,可将干酪根划分为有效干酪根(具有生油潜力,可全部转化为石油)和无效干酪根(不具有生油潜力)。因此,可将生油岩重新划分为以下3个部分,即有效干酪根、不可压缩骨架(包括无效干酪根和无机杂基)和孔隙。模型假设有效干酪根降解将产生同质量的烃并使泥岩骨架厚度减小。而岩石的厚度变化可根据不可压缩骨架体积不变的原理得到。对于砂岩储层可不考虑有效干酪根降解所导致的骨架厚度的变化。生油岩中烃类是其中包含的干酪根热降解的结果,而干酪根的热降解采用化学反应动力学中的一级反应定律来近似描述[17]。根据一级反应定律,干酪根的转化率与剩余的干酪根量成正比,可表示成多个平行的一级反应。而反应常数是由反应活化能、频率因子和反映温度决定的。设同质量的有效干酪根降解可产生相同质量的石油,因此石油生成的速率也就是干酪根的降解速率。
2 相关参数变化
水和油的密度是温度和压力的函数,可采用指数型状态方程来描述[13]。水和油的黏度是影响水和油渗流的参数,水的黏度一般采用与温度相关的函数[13,18],而本次模拟油的黏度采用了考虑了油的重度和温度的Beggs & Robinson公式[19]。
沉积岩的渗透率对地层流体的流动和异常压力的形成都起着至关重要的作用,一般受沉积岩类型和埋藏深度等因素的影响,其大小有时存在多个数量级上的变化。对于碎屑岩地层,一般情况下渗透率的变化可表示为孔隙度的函数,如Kozeny-Carman方程[10,18]。在本次模拟中采用渗透率与孔隙度为幂函数关系的公式[13,20]。
在包含两相或两相以上非混相流体的渗流系统中需要考虑岩石的毛细管压力特征。由于模拟中处理的基本上是石油生排及聚集的过程,因此只需考虑岩石的驱替毛管压力曲线特征。本次模拟研究采用驱替毛管压力与含水饱和度呈幂律关系的公式[21]:
油气成藏理论与勘探开发技术
式中:Pcb为毛管突破压力;γ为孔隙大小分布指数;Sw为含水饱和度。对应于突破压力的毛管半径可用其与孔隙度和渗透率的经验关系来表示[22]。由Laplace方程可知毛管压力是界面张力、润湿角和毛细管半径的函数。水烃体系界面张力可一般表达为体系温度和油水密度的函数[19]。另外,本次模拟假设岩石完全水湿,可得润湿相接触角为0。因此,将可求得岩石毛管突破压力Pcb。如果要求得驱替毛管压力曲线,还需要确定孔隙大小分布指数。对东营凹陷的28块砂岩样的压汞曲线的拟合分析表明,孔隙大小分布指数基本上是与岩石的孔隙度和绝对渗透率等物性参数无关的参数,本次模拟取其均值0.34。本次成藏模拟对于泥岩也采用相同的突破毛管压力公式和孔隙大小分布指数值。
油和水的相对渗透率采用Brooks-Corey经验关系式表示[13,21,22],其中油和水的相对渗透率与含水饱和度和孔隙大小分布指数有关。
3 营11砂岩油藏成藏过程模拟
3.1 营11砂岩油藏概述
营11砂岩油藏位于东营凹陷的东辛油田西南部,西邻郝家油田,南靠现河庄油田。构造上处于东营凹陷中央隆起带西部,东辛、郝家、现河庄构造断裂带之间的洼陷中央。本次模拟的是营11砂体沙河街组三段中下油藏,探明石油地质储量1248×104t,是东营凹陷迄今为止发现的最大的独立砂体油藏。营11沙河街组三段中下砂体的构造图及模拟剖面线位置见图1。
图1 营11沙河街组三段中下砂体顶面构造图及模拟剖面线位置
3.2 营11砂岩油藏模拟的前期准备
模拟的前期准备工作由剖面网格化、原始沉积剖面恢复、上覆地层沉积过程反演和模拟演化过程参数确定等几部分组成。
3.2.1 剖面网格化
选取的剖面长度以营75井为分界点,向砂体上倾方向延伸5600m,向砂体下倾方向延伸2400m,剖面总长度为8000m。剖面体垂直方向深度从2700m(大致为沙河街组三段上亚段的底界面)至3600m(大致为沙河街组四段上亚段底界面)。从沙河街组三段中亚段向沙河街组三段上亚段,砂岩沉积逐渐占据主导地位,由于砂岩较好的导流性,不易形成显著的异常压力,因此在剖面体顶部位置的压力边界条件以常压来考虑。由沙河街组四段上亚段地层向下膏泥岩居主导地位,因此可以沙河街组四段上亚段地层底界为剖面体的封闭边界。由此可见剖面体长8000m,高900m。在网格划分时既要考虑精度,又要考虑计算工作量的大小,因此,在砂体所对应的长度和高度方向进行网格细化,而在其他地方,尽量将网格粗化以减小计算工作量。
3.2.2 原始沉积剖面恢复
由于剖面显示的是现今的沉积厚度和孔隙度特征,要进行砂体成藏过程的正演模拟,需将剖面恢复到模拟零时刻的状态。本次模拟的零时刻设定为沙河街组三段上亚段沉积期末,因此,需将模拟剖面从顶部的2700m恢复到0 时的剖面状态。恢复是按地层压缩时骨架体积不变的原则进行的。地层孔隙度采用随深度按指数递减规律变化的公式,其中相关参数是根据东营凹陷实际探井的地层数据回归得到的。
3.2.3 上覆地层沉积过程反演
由于成藏过程为一正演过程,因此需知道模拟剖面上覆地层在不同沉积期的沉积速率以及地层的砂泥岩含量。为此,首先要了解沉积地层现今的厚度及砂泥岩含量。表1给出了营11砂体区域有代表性井的地层厚度和地层砂质含量以及地层平均沉积速率。其中的地层砂质含量由自然电位或自然伽马测井数据计算得出;地层沉积速率是指沉积物处于沉积表面时的沉积速率,根据地层的砂泥岩含量、地层厚度和深度以及沉积持续时间给出。而东营期末的沉积间断按剥蚀200m的东营组计算,并依据沉积间断的时间10.6Ma得到平均剥蚀速率。
表1 营11砂体上覆地层模拟参数
3.2.4 模拟演化过程参数确定
营11砂体区的古地温梯度采用东营凹陷的古地温梯度,距今时间为43Ma,38Ma,36Ma,32.4Ma,24.6Ma,5.1Ma,2Ma和0时的古地温分别是5.15℃/100m,4.86℃/100m,4.61℃/100m,4.49℃/100m,4.2℃/100m,4℃/100m,3.68℃/100m和3.5℃/100m[23]。
与砂岩岩石压缩有关的参数值由东营凹陷砂岩孔隙度与深度及有效应力的关系回归得到,而与泥岩压缩相关的参数值来自Mudford等[24]。砂岩渗透率与孔隙度关系式中的参数值来自东营凹陷的数据回归,而泥岩参数值来自Luo 和 Vasseur[13]。
岩石的生烃潜力可定义为生油岩有效干酪根(可转化为烃类)占岩石骨架总量的质量比,而原始生烃潜力是指烃源岩在演化的初始时刻的生烃潜力。一般将在岩石热解分析中的S2值视为岩石的生烃潜力值,因此若想得到网格体岩石的生烃潜力值,需要本区大量的有机岩热解分析资料,而现实的情况是这种分析资料在本区非常有限,无法满足网格体的生烃潜力值的数值化。因此,本次模拟网格体的生烃潜力利用营11砂体区的测井数据进行计算。采用Passey等[25]提出的基于孔隙度和电阻率测井数据的ΔLgR方法,经过改进可以对烃源岩在演化初期的原始生烃潜力进行预测。进行网格体原始生烃潜力赋值应用了钻遇营11砂体和其附近的营76井、营101井、营102井、新营69井、营75井、营70井、营67井、营68井、营78井等的测井数据。由于上述井均未钻遇沙河街组四段上亚段地层,因此,模拟剖面沙河街组四段上亚段地层的原始生烃潜力采用河88和郝科1的计算值。
考虑到东营凹陷沙河街组四段上亚段、沙河街组三段下亚段以及沙河街组三段中亚段的烃源岩以I型干酪根为主,在生油模拟中烃源岩的干酪根依反应活化能划分的各组分初始含量和频率因子等参数采用Schenk等[26]提供的I型干酪根数据。
3.3 模拟过程及结果分析
营11砂体的成藏模拟从距今38.6Ma开始,即模拟的0时间点,而后每1Ma记录一次网格体各相关参数的变化情况。
3.3.1 含油饱和度
图2为模拟10Ma,20Ma,30Ma和38.6Ma 4个时刻的含油饱和度在网格体空间的分布情况。
图2 营11砂体模拟剖面4个模拟时刻的含油饱和度
营11砂体有显著的油气聚集大约从模拟的5~10Ma就已经开始。在地层演化过程中,石油在砂体中一直处于聚集状态,含油饱和度不断升高,这可以从更细致的含油饱和度随时间变化趋势上得以验证。到38.6Ma模拟结束,整个砂体都饱含石油,平均含油饱和度在73%左右,这与砂体实际的含油饱和度平均值(69%)很接近。
3.3.2 油相压力和水相压力
图3给出了在模拟30Ma时间点上油相压力和水相压力在网格体空间的分布情况,而这一时间点呈现的油、水相压力的分布特点基本上代表了整个模拟过程每一时刻的压力分布特点,只是在压力的绝对大小上有差别。网格体油相压力总体变化趋势是由地层的深部向浅部压力逐渐降低,而在这总体背景上,于砂体处存在油相压力的相对低值区。水相压力由地层深部向浅部的变化趋势是逐渐降低的,并且随着网格体埋深总体的压力是增加的。
对网格体毛管压力分布的分析表明,相对低毛管压力区存在于砂岩部位。根据多孔介质中同一点的油相压力和水相压力之差值等于毛管压力可知,油相压力和水相压力分布规律上的差异是由毛管压力的差异引起的。
3.3.3 油势梯度和水势梯度
图4给出了模拟30Ma时间点上油势梯度和水势梯度在网格体空间的分布情况。其中势梯度的正值表明流体流动的方向为轴的负向,而梯度负值表明流体流动方向为轴的正向。
图3 营11砂体模拟剖面在30Ma时油相压力(左图)和水相压力(右图)分布
图4 营11砂体模拟剖面在30Ma时油(上图)和水势梯度(下图)分布
位于左边的两图为水平方向势梯度,位于右边的两图为垂直方向势梯度
4 成藏过程机理分析
营11砂体是处于生油岩包围中的典型透镜状砂岩油藏,其油气来源于围岩生成的烃类。对于这类油藏成藏过程中的油水运移机理和油气聚集过程的认识还存在不足。一般的观点认为异常高压是油气初次运移的主要动力,因此,有些人也笼统地认为异常压力是驱使油气进入砂体的动力。然而,被源岩所包围的砂体内的流体同源岩内流体一样处于封闭环境,而且,在地层沉降压实的过程中,砂体的孔隙也是减小的,因此,从总体上看,砂岩体也是向外排出流体的。因此,如何理解油气自源岩中向砂体运移并聚集,在实际理解上存在一定的困难。
现在普遍的油气运移理论认为,石油是以独立相进行运移的,油水在运移中有着各自独立的流动途径和压力系统,而在同一点的油水压力之差由油水间的毛管压力来平衡。因此,在理解这类透镜状砂体成藏时,不应从单一的流体相来考虑源岩和砂体间的压力差异,而应该像本次模拟一样,将其作为两相流来考虑。
从营11砂体模拟剖面油相压力分布以及油势梯度在水平和垂直方向的变化特点可知,在砂体区存在油的相对于围岩的低势区。油势梯度的正负代表了石油的流动方向,因此砂体区油相低势的特点决定了其必然会成为石油的聚集区。而通过水相压力分布和模拟区水势梯度的变化特点可知在砂体部位不存在水的低势区,砂体对水的流向只起到了一些扰动作用,但水的总体的流动方向是由下向上排出的。
由此可见,超压是推动流体整体运移的动力,而对处于生油围岩包围中的透镜状岩性砂体,围岩和砂体间毛管压力的差异才是驱动油气在其中聚集的根本动力。而这一驱动力是由于围岩和砂体物性上的差异以及油气的生成两种因素结合在一起形成的。
5 结论
(1)通过可压缩多孔介质油水两相渗流的基本原理,并结合与油气的生成、运移和聚集相关的各种因素和作用,可以模拟类似营11砂体的透镜状砂体油藏的成藏过程。
(2)通过对成藏过程中围岩和砂体的油、水相压力及油、水相势梯度的分布特点可知,在成藏过程中砂体区相对于围岩成为油相的低势区,因此石油得以在砂体中进行聚集,而水在砂体中没有聚集的趋势,其总体的运移方向是向着上方的低势区。
(3)石油在类似于营11砂岩油藏中聚集的根本动力是围岩和砂体之间的毛管压力差,而这一差异是围岩与砂体的物性差异以及围岩中石油的生成相结合的必然结果。
参考文献
[1]陈章明,张云峰,韩有信等.凸镜状砂体聚油模拟实验及其机理分析[J].石油实验地质,1998,20(2):166~170.
[2]李丕龙,庞雄奇,陈冬霞等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑,2004,34(增刊1):143~151.
[3]王宁,陈宝宁,翟建飞.岩性油气藏形成的成藏指数[J].石油勘探与开发.2001,27(6):4~5,8.
[4]庞雄奇,陈冬霞,李丕龙等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003,24(3):38~41.
[5]李丕龙,张善文,宋国奇等.断陷盆地隐蔽油气藏形成机制——以渤海湾盆地济阳坳陷为例[J].石油实验地质,2004,26(1):3~10.
[6]隋风贵.浊积砂体油气成藏主控因素的定量研究[J].石油学报,2005,26(1):55~59.
[7]Palciauskas V V.Primary migration of petroleum[C]//Merrill R K.Source and migration processes and evaluation techniques(AAPG Treatise of Petroleum Geology),Tulas,OK.1991:13~22.
[8]Mann U,Hantschel T,Schaefer R G,et al.Petroleum migration:mechanisms,pathways,efficiencies and numerical simulations[C]//Welte D H,Horsfield B,Baker D R.Petroleum and Basin Evolution,SpringerVerlag Berlin Heidelberg,1997:403~520.
[9]罗晓容.油气初次运移的动力学背景与条件[J].石油学报,2001,22(6):24~29.
[10]Ungerer P,Burrus J,Dollgez B,et al.Basin evaluation by integrated two-dimensional modeling of heat transfer,fluid flow,hydrocarbon generation,and migration[J].AAPG Bulletin,1990,74(3):309~335.
[11]Düppenbecker S J,Dohmen L,Welte D H.Numerical modeling of petroleum expulsion in two areas of the Lower Saxony Basin,Northern Germany[C]//England W A,Fleet A J.Petroleum Migration-Geological Society Special Publication No 59.London:Geological Society,1991:47~64.
[12]Okui A,Siebert R M,Matsubayashi H.Simulation of oil expulsion by 1-D and 2-D basin modelling saturation threshold and relative permeabilities of source rocks[C]//Dppenbecker S J,Iliffe J E.Basin Modelling:Practice and Progress-Geological Society Special Publications No.141.London:Geological Society,1998:45~72.
[13]Luo X R and Guy V.Geopressuring mechanism of organic matter cracking:Numerical modeling[J].AAPG Bulletin,1996.80(6):856~874.
[14]Ungerer P,Besis F,Chenet P Y,et al.Geological and geochemical models in oil exploration:principles and practical examples[C]//Demaison G,Murris R J.Petroleum geochemistry and basin evaluation-AAPG Memoir 35.Tulsa:AAPG,1984.53~57.
[15]Hermanrud C,Wensass L,Teige G M G.,et al.Shale porosities from well logs on Haltenbanken(offshore mid-Norway)show no influence of overpressuring[C]//Law B E,Ulmishek G F,Slavin V I.Abnormal pressures in hydrocarbon environments-AAPG Memoir 70.Tulsa:AAPG,1998.65~85.
[16]Slavin V I,Smirnova E M.Abnormally high formation pressures:origin,prediction,hydrocarbon field development,and ecological problems[C]//Law B E,Ulmishek G F,Slavin V I.Abnormal pressures in hydrocarbon environments-AAPG Memoir 70.Tulsa:AAPG,1998.105~114.
[17]Tissot B P,Welte D H.Petroleum Formation and Occurrence[M].Berlin,Heidelberg,New York,Tokyo:Springer-Verlag,1984.
[18]石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1999.47~47.
[19]Danesh A.沈平平,韩冬译.油藏流体的PVT与相态[M].北京:石油工业出版社,2000.56~56.
[20]Tokunaga T,Hosoya S,Tooaka H,et al.An estimation of the intrinsic permeability of argillaceous rocks and the effects on long-term fluid migration[C]//Düppenbecker S J,Iliffe J E.Basin Modelling:Practice and Progress-Geological Society Special Publications No.141.London:Geological Society,1998.83~94.
[21]Brooks R H,Corey AT.Properties of porous media affecting fluid flow[J].Journal of the Irrigation and Drainage Division,1966,92(2):61~88.
[22]Dullien F A L.范玉平,赵东伟等译.现代渗流物理学[M].北京:石油工业出版社,2001.
[23]翁庆萍,庞雄奇,Leonard J E.东营凹陷牛庄洼陷沙三段中亚段岩性油藏数值模拟研究[C].见:李丕龙,庞雄奇.隐闭油气藏形成机理与勘探实践——第三届隐闭油气藏国际学术研讨会论文集.北京:石油工业出版社.2004:215~218.
[24]Mudford B S,Gradstein F M,Katsube TJ,et al.Modelling 1D compaction-driven flow in sedimentary basins:a comparison of the Scotian Shelf,North Sea and Gulf Coast[C]//England W A,Fleet A J.Petroleum Migration-Geological Society Special Publication No 59.London:Geological Society,1991:65~85.
[25]Passey Q R,Creaney S,Kulla J B,et al.A practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin,1990,74(12):1777~1794.
[26]Schenk H J,Horsfield B,Krooss B,et al.Kinetics of petroleum formation and cracking[C]//Welte D H,Horsfield B,Baker D R.Petroleum and Basin Evolution.Berlin Heidelberg,Springer-Verlag,1997:233~269.
❷ 天然气成藏模式
本研究在前人研究成果的基础上,从天然气地球化学角度来探讨鄂尔多斯盆地中部气田奥陶系风化壳的成藏模式。
1.上古生界天然气穿层运移至奥陶系顶风化壳聚集
这种天然气成藏模式主要是用于中部气田东部的侵蚀沟附近煤成气聚集区(图6-7),上古生界煤成气沿古侵蚀沟槽和古潜沟侧向运移或向下穿层运移进入奥陶系风化壳储集层,已被勘探实践和若干地球化学资料所证实,谢庆邦等、王震亮等(1998)、闵琪等(2000)对这一成藏模式进行了详细叙述。
图6-7石炭系天然气向下穿层运移示意图(据闵琪等,2000)
根据成藏物理模拟实验结果(李剑等,2001),以及对榆9、陕参1两口井的渗流机理分析(胡国艺,2003),上古生界太原组煤成气在烃源岩大量生气高峰期时在剩余压力的作用可以进入下部奥陶系风化壳储层,关键因素是煤层下伏岩层的渗透性的好坏问题。
上古生界天然气通过穿过侵蚀沟运移到风化壳的天然气芳烃含量较高,比以下古生界气源岩来源的天然气要高得多,而与上古生界储层中的天然气有明显差异,造成这种差别主要原因可能是上古生界气源岩生成的天然气经过以游离相的运移方式短距离运移进入下古生界风化壳储层。
2.下古生界自生自储型天然气聚集
下古生界自生自储型天然气藏主要位于中部气田的西部和南部,该气藏的天然气主要来源于西部和东部下古生界盐下的气源岩,天然气大量生成、排烃期主要有两期:晚三叠世和早白垩世,二次运移的通道可能主要为盐下广泛发育的裂缝、粒间微孔,天然气运移相态可能主要为游离相。关于下古生界气源岩分布、成藏期和运移方向,前文已作过较多叙述,这里不再赘述。
相对于上古生界天然气而言,下古生界天然气轻烃中芳烃含量相对较高,其轻烃分布与古生界气源岩模拟产物非常相似(蒋助生等,1999),这可能反映的是其本来的面貌。从苯和甲苯的相对含量来看,下古生界天然气大多数样品甲苯含量高于苯,与气源岩相似,这可能反映了下古生界天然气运移方式主要是游离相(李剑等,2001)。
根据上述成藏模式可以较好地解释鄂尔多斯盆地中部气田天然气的混源成因,在上述两种成藏模式的作用下,天然气又发生重新调整作用,形成了中部气田的现今复杂格局。
中部气田的气源一方面是上古生界煤系烃源岩生成的煤成气,沿风化壳侵蚀沟铝土质泥岩盖层不发育处运移进入奥陶系风化壳储层,另一方面气源来自下古生界自身。中部气田的形成经历了从早期的地层-构造型气藏向后期的地层-岩性型气田的转化过程(戴金星等,1997)。三叠纪末,奥陶系烃源岩已达到高成熟生气阶段,石炭—二叠系煤系有机质也已成熟,此时,由于中央古隆起的影响,所形成的天然气大规模向隆起上倾方向运移聚集,形成了不整合地层圈闭气藏;早白垩世,区域古构造形态发生了根本的变化,盆地东部抬升,中东部形成西倾单斜,使不整合地层圈闭中聚集的天然气由西向东沿上倾方向运移,并且上古生界和下古生界烃源岩继续向风化壳储层中供气,由于上倾端膏盐洼地细粒沉积的岩性封堵,形成了现今中部气田地层-岩性气田面貌。
根据对古生界烃源岩、奥陶系地层流体特征及奥陶系风化壳天然气成藏分析,鄂尔多斯盆地中东部地区天然气勘探仍应坚持上、下古生界兼探,立足于中部气区,加强外围勘探;坚持“多目的层”勘探,在中部气田勘探奥陶系顶风化壳天然气的同时,加大东北部地区石炭—二叠系烃源层的天然气勘探力度。而且,应注意把握奥陶系的储层发育情况、地层流体分布与化学成分的变化、岩溶地貌分布,以及上古生界烃源岩与奥陶系风化壳储层的配置关系,尽可能较准确地预测奥陶系风化壳气藏的有利勘探区。
❸ 低煤阶煤层气的成藏模拟实验研究
刘洪林 王红岩 李景明 李贵中 王勃 杨泳 刘萍
(中国石油勘探开发科学研究院廊坊分院 河北廊坊 065007)
作者简介:刘洪林,男,江苏徐州人,1973年生,汉族,2005年毕业于中国石油勘探开发研究院,获博士学位,主要从事煤层气勘探开发方面的研究工作。通讯地址:065007河北廊坊市万庄44号信箱煤层气E-mail:[email protected]。
本研究受到国家973煤层气项目(编号:2002CB211705)资助。
摘要 在美国粉河、澳大利亚的苏拉特等低煤阶盆地煤层气勘探取得突破以前,大家一直认为具有商业价值的煤层气资源主要存在于中煤阶的煤层中,煤阶太低,一般含气量不高,不具有勘探价值。但是近几年来的发现证实,低煤阶盆地煤层厚度大,渗透率高,资源丰度大,含气饱和度高,同样可获得了商业性的气流,而且从其气体的成因来看,其中有很大一部分是生物成因的煤层气。本文利用煤层气成藏模拟装置对低煤阶含煤盆地的煤岩样品开展了成藏模拟,从实验角度证明了中国西北地区虽然煤层煤阶较低,热成因气较少,但是却存在着具有商业价值的二次生物成因的甲烷气,再加上含煤层系众多,煤层厚度大,资源丰度极高,仍具有巨大的勘探潜力。
关键词 煤层气 水动力 成藏
Simulation Experiment of Biogenic Gas in Low Rank Coal of China
Liu Honglin,Wang Hongyan,Li Jingming
Li Guizhong,Wang Bo,Yang Yong,Liu Ping
(Langfang Branch of PetroChina Research Institute of Petroleum Exploration & Development,Langfang 065007)
Abstract:Before CBMexploration achieved success in the low rank coal basins like Power Rive Basin of the U.S.and Surat Basin of Australia,People thought that CBM resources with commercial development value mainly stored in medium-high rank coal seams and low rank coal was not worthy of exploration and development e to low gas content.But the exploration practices for recent years proved that commercial CBMproction could be obtained in low rank coal basins which have thick coal thickness,high permeability,high resource concentration,high gas saturation.Moreover,from the cause of formation of CBM,most of CBMin low rank coal belongs to biogenic gas.In this paper,the simulation experiment on CBM accumulation in coal samples from low rank coal basin was carried out by using simulation apparatus of CBM accumulation.The experiment proved that commercial secondary biogenic methane gas possibly existed in northwest coal basin although the rank of coal is low and there was little thermal-genic gas in the basin.Considering there are lots of thick coal seams and the resources concentration is high,the exploration prospect of CBM is promising in the northwest coal basins.
Keywords:CBM;hydrodynamic condition;accumulation
前言
进入20世纪90年代,随着煤层气产业的迅猛发展,美国煤层气的资源开发活动不再局限于中煤阶煤储层发育的圣胡安和黑勇士盆地,资源评价和研究工作覆盖了18个主要含煤盆地或含煤区,在其中12个含煤盆地从事煤层气开发活动,煤储层的煤阶从中煤阶扩展到低煤阶和高煤阶,特别是发育低煤阶煤储层的含煤盆地因煤层气资源量较大而受到重视,发育低煤阶煤储层的含煤盆地6个,煤层气资源量10×1012m3,占总资源量的53%,以粉河盆地为代表的低煤阶含煤盆地煤层气商业开发的成功,大大拓展了煤层气勘探开发的视野和领域。粉河盆地位于蒙大拿州东南部和怀俄明州东北部,面积25800km2,为一大型沉积盆地,形成于腊腊米运动造山期,盆地中含有巨厚的晚白垩世煤层,单层厚度达67m,煤层总厚118m。盆地为一不对称向斜,轴部靠近西部边缘,西部边缘以逆断层为界,靠近Bighorn隆起。西部地层倾角5°~25°,东部为翘起端,倾角不超过2°。上白垩统沿东南部和东部分布,古新统Fort Union组沿盆地边缘分布,盆地晚三叠系低界深1067m,粉河盆地煤炭资源量1.3×1012t,镜质体反射率为0.3%~0.4%,与西北一些低煤阶盆地相似,煤化程度低,含气量为0.03~3.1m3/t,但由于煤层厚度巨大,资源丰度大,预测煤层气资源量(0.5~0.8)×1012m3。粉河盆地煤层气碳同位素介于-65‰~-69‰之间,具有明显的生物成因特征,并且在其构造的高部位,生物气经过二次运移而富集,形成较高的含气量和较高的饱和度,有较高的渗透率,含气饱和度为80%~100%,钻井深度一般不超过305m,产气量为110~5976m3/d,产水量为45~69m3/d,最好的产气远景区是砂岩体附近与差异压实作用有关的构造高点、紧闭褶皱形成的构造高点以及煤层上倾尖灭的部位,并在该部位伴生有为非渗透性页岩所圈闭的游离气。
中国低煤阶煤储层非常发育。全国垂深2000m以浅的煤炭资源量为55697×108t,低煤阶煤储层占到煤储层的一半以上。低煤阶煤储层形成于早中侏罗世、早白垩世、第三纪等成煤期,其中早中侏罗世、早白垩世是中国重要的成煤期,早中侏罗世成煤作用主要发生在西北地区,煤炭资源量占全国的35.5%[1],新疆准噶尔、吐哈、塔里木盆地、伊犁和焉耆是低煤阶煤储层发育的典型的大型内陆盆地,煤层厚度大,煤层最大累厚近200m,最大单层煤厚逾100m,煤层层数超过50层[2]。中国西北地区低煤阶煤储层煤层气资源量丰富,早中侏罗世煤储层煤层气资源量超过10×1012m3[3-4]。随着美国低煤阶煤层气藏商业开发的成功、国内煤层气勘探开发工作的推进,在近期低煤阶煤层气藏受到了越来越多的关注,有望成为新的研究热点和煤层气勘探开发新领域[5,6,7]。但是中国西北地区与美国的粉河盆地、尤因塔盆地和澳大利亚的苏拉特盆地相比,在进入第四纪以来气候虽然总体较为干旱,但是部分地区由于受到天山影响,水动力仍非常活跃,具备二次生物气生成的可能,如位于天山北坡的准南地区、焉耆地区和伊犁地区。
1 研究区的煤层气地质概况
本次工作研究,重点对水动力较为活跃的伊犁和焉耆进行了采样,研究较强水动力条件下煤层次生生物气的生成问题。
1.1 伊宁地区
伊宁含气区块位于新疆维吾尔自治区西部伊犁自治州境内,区内为低山—丘陵及伊犁河畔冲积平原,含气区内地势西高东低,北高南低,属典型大陆性气候,盆地内先后由煤炭、石油、地矿部门进行过石油勘探及物探,煤炭部门在盆地边缘及局部进行过煤田勘探。特别是近几年来,随着油气勘探工作的进展,在盆地内,已进行了部分钻探实物工作量。该区含煤地层为侏罗系中统西山窑组,下统三工河组和八道湾组,主要为一套河湖相的灰、灰白色含砾砂岩,深灰色泥岩,砂质泥岩夹煤层。伊宁含气区块侏罗系下统八道湾组和中统西山窑组成煤环境优越,聚煤时间长,形成的煤层较稳定,厚度大,层数多,为煤层气的形成奠定了物质基础。西山窑组主要为一套浅灰色含砾粗砂岩,灰白色中、细粒砂岩,深灰色泥岩、砂质泥岩夹煤层,在区内北部地层厚度一般211~552m,含煤10~15层,煤层单层厚度相对较小,层数较多,反映成煤环境震荡性较强。南部一般厚度为102~132m,含煤4~6层。单层厚度相对较大,层数相对较少,反映成煤环境较稳定。八道湾组主要为一套灰白色含砾粗砂岩,中、细粒砂岩,深灰色泥岩,砂质泥岩夹煤层。在区内北部厚度一般在342~452m;南部厚度在60~150m。在北部含可采煤层10层,厚度15~68m,据(伊参1井)资料,可采煤层厚度为88m。在南部煤层厚度相对较小。煤质分析资料表明,该区侏罗系下统八道湾组和中统西山窑组煤层,原煤灰分含量在9.71%~25.60%,一般含量在12%~18%,其变化特征属中—低灰、低硫—特低硫、低磷煤,是有利于形成煤层气的煤质类型。
伊宁含气区块侏罗系中、下统沉积之后,受燕山构造运动的影响,褶皱、断裂使含煤地层遭受不同程度的改造。现构造形态主要表现为不对称的复式向斜,呈近东西向展布。含煤地层倾角一般在20°~30°之间,其中北部相对较陡,南部较缓。断层多发育在褶皱轴部,以逆断层为主,断层线呈北西西向展布。从构造展布特征分析,构造相对较简单,有利于煤层气的勘探开发。八道湾组和西山窑组煤层组埋藏深度0~2000m,分布面积约3445km2,占含煤地层分布面积的82%。从构造赋存地质条件分析,构造较简单,有利于煤层气的勘探开发。该区侏罗系中、下统煤层煤级为长焰煤,煤层气地质资源丰度为1.28×108m3/km2,资源丰度较高,有着较好的勘探开发前景。
1.2 焉耆地区
焉耆含气区带侏罗系中、下统是主要的含煤岩系。侏罗系中、下统是在盆地经历了印支末期构造运动,三叠系遭受不同程度抬升剥蚀后,盆地又逐渐下降,接受该套内陆含煤碎屑建造。八道湾组沉积时,盆地受南缘库克塔格山和北缘南天山差异抬升隆起作用,呈现为南低北高的古地貌。由于古气候温暖潮湿,有利于植物的生长,植被茂盛,森林密布,形成大面积泥炭沼泽,为形成厚煤层奠定了物质基础。据本区哈满沟、塔什店矿区资料,本组煤层称A组,含煤3~14层,累计厚度10~30m,一般厚度10~15m。盆地内石油钻井钻遇本组煤层厚度一般30~40m,最厚可大于60m。煤层空间展布特征为东部厚度相对较薄,一般厚度10~15m,而西部较厚,在四十里城一带最厚可大于60m。
西山窑组沉积时,气候温暖潮湿,地势相对平坦,形成大面积泥炭沼泽,有利于成煤物质的生长,为形成厚煤层奠定了物质基础。据盆地内煤田及石油钻井资料统计,本组含煤5~10层,可采煤层厚度10~40m之间,一般厚度10~30m之间。焉耆含气区带侏罗系下统八道湾组和中统西山窑组成煤环境优越,聚煤时间长,形成的煤层较稳定,厚度大,层数多,为煤层气的形成奠定了物质基础。其中侏罗系下统八道湾组煤层厚度大,稳定性强,煤层气勘探开发潜力较好,是煤层气勘探开发选区评价的主要目的层。
本区内目前煤矿开采以西山窑组煤层为主,煤质分析资料较少。据塔什店矿区分析资料统计,煤层分析基水分含量平均在 4.34%~4.59%,分析基灰分含量在2.36%~6.79%,挥发分产率在42.33%~49.29%,硫分含量在0.39%~0.73%。煤层水分含量中等,灰分、硫分含量较低,属特低—低灰、特低—低硫煤,是有利于形成煤层气的煤质类型。
焉耆含气区带大地构造位于库鲁克褶皱带和天山褶皱系南天山褶皱带之上,是受海西期—印支期构造作用的影响在夷平面的基础上形成的中生代含煤盆地。中生界沉积之后,经历了燕山和喜山多次构造运动的影响,改造后的侏罗系中、下统含煤地层形成了复杂多样的构造面貌。本区中生代以来构造演化大致经历了燕山、喜山二期,使盆地内侏罗系中、下统含煤地层遭受强烈抬升剥蚀,煤层压力降低,吸附在煤层中的气体解吸扩散,含气量降低。埋藏深度600~2000m 区,累计分布面积约930km2,占含煤地层分布面积的39%。主要分布在西部塔什店矿区,中东部盐家窝及库木布拉克等地,是煤层气勘探开发深度较理想的区域。
据钻井及矿井煤层采样分析资料及埋藏深度资料综合分析,焉耆含气区带侏罗系中、下统煤层埋藏深度2000m以浅区煤级以气煤为主。焉耆含气区带侏罗系中、下统以往煤田地质勘探程度相对较低,有关煤层含气量资料也较少,矿井开采深度较浅(一般在100~300m之间),相对瓦斯含量也较低。
2 煤层气成藏模拟实验装置和原理
煤层气成藏模拟装置的特点是模拟地层温度、压力、地层流体介质下煤层气富集成藏过程,它可以通过模拟不同物性组合、不同介质、不同充注压力、不同运移方式煤层气成藏过程,获取不同模拟条件下的物理和化学参数,确定煤层气不同运移条件下的边界条件。设备主要由气体增压泵、恒温箱、仪表控制面板和计算机采集-处理系统。其中控制面板包括压力控制子面板、温度控制子面板、平流泵控制子面板、真空泵控制按钮、流程图;恒温箱内放有多功能模型仓Ⅰ、多功能模型仓Ⅱ和参考缸;计算机采集系统包括一套数据采集模块和数据处理软件。图1是装置原理流程,装置考虑采用不同岩心、不同岩性、不同气体介质进行工作,同时进行精确计量。把设计制作后的岩心组合装进多功能模型仓,利用气体增压泵维持环压,利用平流泵提供不同的流体介质、不同充注压力,通过温度和压力仪表以及传感器采集温度和压力数据,并经过数据处理软件分析温度压力数据。
在自然界中,已知的产甲烷菌中有一半可利用甲酸盐形成甲烷。甲酸盐首先转化成CO2和H2,然后再通过还原反应生成甲烷。在自然界中能够利用氢还原二氧化碳及利用醋酸盐发酵的产甲烷菌的存在是生物成因的煤层气成藏的必要条件。与近地表甲烷生成过程研究相比,地下(十几米到几百米深度)甲烷生成的研究工作相对较少。在地下环境中,对于甲烷的产出来说,沉积物必须具备使产甲烷菌得以生存及繁殖的孔隙空间。对此,低煤阶煤层中发育的孔隙空间和裂隙系统对甲烷菌的生成是非常有利的。甲烷生成菌不具有直接分解煤层的能力,要形成甲烷须有一个前期阶段,即主要依酸发酵菌和还原菌分解类脂化合物和大分子聚合物如纤维素和蛋白质等;接着微生物进一步脱去长链酸(和乙醇以上的醇)的氢而生成氢、甲酸、乙酸、二氧化碳和醇等。甲烷菌由此取得碳源和营养而生存,并以此为基质进行生物化学和新陈代谢作用产生甲烷。
图2 伊宁和焉耆地区煤岩样品产甲烷菌实验
3.3 生物甲烷气成藏模拟实验
把接种过甲烷菌的煤层样品放入成藏模拟装置内,在35oC的恒温状态下,开始培养,观测煤岩样品生气过程。经过近两个月的连续实验得到一条压力-时间曲线。经分析认为曲线存在两个明显的曲线段,第一阶段为快速生气阶段,第二阶段为生气-吸附平衡阶段(图3)。对最后生成的气体进行了分析,其所产气体成分主要为CH4、N2和CO2。除个别样品外,绝大多数样品所产气中C2+含量很低,甲烷碳同位素值相差较大,从-56‰~-67‰,表明为生物成因气体。
图3 煤样生物成气后吸附过程中的压力-时间变化曲线
4 实验结果及其讨论
(1)模拟试验表明,一方面在我国西北地区低煤阶煤层中存在产甲烷菌,另一方面证明了低煤阶的煤层可以作为二次生物气的来源。根据资料,伊犁盆地浅部的煤矿区在侏罗系煤层中所产气的δ13C为-66.10‰~-60.12‰,显然属于生物甲烷气。
(2)与高煤阶相比,低煤阶一般埋藏较浅,孔隙空间较大,适合产甲烷菌的生存和繁殖,所以国内外的低煤阶盆地多发现生物成因的煤层气富集成藏。
(3)在我国西北地区,由于煤阶普遍较低,热成因甲烷生成量有限,次生物成因气生成量巨大,特别是在焉耆和伊犁地区,煤层层数众多,地下径流活跃,煤层中有大量甲烷菌繁殖,有大量的二次生物成因气生成、运移,如遇到断层遮挡、煤层尖灭等圈闭条件,就有可能形成较高的饱和度,形成具有商业价值的煤层气藏群。
参考文献
[1]武汉地质学院编.1981.煤田地质学[M].北京:地质出版杜,2~3
[2]韩德馨,杨起编.1984.中国煤田地质学[M].北京:煤炭工业出版杜,387~407
[3]张建博,王红岩,赵庆波编.2000.中国煤层气地质[M].北京:地质出版杜,15~30
[4]中国煤田地质总局著.1999.中国煤层气资源[M].徐州:中国矿业大学出版杜,26~87
[5]王红岩,刘洪林,赵庆波等编.2005.煤层气富集规律.北京:石油工业出版杜,26~87
[6]钱凯,赵庆波,汪泽成等著.1995.煤层甲烷勘探开发理论.北京:石油工业出版杜,48~52
[7]张彦平等.1996.国外煤层甲烷开发技术译文集,北京:石油工业出版杜,20~80
❹ 勘探领域技术有哪些
目前我国已形成了以我国陆相沉积盆地为特色的石油、天然气地质理论及研究方法,居世界领先水平,其具体内容包括如下几方面。
(1)中国裂谷盆地有机地球化学和成烃理论,包括成烃母质类型及丰度、热演化机理与成烃门限、排驱条件及生烃资源定量评价等。近年来提出了低熟油、未熟油和煤成油的成烃理论,研究发展了有机演化实验与计算机技术相结合的烃源岩快速定量评价技术,把陆相生油机理发展为系列化理论。
(2)天然气形成理论,包括煤成气理论以及生物气、无机气形成理论,发展了天然气盖层综合评价及封存箱、深盆气等气藏理论。
(3)陆相地层学、沉积及储层评价方法与理论。运用层序地层学、古生物学与地球化学、地质事件学相结合,现代沉积、古代沉积与岩相古地理学相结合,与沉积作用和成岩与后生作用相结合的理论和方法,研究地层划分对比、沉积类型和结构以及油气储层定量评价。
(4)沉积盆地构造演化理论,把大陆板块构造理论与盆地演化理论相结合,形成了我国东部拉张型裂谷盆地、西部挤压型克拉通盆地与前陆盆地形成的理论和应用方法。
(5)油气藏形成与油气系统理论,综合油气地质各学科、专业以及成果,形成了中国陆相沉积盆地复式油气藏形成理论、隐蔽油藏形成理论,探索了海相克拉通多旋回盆地成藏理论,初步形成定量、动态成藏模型及油气系统的研究方法。
但是,在成盆研究方面,国外从全球板块构造的演化,分析盆地的形成时间(定时)和所处古纬度的位置(定位),来评价盆地的油气资源潜力方面较先进。而国内以盆地为油气生成、运移、聚集的基本地质单元,多年来仅限于研究盆地内的建造与改造,缺乏从全球板块演化角度研究盆地形成的定时定位问题。另外,盆地分析的基本方法我们都已掌握,差距主要表现在进行项目研究的人员组织和配合上,即缺乏综合研究的管理能力。
在成烃方面,我国和国外的研究侧重点不一样,国外以海相地层为主,研究较系统,对陆相烃源岩和海相交互相烃源岩(煤系地层)及低—未熟油研究相对较少。而我国以陆相烃源岩为主,研究较系统,对煤成烃和低—未熟油研究也具特色。在海相烃源岩的研究起步较晚,与国外有差距。
在成藏方面,国外主要以含油气系统、封存箱和异常压力带理论研究成藏机理,对成藏条件和过程的综合评价还处于起步阶段。我国在利用先进的模拟实验装置,进行油气成藏物理模拟综合研究方面取得了重大进展,已居于国际先进水平。
在含油气系统方面,国外对含油气系统的研究正在向动态描述和定量化方向发展,国外大油公司已开始建立全球含油气系统数据库,用于全球范围的类比和评价。而我国与国外对比,差距是对油气系统理解的深度、工作的规范化和创新不够。
地质理论领域的发展趋势包括如下几个方面,即深化研究盆地演化与资源评价技术,发展油气藏成藏机理及预测技术,其发展趋势不仅仅局限于海洋石油或者陆地石油,对于我国的石油工业具有重要意义。
一、盆地演化与资源评价方面
沉积盆地作为油气聚集的重要单元,从早期关注盆地类型到后期探讨盆地形成的动力学机制,都取得了明显进展。由于盆地的形成与其周缘造山带的演化具有内在关联性,因此,盆地-山脉耦合作用的研究成为更深层次探讨盆地发育演化的重要内容并取得新的认识。对于经过多期成盆改造的叠合盆地优质烃源岩的分布及其在复杂演化过程中的生烃机理及评价指标体系,资源评价方法等方面都有实质性进展。该方面需要发展的技术包括:(1)含油气沉积盆地形成的动力学机制研究;(2)复杂地质条件下的生烃机理及热演化史研究;(3)油气资源分布及潜力评价。
在该方面的发展趋势为:从大陆动力学的角度探讨壳-幔相互作用、盆地-山脉耦合作用,恢复复杂演化盆地的原型;烃源岩的分布及其生烃机理,热演化史恢复为资源评价提供更为可靠的基础;在利用定量盆地模拟和油气资源评价的方法确定了油气资源分布、明确可采油气资源、评价油气资源有效性的基础上,明确圈闭发育的地质规律,通过油气成藏要素的综合研究来勘探油气资源是今后开发利用油气资源的方向。
二、油气成藏机理与预测方面
油气成藏机理一直是石油与天然气地质学研究的核心和难点。近年来,油气成藏从宏观上温度场、压力场、应力场(三场)对油气分布的控制作用,到微观上油气成藏的动力、油气运移的输导体系等方面的研究都有显著进展,特别是发现有别于传统油气成藏概念的突发式成藏的发现,丰富了油气成藏理论。随着油气勘探向复杂条件拓展,成藏机理研究出现了下列发展趋势。
(1)隐蔽油气藏的成藏机理受到高度重视并建立了不同类型盆地隐蔽圈闭分布模式:随着构造油气藏勘探程度的提高,隐蔽油气藏成为很多盆地的主要勘探领域。隐蔽圈闭的研究是隐蔽油气藏成藏机理研究的基础,研究的方向包括层序地层学方法及其拓展应用,地层岩性圈闭的油气成藏条件综合研究,针对不同沉积盆地类型建立层序地层模型和隐蔽圈闭预测模型,工业化的地层岩性圈闭综合评价及其应用等方面的技术将得到深入研究与发展。
(2)海相碳酸盐岩层系复杂介质(基质孔隙—裂隙网络—溶洞复杂体系)的油气运移聚集机理成为国际研究前沿:近年来,砂岩孔隙介质中油气和流体的运移过程和机理得到高度重视,国内外学者进行了大量模拟实验、数值模拟和实例分析,目前,碳酸盐岩层系复杂输导介质条件下流体流动和油气运移的研究尚十分薄弱,其关键科学问题包括不同复杂程度的输导介质中流体和油气的运移方式(线性、非线性)和速率、碳酸盐岩层系油气的优势运移通道及其控制因素和示踪技术。
(3)油气藏的调整改造和保存机理成为制约复杂叠合盆地油气勘探的重大难题:随着油气勘探由单旋回盆地向复杂叠合盆地拓展,“定凹探边”的传统勘探思路已难以有效地指导叠合盆地的油气勘探。多期构造叠加、多套源岩多期生排烃、多期成藏、多期调整、改造甚至破坏是叠合盆地油气成藏的最重要特征。从多期构造的叠加、干涉特别是晚期构造对早期构造的叠加改造入手,以多元多期生烃作用和输导体系的演化研究为基础,以油气藏的调整改造过程为核心,研究叠合盆地油气成藏机理和分布规律并发展相应的预测、评价技术,是叠合盆地油气勘探迫切需要解决的重大难题,也是油气成藏机理研究的又一重要前沿研究领域。
(4)强化系统论思想和历史分析方法在油气成藏与分布预测研究中的应用:含油气系统是与一个有效的生烃灶相联系的烃类流体系统,包括了油气藏形成所必需的一切地质要素与地质过程及在成因上相关的所有油气。含油气系统理论实际上体现了对油气成藏规律进行动力学综合分析的思想和研究方法。通过对油气成藏条件和成藏作用相关学科的深入研究,含油气系统及理论和方法逐步完善,主要表现在盆地动力学过程与含油气系统演化、油气运移机理、油气成藏年代学及流体历史分析、盆地热体制及热流体活动、断层对流体的封闭和疏导作用、盆地流体流动样式与成藏效应、成藏动力机制分析等方面。
(5)从盆地动力学背景分析油气藏形成条件:1990年代以来,国际上含油气盆地的研究进入动力学研究阶段,对盆地演化、大陆造山与深部过程及三者之间耦合关系的动力学研究构成了地球动力学研究的前沿领域。其中,岩石圈深部过程与近地表构造过程耦合的精细描述更是成为近年的研究热点和难点。
(6)开展烃源灶形成演化与油气成藏期次研究:烃源灶(source kitchen)是含油气系统的核心,它是油气藏形成过程中实际提供烃源的区域。混源油气识别及油气的成因是解析复杂油气藏最基本的问题。对于复杂叠合盆地多期混源油气成藏,开展混源油气对比、厘定油气成藏期次,进而开展有利富集区预测,依然是今后研究的重点。
三、地震技术发展趋势
油气藏地球物理探测理论与技术发展经历了不同阶段:(1)地质构造成像;(2)岩性及物性参数识别;(3)储层中流体类型识别。
由于地球物理场对地质目标性质的反应能力差异,地球物理探测理论与技术最广泛的用途是地质构造成像,其次是储层识别,再者是流体识别。理论与技术发展成熟度、结果置信度的次序也是如此。所以油气藏地球物理探测总体发展趋势是从构造成像向储层识别和流体性质识别发展。
同时,复杂地区油气勘探的地球物理技术和地球物理信息在油气田开发中的应用是油气地球物理探测理论与技术发展急需解决的两个根本问题,前者是如何寻找新的油气田;后者是解决如何在已经投入开发的油气田中尽量经济有效地提高油气采收率问题。地球物理探测技术的发展依赖于三个基本科学问题的解决,也反映了地球物理探测理论的发展方向。
(1)揭示复杂勘探目标的地球物理场响应特征:地球物理场响应特征是探测和识别地质体空间展布、物理参数和所含流体类型的基础。现行地球物理勘探理论是以均匀介质或水平层状介质等简单地质模型的地球物理响应特征为基础所建立发展起来的,显然已无法适应目前复杂地表、复杂构造、复杂储层油气勘探开发的需要。剖析复杂地表、复杂构造、复杂储层的地质特征可归纳为几何尺度与地球物理探测波长相当的基本地质单元,以基本地质单元为块体,构建地球介质的块体地质模型,以期突破现行地球物理所依托的均匀介质或水平层状介质模型的理论范畴(K.M.Hock,1996)。对于远小于地球物理探测波长的地质目标可用统计方法研究其响应特征,如岩心分析与模拟等,对于远大于地球物理探测波长的地质目标可用渐近解理论研究,如地震波和电磁波的射线理论,对于近于地球物理探测波长量级的地质目标尚缺乏成熟的理论,且缺乏对该量级地质目标的地球物理场响应特征的系统认识。通过物理和数值模拟的深化研究,认识该尺度下复杂地质体的地球物理响应特征,揭示含流体岩石的地球物理场变化规律,为复杂勘探目标的识别奠定基础(Nur等,1995)。
(2)复杂地表和复杂地质条件下地震波传播与成像理论:地震成像是利用在地面观测到的地震波场数据,借助于波场的反向传播,实现波场向地下延拓,来推断地下地质体的空间展布与物理属性。描述波场反向传播的单程波动方程是地震波成像的基础,单程方程描述波场沿特定方向的传播规律,是波动方程的近似解。现行单程波动方程的构建和解法可分为两类,其一是波动方程的差分解,其二是波动方程的积分解。波动方程差分解的差分格式构建是以多种域内波动方程的单点泰勒展开为基础的,仅能准确描述泰勒展开点周围块体中地震波的传播规律,波动方程积分解是以高频渐近解为基础而实现的,仅能描述远大于波长尺度的块体中地震波的传播规律。因此,两类方法对近于波长尺度的块体均无法准确成像。借鉴辛几何和黎曼几何的研究成果,构建准确描述整个空间内波传播规律的单程波动方程,以此为基础,深化噪声压制理论研究,发展复杂地质体地震波成像理论与技术,已成为油气地球物理勘探的重要发展趋势。
(3)由单一地球物理方法向综合地球物理方法发展:不同的地球物理信息从不同侧面反映了地质体特征,为实现地下地质目标的完整刻画,需综合多种信息。不同地球物理信息在反映地质体时存在着尺度和物理属性的内在差异,如何利用不同尺度、不同类型信息实现同一地质体物理属性的最佳一致性估计,是地球物理信息融合的基础,是实现地质目标综合地球物理研究的途径。地球物理探测作为反问题,多种信息的综合利用,可大幅度减弱其不适定性、降低其多解程度。以复杂地质目标的地球物理场响应特征为基础,借鉴信息融合理论的研究成果,研究地球物理数据融合的实现途径,为复杂油气藏的综合地球物理解译奠定理论基础。
❺ 成藏主控因素物理模拟结果
(一)围岩供烃条件对砂体含油气性的影响
以直径5cm、高为4cm、渗透率为203×10-3μm2的人工胶结柱状岩心,在温度为30℃、压力为30MPa,围岩含油饱和度分别为60%、50%、30%、20%、10%、5%的条件下进行实验。每个实验进行96h后扫描图像和处理结果。
对实验图像的处理表明,随围岩含油饱和度增加,明显有岩心含油饱和度加大的趋势(图4-22),即围岩含油性好,岩心的含油性也好,说明二者之间有很好的正相关性,围岩含油气性是影响岩心含油的重要因素。而且存在一个临界的围岩含油饱和度,小于这一值,砂岩体内没有油气的聚集。在围岩含油饱和度很低(仅10%)时,岩心孔隙中仍有12%左右的含油饱和度,说明在围岩含油饱和度较低的情况下,仍能使油气聚集在岩心中。
图4-22 围岩与岩心含油饱和度关系曲线图
济阳坳陷古近系透镜状含油岩性砂体统计也发现:砂体的分布和发育对应于源岩的生、排烃深度,排烃高峰期对应的埋深段即是含油气砂体分布发育的最佳深度段。
而且透镜状含油气砂体大都分布在临近洼陷的深凹带或缓坡带内,且离洼陷带越近,砂体含油气性越好。这些砂体大都为泥岩所分隔,在横向上和纵向上与生油岩共生,特别是包裹于大套暗色泥岩、油页岩中的浊积扇砂体含油性最好。
(二)砂体物性对自身含油气性的影响
在温度为30℃、压力为30MPa,泥质围岩含油饱和度为50%的条件下,以圆柱直径5cm、高为4cm的规格,分别对渗透率各为(988,585,203,56,13,1.98)×10-3μm2的人工胶结岩心进行实验。每个实验进行96h,过程中会及时扫描图像和处理结果。
砂体物性是影响砂体含油饱和度的重要因素,通过以上6个不同物性(不同渗透率)砂体在同一围岩含油饱和度,相同温度、压力,以相同规格的人工岩心实验发现,砂体含油性有随砂体物性增加而变好的趋势(图4-23)。但当渗透率为1.98×10-3μm2的岩心实验时,岩心中没有油气的进入,甚至增加实验时间到120h后,扫描的结果图像中岩心仍然为暗色,没有油的进入(图4-24)。说明存在一个岩心物性的下限,渗透率太低,围岩中的油不能进入岩心中。表明在砂岩体自身内存在着制约油气成藏的临界地质条件,满足这一临界条件后,油气才能聚集成藏。
图4-23 不同物性岩心含油饱和度曲线
图4-24 渗透率为1.98×10-3μm2的实验图像
济阳坳陷占近系岩性油气藏的勘探也证实,只有当砂体的内部孔渗条件达到一定的临界值时,砂体才能接收来自外部烃源岩中的油气。含油气砂体分布在平均孔隙度>12%、渗透率>1×10-3μm2、分选不能太差(至少差~中等)、平均粒径>0.2mm的砂体内。对于岩性砂体内部条件对含油气性的控制作用,陈章明等(1998)在实验基础上,得出粒径大的砂体含油气性好、粒度细的砂体可能没有油气聚集的认识。曾溅辉(2000)等在进行岩性砂体成藏实验后,发现只有砂体的粒径达到一定的临界值后,才能聚集油气。
(三)其他条件对含油气性的影响
1.砂体形态
砂体的厚薄(长短)分为扁平(底面半径2.5cm,高1cm)、均一(2.5cm×2cm)、稍长的圆柱(2.5cm×4cm)、较长的圆柱(2.5cm×6cm)及长圆柱形(2.5cm×8cm)。分别采用以上规格人工岩心,在温度30℃、压力20MPa、泥质围岩含油饱和度为50%、岩心渗透率为203×10-3μm2的条件下进行实验。
对实验图像进行处理后发现,在其他条件不变的情况下,岩心规格即砂体的形态对砂体的含油饱和度影响不大,即砂体厚度与含油饱和度相关性不明显(图4-25),砂体比表面积与含油饱和度关系也较复杂,有随着比表面积增大开始增大,而后又减小的趋势(图4-26)。可以认为:砂体的厚度不是影响含油性的主要控制因素,但可以初步看出:均一型的岩心含油饱和度高,含油性好。实验条件下,在油源充足的情况下,理论上应该是砂体的规格越小、越扁平,越有利于油气的进入,长圆柱形的砂体由于在纵向和横向的比例很大,不利于浮力作用下的油气的聚集。
图4-25 不同长度岩心含油饱和度柱状图
图4-26 透镜体比表面积与含有饱和度关系
但在地质条件下,浊积砂体的大小对成藏的影响表现在储集物性方面,一般情况下,砂体的表面和厚度大的砂体岩性较粗,粒间孔隙较大,有利于油气进入。大砂体成岩作用的影响较小,因为储集岩体的胶结作用多首先发生在砂层的顶底附近,然后向砂岩体的核心部位延展,小砂体经过短期的成岩作用会变得非常致密,因此大砂体有利于岩性油气藏的形成。这一点在济阳坳陷古近系岩性油气藏勘探实例中也得到了证实,牛庄油田沙三段中亚段钻遇的较多大砂体大多含油,而小砂体含油性却较差。
2.压力
以圆柱直径5cm、高为4cm的规格,围岩分别以含油饱和度50%、渗透率203×10-3μm2的人工胶结岩心,在温度30℃、分别在压力30MPa、20MPa、10MPa、5MPa的条件下,进行实验。每个实验进行90h后扫描图像和处理结果。
实验结果表明,岩心含油饱和度随压力的增加而增加,在高压下,岩心含油饱和度可达30%以上(图4-27)。可以认为压力是影响岩心含油饱和度的重要因素。
图4-27 压力与岩心含油饱和度关系图
一般条件下,压力对油气的运移和成藏表现为驱动力。压力作用下,油气发生初次和二次运移。关于透镜体成藏的动力学研究中,有不少学者提出异常高压力是油气成藏的主要动力,认为:包围透镜体的生油岩处于欠压实状态,具有强的排液能力;生油粘土岩相对透镜体砂岩的突破压力差别较大,压实流体始终存在向透镜体内排驱的能力;石油相对水从砂岩内向泥岩排驱,突破压力需要的更大一些,水进入相邻粘土岩较油更容易(水润湿岩石)。所以处于封存箱体系中砂岩透镜体内部的自由水,在排驱与反排驱过程的含油气流体中,不断被滞留在透镜体周围的生油岩中,以至形成透镜体油气藏。
大量研究和实例表明,高压的源岩所包围的砂岩体中的流体同样出现高压。在埋深压实过程中,砂体中的流体始终处在一个自内向外的流动和泄压过程中。而且在实验条件下,在压力较低(5MPa)甚至不加压的情况下,已经有油在岩心中显示。因此,异常高压不是该类油气藏成藏的必要条件。压力是重要的影响因素,相同条件下,在压力作用的参与下,砂体和围岩处于同一压力体系下,加快流体的流动,油气运聚成藏的速度会加快,而且含油饱和度会增加,但压力却不是油气藏形成的必要动力,不加压或低压下围岩中的油气也能在透镜体中聚集成藏。
3.温度
以圆柱直径5cm、高为4cm的规格,围岩分别以含油饱和度40%,渗透率203×10-3μm2的人工胶结岩心,在压力20MPa,分别在温度20℃、30℃、60℃、80℃和100℃的条件下,进行实验。每个实验进行90h后扫描图像和处理结果。
实验结果显示,岩心含油饱和度随温度的升高而增加(图4-28),在高温下,岩心含油饱和度可达40%以上。可以认为温度是影响岩心含油饱和度的重要因素。
图4-28 不同温度条件下岩心含油饱和度柱状图
一般条件下,流体在温度升高的情况下,增加流体内部的分子能,加速流体流动的速度,温度升高,加快岩心和围岩之间的油水相互的流动进程,使岩心含油饱和度升高。
❻ 成藏过程物理模拟实验
(一)实验结果
进行成藏过程和机理实验时,在长16cm、内径D1为9cm、外径D2为10cm的有机玻璃空心管中装填含油饱和度为40%的玻璃微珠,中间放置人工岩心,岩心渗透率为56×10-3μm2,圆柱状岩心的底面直径为5cm、高8cm,温度30℃,装填后加压,压力为20MPa,在实验进行2、18、25、48、54、66、74、120h时扫描。
表4-6 砂岩透镜体成藏物理模拟实验分组表
图4-17 透镜体成藏物理模拟实验扫描图像
图4-18 定标管含油饱和度处理图像统计图
图4-19 岩心含油饱和度处理图像统计图
扫描图像如图4-20、图4-21示,图4-22中为横切面上不同时间点上的油的显示图像和处理结果,图4-21中为纵切面上不同时间点上的油的显示图像和处理结果。由A→B→C→D→E→F→G→H是含油变化的亮度图,图中图像的亮度表示含油性大小和好坏,在图像的中间为过直线切线上的亮度大小曲线,曲线的最右端为100%含油的定标管的亮度大小,图的右边为含油饱和度统计信息。
表4-7记录了随时间变化的油气进入岩心的过程和含油性定量变化的结果。随时间加大,岩心平均含油饱和度增加。
(二)模拟成藏实验的机理解释
关于透镜体成藏机理前人已经做了大量研究。有学者提出,在异常高压的地层压力下,压实作用所产生的地层压力差和浮力,由生油岩向夹持的砂岩透镜体直接运移成藏;有学者认为。在毛细管力的作用下,油气首先从较大孔隙进入砂岩透镜体中,因油气的进入占据了砂岩透镜体中的孔隙空间,使其中的孔隙水被替换出来,并从较小孔隙进入到泥岩中,随着上述过程的继续进行,油气不断进入砂岩透镜体中,砂岩透镜体中的孔隙水不断被替换出,直到砂岩透镜体被油气饱和为止(Magara,1987;张云峰等,2000)。也有人认为,毛细管作用与源岩排烃压力促使油水交替成藏。有学者认为,引起岩性砂体成藏的动力:一是由于低渗透围岩与高渗透性砂岩透镜体孔喉半径差异所造成的毛管压力差,二是浮力作用(Berg,1975)。Stainfoth(1990)认为,烃浓度梯度作用下的毛细管力输导作用是导致源岩排烃的主要机理,这种机理同样适用于砂岩透镜体成藏。
由透镜体核磁共振实验可以发现,在烃浓度差引起的渗透压差和扩散压差下,围岩中的油具有向岩心(砂体)运移的趋势。但油运移至砂泥岩界面时,由于砂岩透镜体以孔隙作为运移通道,在接触带内的大、小孔隙之间存在着毛细管力的差异。在毛细管力差和烃浓度差的作用下,油气首先从较大孔隙进入砂岩透镜体中,油气的进入占据了砂岩透镜体中的孔隙空间。由于毛管压力差与围岩和砂体的孔喉半径有关,根据毛管压力公式,在孔喉半径小、物性差的砂体内应无油气的聚集,即砂体不能成藏。
图4-20 横切面上不同时间点油的显示图像和处理结果
图4-21 纵切面上不同时间点油的显示图像和处理结果
表4-7 砂岩透镜体成藏过程模拟实验含油饱和度随时间变化
由于烃类在水载体中的运移存在浮力效益,在岩心的下部油相对聚集,其次是边缘,最后在顶部有油的聚集。说明在岩性砂体成藏时,浮力也是一个不容忽视的动力之一。
所以可以这样认为,透镜体成藏并不是单纯的一个或两个动力下促使油气的聚集的,它是在一个过程复杂、动力类型多样、相互作用、复合动力下完成的油气运聚成藏的。
❼ 中国石油大学地质学学什么
课程简介
“石油地质学”是地质工程专业的一门专业基础课和必修课,是中国石油大学(北京)品牌课程和北京市精品课程,是理论教学与实践教学相结合的一门课程,总学时64学时,其中理论教学46学时,实践教学18学时。本课程遵循加强基础理论、理论联系实际、反映国内外石油地质学发展新水平的原则,立足于石油地质学基本原理的阐述,充分反映成熟的新理论,突出中国石油地质特色,以油气成藏要素、油气成藏过程和油气分布规律为主线建立课程体系,共包括绪论和油气水的成分和性质、储集层和盖层、油气藏及其类型、石油天然气的成因与烃源岩、石油与天然气的运移、油气聚集与油气藏的形成、油气聚集与分布单元、油气分布规律与主控因素等8章。主要介绍油气生成、油气藏形成的基本原理及油气分布的基本规律,通过本课程的学习使学生掌握石油地质学的基本概念、基本原理和基本方法,并能利用石油地质学的原理与方法对盆地油气成藏的基本条件进行初步的评价。
目标定位
中国石油大学(北京)是教育部直属的全国重点大学,是一所石油特色鲜明,以工为主的多科性大学,是“211工程”重点建设和国家985工程“优势学科创新平台”建设并设有研究生院的高等院校之一。学校的发展目标是到2020年建成石油石化领域世界一流的研究型大学。地质工程专业是中国石油大学(北京)的石油主干专业,是国家级特色专业,每年面向全国招生150余人,生源质量越来越好,入学成绩连年提高,已成为社会公认的品牌专业和我校录取分数最高的专业之一。
我校地质工程专业主要培养从事石油勘探开发地质工程设计、科学研究、国际合作和科技管理的高级专门人才。而“石油地质学”是地质工程专业一门重要的专业基础课和必修课,是学生系统学习了矿物岩石学、地史古生物学、沉积岩石学、构造地质学等地质基础课后,开始接触石油勘探开发知识的第一门课,也是高年级本科生最重要的专业基础课。该课程奠定了地质工程专业学生的石油勘探开发理论基础,在本专业课程体系中具有举足轻重的地位,是实现专业培养目标的“看家课”。同时该课程又是油气勘探系列课程的骨干课,该课程系列还包括地质工程专业的“油气田勘探”、勘查技术与工程专业的“石油地质学”以及非勘探专业“石油地质概论”等课程。
本课程的建设目标是坚持“强化理论、注重应用、增强实践、培养能力”的教学理念,通过师资队伍建设、教材建设、教学内容和教学方法的改革,造就一流师资队伍,编写一流教材,创建精品课程,培养一流人才。即在现基础上,进一步加强教师队伍和教材建设,深化课程体系、教学内容和教学方法等方面的改革,不断提高教学质量,培养理论基础扎实、实践能力强、具有创新精神的高素质人才;同时以“矿产普查与勘探”国家级重点学科建设、“油气资源与探测国家重点实验室”建设为依托,以科研促教学,加强与国内外同行的交流,提升教师的学术水平。目前本课程教学水平在全国高校同类专业中居领先水平,我们将加快建设步伐,加强国际交流与合作,加强“双语”建设,把本课程建成国内领先、国际知名的品牌课程。
知识模块顺序及对应学时
本课程总学时为64学时,其中理论教学46学时,课内实验和大作业等实践环节18学时。与本课程相配合,单独设置课程设计“石油地质综合训练”3周。
顺序
知识模块
主要内容
计划学时
理论教学内容
1
油气成藏要素
绪论
第一章 油、气、水的基本特征
4
第二章 储集层和盖层
4
第三章 圈闭和油气藏
8
2
油气成藏过程
第四章 石油天然气的生成与烃源岩
8
第五章 石油和天然气的运移
6
第六章 油气聚集与油气藏的形成
7
3
油气分布规律
第七章 油气聚集与分布单元
3
第八章 油气分布规律与控制因素
6
实践教学内容
1
实验
原油、烃源岩、储集岩样品观察与描述
2
石油及烃源岩地球化学指标萃取
2
油气成藏机理模拟实验
2
2
课内大作业
烃源岩演化特征与生油区评价
2
时间-温度指数计算与烃源岩成熟度评价
2
天然气成因类型综合判别
2
圈闭及油气藏类型的识别
2
流体势计算和油气运移方向分析
2
油气藏形成条件综合分析
2
3
课程设计
石油地质综合训练(单独设置)
3
重点、难点及解决办法
1.课程的重点、难点
“石油地质学”课程的主要内容包括三大部分共八章:油气成藏要素、油气成藏原理和油气分布规律,其中核心内容是油气成藏原理。该课程的难点主要有三方面,一是如何综合利用已学过的构造地质学、沉积岩石学、岩相古地理等知识,深刻理解油气藏形成条件与分布规律,并将静态成藏要素中的烃源岩、储集层、盖盖层、圈闭与动态成藏过程中的油气生成、运移、聚集结合起来,综合分析沉积盆地中油气藏的形成与分布问题;二是油气生成的化学动力学原理和油气运移聚集过程的动力学机制;三是对各类圈闭和油气藏的空间形态的理解。
2.解决办法
对于第一个问题,在实际教学过程中,主要加强学生综合应用知识能力的训练,教学中尽可能多地为学生提供一些接触油区实际石油地质资料的机会,多介绍油田实例,多增加地质图件分析等方面的练习,便于提高学生对实际地质问题的理解。在教学中的课内大作业,就是根据各章要学生掌握的知识点有意识设计的综合训练,每个大作业都要求学生作图、编写报告,增加学生对课程内容的理解和综合分析问题的能力。最后的课程设计更要求学生综合整个课程的知识对一个实际盆地各方面的资料进行综合分析,对盆地的油气远景做出评价。
对于第二个问题,在课堂教学中,主要通过对基本概念理解、化学和物理知识的运用,动画的运用,精讲难点内容,深入浅出。
对于第三个问题,充分运用实物模型、清晰的多媒体图件,尤其是复杂的平剖面图和立体图,配合习题课,有针对性的开展教学活动,提高学生的空间想象能力。
实践教学活动的设计思想与效果
加强实践教学,增强学生的动手能力和分析问题解决问题的能力,培养学生的创新意识和创新精神一直是本课程重要的教学理念之一。为了加强学生对课程理论的理解和增强学生的实践和动手能力,增强学生分析问题和解决问题的综合能力,本课程设置了3个实验(6学时)、6个课内大作业(12学时),与本课程相配合增设了单独设置的课程设计“石油地质综合训练”,学生毕业前12周的毕业设计也是对本课程知识的实际应用。实践环节的设置的目的是增加学生的感性认识、增强学生综合分析能力和利用石油地质理论知识解决实际问题的能力。
1.实验课
本课程有三个实验课实验,一是原油、烃源岩、储集层样品观察描述;二是烃源岩有机地球化学指标萃取实验;三是油气成藏机理模拟实验。这三个实验的目的是使学生对原油、烃源岩、储集层、烃源岩有机地球化学指标萃取过程和油气成藏过程和影响因素有一个感性的认识,以便更好地理解课程的相关内容。
原油、烃源岩、储集层样品观察描述是通过样品观察描述认识原油、储集层、烃源岩的基本特征,增强学生的感性认识,加深对课程基本概念的理解。
由于烃源岩地球化学实验过程较长,不适合学生全程参与,因此主要采用演示的方式进行。如从岩样的粉碎、到可溶有机质的抽提、再到抽提物质的分析,一般需要至少64小时以上不间断的实验。通过这种感性实验,学生对课程相关的基本概念有了比较深入理解,如通过干酪根萃取过程的观察,对干酪根和可溶有机质的概念有了更深入的理解;通过石油族组分的分离过程的观察,对石油和可溶有机质的组成有了进一步的理解。
油气成藏模拟实验借助中国石油大学(北京)油气资源与探测国家重点实验室的成藏模拟装置,进行油气生成物理模拟实验、油气运移二维模拟实验,学生在实验中可以观察在不同地质条件下油气运移和聚集情况,理解油气运移过程中不同力、输导体系和运移通道对油气运移和聚集的影响等。
2.课内大作业
为了培养学生分析解决实际地质问题的能力,在讲授“石油地质学”课程的同时,针对主要章节的主要知识点设计了6个课内大作业。课内大作业采用“以学生为主”的模式进行教学,教师仅就基本原理和要点进行讲解、辅导以及引导性的解答,启发学生思考,调动学生学习的主动性和积极性,要求学生独立完成大作业要求的图件、分析,并独立完成报告,这种实践环节很好地锻炼了学生综合所学知识,解决实际石油地质问题的能力,使学生对所学理论知识也有了更深入的理解。
3.课程设计
由于学时有限,仅仅依靠上述这些实验和课内大作业对学生的实践锻炼是不够的。因此,在“石油地质学”课程之后,安排“石油地质综合训练”课程设计,这是针对地质工程专业的一门单独设置实践教学环节,目的是使学生深化和巩固所学的“石油地质学”理论知识,加强学生综合应用所学理论和方法,分析和解决石油地质实际问题的能力,为将来从事油气地质与勘探工程设计奠定基础。
“石油地质综合训练”课程设计所设计的资料全部为来自一个实际盆地的石油地质资料,包括烃源岩和原油有机地球化学分析数据、储盖层分析资料、地震资料、钻井资料、测井资料、流体包裹体分析资料等,通过对这些资料的综合分析,做出相关图件,完成研究区烃源岩评价、油气成藏综合分析与评价和勘探目标评价与设计。最终提交内容丰富、观点明确、分析论证透彻、文图并茂的研究报告。
通过该课程的学习,进一步培养了学生的独立思考能力、实际动手能力和综合分析能力,使学生初步掌握了油气地质研究综合研究与评价的工作程序和基本工作方法,学会了油气地质研究所需的基本图件的编制和相应软件的使用,提高了学生的文字组织和表达能力。
4.毕业设计
毕业设计是对专业课程,尤其是石油地质学课程学习的延续。地质工程专业本科毕业设计的目的是综合运用已学的油气地质知识,以一定的科研项目为依托,初步掌握油气地质研究的方法,培养、加强综合分析问题和解决问题的能力。
地质工程专业学生的毕业设计大部分为与盆地石油地质研究有关的题目,这是课程实践外对石油地质课程学习的最好的应用与教学效果的检验。
课程组教师全部指导学生的毕业设计。本教学组借助科研优势,吸引对油气地质与勘探研究感兴趣的学生参与教师承担的实际研究工作并完成其毕业设计任务;毕业设计中注重严格要求,并对学生在选题、开题、资料分析汇总,图表编制和最后的论文撰写、答辩等各个环节悉心指导,认真负责。鼓励学生勤于思考,独立完成毕业设计中所需的图表,鼓励学生在详细调研的基础上,提出自己的想法和观点。通过毕业设计,学生的石油地质工作方法和思维方式及基本技能得到了很好地训练,加深了对石油地质学理论的理解。
教学方法与手段
1.教学方法
“石油地质学”是一门理论性和实践性都很强的课程。为了提高教学质量,增强学生的动手能力和综合分析能力,在课程总学时不变的前提下,课程组精简理论教学,增加实践环节,广泛采用多媒体教学手段,提高课堂授课效率。同时,采取多种方式提高学生主动学习的积极性,提高学生综合应用知识的能力,达到深化理论学习,提高实践能力的目的。
(1)精简理论学时,实现课堂多媒体教学
该课程的主要教学方式是课堂教学,通过课堂讲授,将该课程的理论和方法传授给学生。本课程涉及学科多,教学学时紧张,如何提高课堂效率,直接影响教学效果。为此,我们十分重视课堂教学,精选讲课内容,精讲重点难点,安排同学自学易于理解的内容,并广泛采多媒体教学手段,提高课堂授课效率,利用46学时讲授了原来靠板书64学时讲授的课程内容,节约的学时主要安排实践训练。
(2)加强实践环节,学生自主完成大作业
为了加深学生对理论教学内容的理解、训练学生的动手能力和综合分析能力。本课程配合理论学习,安排有18学时的实验和习题教学。习题主要包括烃源岩演化特征与生油区评价、时间-温度指数计算与烃源岩成熟度评价、天然气成因类型综合判别、圈闭及油气藏类型的识别、流体势计算和油气运移方向分析、油气藏形成条件综合分析等,这些习题由教师简要介绍做题思路,由学生独立完成,教师批改后,再逐一给学生讲解存在的问题。通过大作业达到了加深理解、增强学生分析问题和解决问题能力的目的,效果良好。
(3)科研促进教学,培养学生的创新精神
本课程组教师长期从事与教学相关领域的科学研究工作,承担了国家“973”、油气重大专项、国家自然科学基金、油田委托的重大研究项目。获得国家科技进步二等奖2项,省部级科技进步奖和自然科学奖多项,发表了一系列相关领域的高水平论文。科学研究活动不仅提高的教师的学术水平,科研成果还成为讲课的素材、教材的内容与实例,教师在教学中将自己的科研心得和学科最新进展讲授给学生,提高了学生对科学的探索精神,对培养学生的创新精神起到了良好的作用。
科研实验室向本科生开放,承担本科生实验课。本课程的烃源岩地球化学实验和油气成藏物理模拟实验都是在油气资源与探测国家重点实验室进行,科研实验室为石油地质学课程的教学提供了良好的教学条件。与此同时,教师根据自己的科研课题设立科技创新项目,为学生提供研究经费开展科技创新活动,培养了学生的创新精神。
(4)加强教学改革,探索研究型教学模式
随着教学改革的深入,本课程开始了研究型教学的探索。首先在地质工程专业创新班进行研究型教学模式的试点。目前正在进行石油地质研究型教学文献库、案例库、课堂讨论主题库的建设;在教学中将建立“以学生为主体、以教师为主导”的基于探索和研究的教学模式,将研究型教学理念落实课程教学上,即采用与研究型教学相适应的授课方式、讨论形式、作业类型、实践训练和考核方式。打破传统的单一教材,适当增加相关的科技文献和科研报告,增加案例教学;授课过程中采用学生课前自学、课堂讨论、教师总结、课后答疑的双向教学方式;教师指定题目要求学生撰写科技小论文;以分组的形式要求每组学生自主设计和操作实验,完成实验报告;采取综合的考核方式,包括期末闭卷考试、科技小论文的多媒体答辩、实验报告及平时讨论发言成绩。
(5)丰富网络资源,网络教学补充课堂教学
配合课程教学,充分利用校园网,解决学生自学、复习、答疑等问题,学生可以通过网络获取教师的教学材料,有利于学生在课堂集中精力听课,从而解决了课堂信息量大给学生做笔记带来一定困难等问题。在精品课程网上,学生可以浏览课程大纲、教学内容、复习思考题,也可以进行网上答疑。
2.教学手段
为了搞好该课程的教学,课程组在重视传统课堂教学的基础上,广泛采用电化教学手段,提高课堂授课效率,加强实践教学环节,采取多种方式提高学生主动学习的积极性,提高学生综合应用知识的能力,达到深化理论学习,提高综合能力的目的。
近年来,随着我校电化教学设备的改进,本课程在课堂教学中的一个重要变化是:逐渐由传统的板书课堂教学转变为以多功能教室为主的多媒体教学;在充分发挥多媒体教学知识输出快、效率高的优势,继续发挥传统课堂教学的优点,二者兼顾,共同提高课堂教学效果。精细认真的课前准备,灵活多样的授课方式,良好的电化教学手段,大大提高了课堂授课效率。目前课程组每位教师都有一套完整的PowerPoint教学幻灯片。除年轻教师要求用传统课堂教学外,其他课堂基本都是多媒体教学。
配合教学内容还适当放映一些教学片,如美国AAPG继续教育短片,电影《储集层》、《古潜山》和《油气勘探》等教学片。
❽ 模拟实验
油源对比发现,东营凹陷沙三段砂岩透镜体内的原油并非完全来自沙三段的烃源岩,其油源主要为沙三段和其下部沙四段的混源油。那么在没有明显大断层沟通的情况下,沙四段的油是如何进入到沙三段的烃源岩中的呢?前文提出油气可以通过裂缝和薄层砂作为输导通道运移到砂岩透镜体中成藏,裂缝和薄层砂这两种输导要素在空间上的配置关系和组合样式对油气输导效率及输导过程究竟如何呢?本次实验的目的就是应用细棉线模拟裂缝,将棉线和砂体连接,模拟油气是否能够由细棉线导入砂岩体中并在砂体中聚集成藏的过程。
(一)模型的物理模拟实验
1.模型
图3-15即为油气有机网络简单物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。左上角和右下两角扇形体分别以粒径0.4~0.45mm的石英砂充填,左上角扇形体半径为11cm,右下角扇形体半径为10cm;模型中央为一近椭圆形体,以粒径0.4~0.45mm的石英砂充填,长宽分别为22.5cm、16cm;与左上及右下砂岩扇体的距离分别为9.5cm、8cm。模型内其余部分以泥岩充填。红色箭头A、B指示注油口,孔a为注水口,孔b为排气口。线1、2、3为细棉线。单股棉线的直径约0.2mm。在常温常压下进行实验。
图3-15 简单模拟实验装置示意图
2.实验结果
首先由示意图中的a孔注水,排出装置中央透镜体中的空气,当b孔有水流出时,排气结束。然后将a、b孔皆关闭。然后由A、B两个注油口开始注油,注油速度皆为0.5mL/min。经过1h后,下扇形体内的油经过棉线运移到透镜体内并在浮力作用下至顶部聚集;同时上扇体的油也开始经过棉线运移到透镜体内(图3-16左)。
距开始注油大约70min后,A口注油的速度减小到0.1mL/min,B注油口的速度维持0.5mL/min不变。约20min后,上扇体内的油继续缓慢通过棉线运移到透镜体内;下扇体内的油也继续通过棉线运移到透镜体内,透镜体上部聚集的油量明显增加(图3-16中)。此时再次改变注油速度,A口注油速度变为0.2mL/min;B口停止注油。3h40min后,上扇体的油进一步通过棉线运移到透镜体内,并上浮至顶部聚集(图3-16右)。A口停止注油,进入静观阶段。
图3-16 实验进行时的油气运移结果图
在经历了18h的静观阶段后,由两边扇体通过棉线进入透镜体内的油量明显增多。油在透镜体上部大量聚集,累积油柱高度为9cm(图3-17)。
图3-17 实验进行23h油气运移结果图
至此实验结束,本次实验共持续23h15min,累积注油量:由A口注油77.5mL,由B口注油43.5mL。
(二)较复杂模型的物理模拟实验
1.实验模型
图3-18即为较复杂物理模拟实验装置图。该模型的尺寸为长(50cm)×宽(30cm)×厚(2cm)。一共分为上下5层,其充填物依次为含油泥、细砂、含油泥、细砂、泥岩,有4个透镜体分别布置在最下层和最上层中,上面两个透镜体由单股棉线(模拟裂缝)与其下端的细砂岩相连。其中细砂岩粒径为0.15~0.2mm(模拟薄砂层),透镜体内的砂砾粒径为0.35~0.4mm,含油泥中油与泥的比例约为1:5.16,a口为注油口,本实验在常温常压下进行。
图3-18 油气有机网络运移复杂模拟实验装置示意图
2.实验过程
实验装置完毕即为开始实验,7h25min后,右下侧透镜体开始进油(图3-19左),无其他现象发生。
26h15min后,左下侧透镜体内的聚集的油进一步增加,从下往上数第二层细砂岩条带有油气渗入(图3-19右)。
到第9天,改变实验措施,由a口开始注油,注油速度为0.15mL/min,53min后(222h33min),下条带细砂层开始进油(图3-20左)。
6h55min后,下细砂条带聚油量增加,左下侧扇体聚油量增加,此时停止注油,进入静观阶段。1天后,下细砂条带内油从右向左运移,且下侧两个透镜体聚油量增加,聚油体积都约占整个透镜体的70%。再过l天(累计进行到约269h),左下侧透镜体聚油体积约占整个透镜体体积的90%,右下侧透镜体的聚油体积约占95%(图3-20右)。
此后再次由a口注油,随着注油量的增加,下面两个透镜体都逐渐完全被油充注,下细砂条带的聚油量也逐渐占满整个条带,随后上细砂条带也开始见油(图3-21左)。
图3-19 复杂模拟实验油气运移图
图3-20 复杂模拟实验油气运移图
随着实验的继续进行,上细砂岩条带的聚油量逐渐增加,最终充满整个条带,且该条带内的油通过棉线导入上面两个透镜体中(图3-21右),至此实验结束,累计进行时间约359h,本次实验累积注油量348.69mL。
图3-21 复杂模拟实验油气运移图
3.实验讨论
本次实验历时共约359h,由以上实验可以发现,常温常压下,由于烃浓度差引起的渗透压差和扩散压差,底层含油泥岩内的油具有运移到与其相邻的砂岩体中的趋势。在毛细管力差和烃浓度差的作用下,底层泥岩中的油首先进入被其包围的孔隙较大的砂岩透镜体中,而不太容易运移到其上部的细砂岩条带中。
随着底层油不断的注入,压力不断增大,最终能够克服底层泥岩与其上层细砂岩的毛细管力时,油就进入到其中,当其浓度足够大时,在烃浓度差的作用下,油运移到层3中。层3中的油在渗透压差的作用下,运移到层4中。联结顶层砂岩透镜体与层4的棉线能起到很好的输导油的作用,因此层4的油能沿着棉线模拟的裂缝运移到顶层的两个砂岩透镜体中。
通过本次实验,可以看出,仅靠底层泥岩中的油自然渗透和扩散,其运移能力有限。但是在油源充足的情况下,底层的油最终能够运移到与之相隔几层的砂岩透镜体中。
❾ 实验模拟法
油气成藏动力学的实验模拟法包括生烃化学动力学的热压模拟实验、排烃热压模拟实验和油气二次运移、聚集的流体动力学模拟实验。近十几年来,生烃热压模拟实验,即密闭容器加水热解(hydrous pyrolysis)是国际上比较推崇的模拟油气生成的实验方法(lewan,1991,1993)。热压模拟实验是将烃源岩样品置于在密封容器(如玻璃管或高压釜)中加热到300℃以上并长时间恒温,采用液氮冷阱收集装置收集气相产物(天然气、轻质烃等)。国内许多学者对不同类型生油岩样品进行了大量的热压模拟实验,如王涵云和杨天宇(1982,1987),高岗、郝石生等(1995,1999),王兆云、程克明等(1995, 1996),为有机质的生烃热演化模式和油气产率研究提供了重要依据。此外,生油岩热解法(Rock-Eval)是测定烃源岩有机质成烃动力学参数(活化能和频率因子)的重要方法。排烃热压模拟实验与生烃热压模拟实验基本相似。Dembicki(1989)、Thomas(1995)、Hindle(1997)及曾溅辉(2000)通过物理模型对油气的二次运移过程进行了大量的模拟实验。实验室热模拟实验也取得了许多重要进展,提高了人们对成藏机理的认识。如中国石油大学的“油气成藏机理模拟实验室”,自行研制了具有国际水平的一维高温高压模拟实验系统、二维高温低压模拟实验系统和多功能岩心流动实验装置等,可以进行地层温压条件下的油气生成、运移、聚集、保存和破坏、流体-岩石相互作用与储层评价和成岩作用等物理模拟研究。