Ⅰ 求有关STM单片机的恒温控制系统设计的五篇外文参考文献,不需要具体内容
http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYZD200404006.htm
http://xueshu..com/s?wd=paperuri:()&filter=sc_long_sign&sc_ks_para=q%3DA+Constant+Temperature+Control+System+for+the+Range%2C+Room+Temperature+to+-320°F&tn=SE_xueshu_c1gjeupa&ie=utf-8&sc_us=5819170968094484606
这两个网页都可以有好多。希望帮帮忙到你。
Ⅱ 测温系统的发展历史、现状和动态
这是俺论文的第一部分,希望对你用!!!!!
1.1 国内外温度检测技术研究现状
温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。
1.1.1 常用的温度测量方法
根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。
接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。
非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表1.1所示。
表1.1 两种测温方法的主要特点
方式 接触式 非接触式
测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。
测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度
精度 工业用表通常为1.0、0.5、0.2、0.1级,实验室用表可达0.01级。 通常为1.0、1.5、2.5级
响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟
其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。
从温度检测使用的温度计来看,主要包括以下几种:
1.利用物体热胀冷缩原理制成的温度计
利用物体热胀冷缩制成的温度计分为如下三大类:
(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。
(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。
(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。
2.利用热电效应技术制成的温度检测元件
利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。
(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。
(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。
(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。
(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。
3.利用热阻效应技术制成的温度计
用热阻效应技术制成的温度计可分成以下几种:
(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。
(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。
(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。
4.利用热辐射原理制成的高温计
热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。
1.1.2 国内外温度检测技术现状及发展趋势
近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:
1.晶体管温度检测元件
半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。
2.集成电路温度检测元件
利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。
3.核磁共振温度检测器
所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。
4.热噪声温度检测器
它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:
(1)输出噪声电压大小与温度是比例关系;
(2)不受压力影响;
(3)感温元件的阻值几乎不影响测量精确度;
因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。
5.石英晶体温度检测器
它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到0.001℃,所以可作标准检测之用。
6.光纤温度检测器
光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。
7.激光温度检测器
激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。
8.微波温度检测器
采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。
从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:
a.扩展检测范围
现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。
b.扩大测温对象
温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。
C.新产品的开发
利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。
d.加强新原理、新材料、新加工工艺的开发。
如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。
e.向智能化、集成化、适用化方向发展。
新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。
1.2课题的工程背景
在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以0.5℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。
事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到0.5℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。
Ⅲ 基于单片机的便携式测温仪毕业论文
目
录
摘要
I
ABSTRACT
II
1
绪
论
1
1.1
本课题研究的背景和意义
1
1.2
本课题研究的现状
2
1.3
本课题发展趋势
3
1.4
本课题研究的内容
3
2
系统方案设计
4
2.1
本系统性能指标
4
2.2
方案选择
4
2.2.1
方案提出
4
2.2.2
方案论证
5
2.2.3
方案选定
6
3
系统硬件设计
7
3.1
系统总体结构框图
7
3.1.1
框图说明
7
3.2
凌阳16位单片机(SPCE061A)
7
3.2.1
SPCE061A芯片简介
8
3.2.2
芯片的引脚排列和说明
9
3.2.3
电源板电路模块分析
11
3.2.4
复位电路
12
3.3
键盘电路
13
3.4
音频输出电路
13
3.5
红外测温传感器
14
3.5.1
TN9红外传感器简介
14
3.5.2
TN9模块的性能参数
15
3.5.3
TN9模块与单片机连接图
16
4
系统软件设计
17
4.1
软件设计的架构
17
4.2
系统主程序流程图
17
4.3
读取数据子程序设计
19
4.4
语音播报子程序设计
20
4.4.1
凌阳音频压缩编码
20
4.4.2
语音播报流程图
21
5
系统组装与调试
23
5.1
61板自检
23
5.2
传感器与系统的连接
23
5.3
程序下载
24
结论
28
参考文献
29
附录A:SPCE061A精简开发板原理图
31
附录B:主程序
32
致谢
38
Ⅳ 设计一个温度测量及超限报警电路
我给你提供方法吧 你自己去实现
一个温度传感器 一个比较器 当你设定的值超过 比较器设定的80度时的值,就输出驱动蜂鸣器工作 就这么简单
Ⅳ 热电偶温度传感器测温仪硬件系统的设计
集成温度传感器AD590及其应用
摘 要:AD590是AD公司利用PN结构正向电流与温度的关系制成的电流输出型两端温度传感器,文中介绍了AD590的功能和特性,分析了AD590的工作原理,给出了采用AD590设计的...
www.bjx.com.cn/files/wx/gwdzyqj/2002-7/8.htm
2 电子技术文章-技术资料
集成温度传感器AD590及其应用
集成温度传感器AD590及其应用
浏览次数 1978
添加日期 2004-06-26 相关评论
主题: 有没有数字电流表制作图 ( 发布人:发布时间:2005-8-22 21:21:37 )
评论内容: 有没有数字电流表制作图 请问...
www.guangdongdz.com/special_column/techar ...
3 技术论坛 C++,VC...
集成温度传感器AD590及其应用[
标题:集成温度传感器AD590及其应用 htkj
等级:超级版主 文章:199 积分:2698 门派:无门无派
注册:2005年...集成温度传感器AD590及其应用集成温度传感器AD590及其应用点击浏览该文件
温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段:
1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。
3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。
温度传感器的分类
温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。
接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。
非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。
温度传感器的发展
1.传统的分立式温度传感器——热电偶传感器
热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。
2.模拟集成温度传感器
集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。
模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。
2.1光纤传感器
光纤式测温原理
光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等
2.1.1 全辐射测温法
全辐射测温法是测量全波段的辐射能量,由普朗克定律:
测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。
2.1.2 单辐射测温法
由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示:
2.1.3 双波长测温法
双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出:
际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。
2.1.4 多波长辐射测温法
多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为:
将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)假设下多波长高温计数据拟合方法和精度问题。1991年Mansoor[10]等总结了多波长高温计数据拟合方法和精度问题。 该方法有很高的精度,目前欧共体及美国联合课题组的Hiernaut等人已研究出亚毫米级的6波长高温计(图4),用于2000~5000K真温的测量[11]。哈尔滨工业大学研制成了棱镜分光的35波长高温计,并用于烧蚀材料的真温测量。多波长高温计在辐射真温测量中已显出很大潜力,在高温,甚高温,特别是瞬变高温对象的真温测量方面,多波长高温计量是很有前途的仪器。该类仪器测温范围广,可用于600~5000℃温度区真温的测量,准确度可达±1%。
2.1.5 结 论
光纤技术的发展,为非接触式测温在生产中的应用提供了非常有利的条件。光纤测温技术解决了许多热电偶和常规红外测温仪无法解决的问题。而在高温领域,光纤测温技术越来越显示出强大的生命力。全辐射测温法是测量全波段的辐射能量而得到温度,周围背景的辐射、介质吸收率的变化和辐射率εT的预测都会给测量带来困难,因此难于实现较高的精度。单辐射测温法所选波段越窄越好,可是带宽过窄会使探测器接收的能量变得太小,从而影响其测量准确度。多波长辐射测温法是一种很精确的方法,但工艺比较复杂,且造价高,推广应用有一定困难。双波长测温法采用波长窄带比较技术,克服了上述方法的诸多不足,在非常恶劣的条件下,如有烟雾、灰尘、蒸汽和颗粒的环境中,目标表面发射率变化的条件下,仍可获得较高的精度
2.2半导体吸收式光纤温度传感器是一种传光型光纤温度传感器。所谓传光型光纤温度传感器是指在光纤传感系统中,光纤仅作为光波的传输通路,而利用其它如光学式或机械式的敏感元件来感受被测温度的变化。这种类型主要使用数值孔径和芯径大的阶跃型多模光纤。由于它利用光纤来传输信号,因此它也具有光纤传感器的电绝缘、抗电磁干扰和安全防爆等优点,适用于传统传感器所不能胜任的测量场所。在这类传感器中,半导体吸收式光纤温度传感器是研究得比较深入的一种。
半导体吸收式光纤温度传感器由一个半导体吸收器、光纤、光发射器和包括光探测器的信号处理系统等组成。它体积小,灵敏度高,工作可靠,容易制作,而且没有杂散光损耗。因此应用于象高压电力装置中的温度测量等一些特别场合中,是十分有价值的。
B 半导体吸收式光纤温度传感器的测温原理
半导体吸收式光纤温度传感器是利用了半导体材料的吸收光谱随温度变化的特性实现的。根据 的研究,在 20~972K 温度范围内,半导体的禁带宽度能量Eg 与
温度T 的关系为
"
3.智能温度传感器
智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。
3.1数字温度传感器。
随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理
1 、DS1722的主要特点
DS1722是一种低价位、低功耗的三总线式数字温度传感器,其主要特点如表1所示。
2、DS1722的内部结构
数字温度传感器DS1722有8管脚m-SOP封装和8管脚SOIC封装两种,其引脚排列如图1所示。它由四个主要部分组成:精密温度传感器、模数转换器、SPI/三线接口电子器件和数据寄存器,其内部结构如图2所示。
开始供电时,DS1722处于能量关闭状态,供电之后用户通过改变寄存器分辨率使其处于连续转换温度模式或者单一转换模式。在连续转换模式下,DS1722连续转换温度并将结果存于温度寄存器中,读温度寄存器中的内容不影响其温度转换;在单一转换模式,DS1722执行一次温度转换,结果存于温度寄存器中,然后回到关闭模式,这种转换模式适用于对温度敏感的应用场合。在应用中,用户可以通过程序设置分辨率寄存器来实现不同的温度分辨率,其分辨率有8位、9位、10位、11位或12位五种,对应温度分辨率分别为1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,温度转换结果的默认分辨率为9位。DS1722有摩托罗拉串行接口和标准三线接口两种通信接口,用户可以通过SERMODE管脚选择通信标准。
3、DS1722温度操作方法
传感器DS1722将温度转换成数字量后以二进制的补码格式存储于温度寄存器中,通过SPI或者三线接口,温度寄存器中地址01H和02H中的数据可以被读出。输出数据的地址如表2所示,输出数据的二进制形式与十六进制形式的精确关系如表3所示。在表3中,假定DS1722 配置为12位分辨率。数据通过数字接口连续传送,MSB(最高有效位)首先通过SPI传输,LSB(最低有效位)首先通过三线传输。
4、DS1722的工作程序
DS1722的所有的工作程序由SPI接口或者三总线通信接口通过选择状态寄存器位置适合的地址来完成。表4为寄存器的地址表格,说明了DS1722两个寄存器(状态和温度)的地址。
1SHOT是单步温度转换位,SD是关闭断路位。如果SD位为“1”,则不进行连续温度转换,1SHOT位写入“1”时,DS1722执行一次温度转换并且把结果存在温度寄存器的地址位01h(LSB)和02h(MSB)中,完成温度转换后1SHOT自动清“0”。如果SD位是“0”,则进入连续转换模式,DS1722将连续执行温度转换并且将全部的结果存入温度寄存器中。虽然写到1SHOT位的数据被忽略,但是用户还是对这一位有读/写访问权限。如果把SD改为“1”,进行中的转换将继续进行直至完成并且存储结果,然后装置将进入低功率关闭模式。
传感器上电时默认1SHOT位为“0”。R0,R1,R2为温度分辨率位,如表5所示(x=任意值)。用户可以读写访问R2,R1和R0位,上电默认状态时R2=“0”,R1=“0”,R0=“1”(9位转换)。此时,通信口保持有效,用户对SD位有读/写访问权限,并且其默认值是“1”(关闭模式)。
二、智能温度传感器DS18B20的原理与应用
DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。
2DS18B20的内部结构
DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图1所示。
(1) 64 b闪速ROM的结构如下:�
开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。
(2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。
(3) 高速暂存存储器
DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E�2RAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给E�2RAM。而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如下:
低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。�
由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。
高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。�
当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0�062 5 ℃/LSB形式表示。温度值格式如下:�
对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。表2是对应的一部分温度值。�
DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>TH或T<TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。
(4) CRC的产生
在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。�
3DS18B20的测温原理
DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小〔1〕,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在�-55 ℃�所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
Ⅵ 数字显示温度计设计(测温电路与电源电路设计)
摘要 2
Abstract 3
引言 5
1.1 选题背景 5
1.2 设计过程及工艺要求 5
第二章 方案的比较和论证 6
2.1 温度传感器的选择 6
2.2湿度传感器的选择 7
2.3信号采集通道的选择 7
第三章 系统总体设计 9
3.1 信号采集 10
3.1.1 温度传感器 10
3.1.2 湿度传感器 14
3.1.3 多路开关 17
3.2信号分析与处理 19
3.2.1 A/D 转换 19
3. 2. 2 单片机8031 23
3. 2. 2. 1 8031 的片内结构 23
3. 2. 2. 2 8031的引脚图 25
3. 2. 2. 3 8031 程序存储器 27
3. 2. 2. 4 8031 数据存储器 27
3. 2. 2. 5 特殊功能寄存器 SFR 28
3. 2. 2. 6 工作方式 28
3. 2. 3 存储器的设计 30
3. 2. 5 系统时钟的设计 32
3. 3 显示与报警的设计 32
3. 3. 1 显示电路 32
3. 3. 2 报警电路 33
第四章 软件设计 34
结束语 40
参考文献 41
附录 A 程序清单 42
Ⅶ 介绍一下几种温度计的相关资料(红外测温计、电子体温计、光测高温计、电阻温度计等附图)
红外测温计的设计时间:2009-05-18 15:20:47 来源:中国传动网 作者: 1 引言
去年在我国局部地区流行的SARS 前期症状是高烧38oC 以上(少数长期病患者除外),红外测温仪可为防止SARS 的扩散和传播提供了快速、非接触测量手段,可广泛、有效地用于人群的体温排查。一时红外测温在我国迅速红火起来,这里介绍一种采用SPCE061A和TN系列传感器实现红外测温的方法。
2 芯片特性简介
SPCE061A是台湾凌阳公司生产的性价比很高的一款十六位单片机,使用它可以非常方便的实现控制和语音播报的系统,该芯片拥有8路10位精度的AD,其中1路AD为音频转换通道,并且内置有自动增益电路。这为实现语音录入提供了方便的硬件条件。2路10位精度的DA,只需要外接2个功放(LM386)即可完成语音的播放。另外,凌阳十六位单片机具有易学易用的效率较高的一套指令系统和集成开发环境。在此环境中,支持标准C语言,可以实现C语言与凌阳汇编语言的互相调用,并且,提供了语音录放的库函数,只要了解库函数的使用,就会很容易完成语音播报,这些都为软件开发提供了方便的条件。
3 系统总体方案介绍
系统结构图如下:
本系统包括按键部分、音频输出部分和TN红外测温传感器接入等三部分。
按键部分:按键开始测温,一直按下,听到声音表示测温完毕。
音频输出部分:主要是将SPCE061A两路音频输出端通过LM386放大,经喇叭播放。
TN红外测温传感器接入部分:通过SPCE061A IO口的控制,将将所测得的温度接受到SPCE061A中来处理。
系统实现的功能:按住按键,听到声音,此时播报测得的环境温度和目标温度。
4 系统硬件设计
红外测温传感器如图 4.1 所示。
红外测温模块与SPCE061A的接口如下:
V-->3.3v
D-->IOA15
C-->IOB8
G-->GND
A-->按键-->GND
音频输出部分详细电路图如图4.2电子体温计使用方法1.按电源钮,确定「预备标志」已经显示。按下滑板按钮,探头伸出并自动套上胶套,检查胶套有否破损,无破损则於30秒内测完体温。 2.三岁以内:要把耳朵向下向后拉,再将耳温枪测温头置入耳朵内。三岁以上(含大人):要把耳朵向上拉并往后拉。将探头置入耳道密合,按著测温钮,持续一秒钟,听到单一长音「哔」声放开,完成体温测量。 3.取出耳温枪,将滑板快速退回,胶套自动脱离探头,读取温度。 注意事项: 1.注意耳垢清洁,才能准确测量。 2.耳温枪使用后,胶套丢弃不重复使用,以避免交互感染。 3.测得的体温如果不到35℃,则可能是耳温枪使用不当所致。 额温 35.0℃~37.0℃ 1-15秒 测量步骤: 1. 必须先做室温校正,即根据额温枪所附说明换算成中心温度。 2.测量者必须在休息状态下,额头保持乾燥。 3.将额温计置於额头前2-5公分左右,按压按钮测量,直至颜色改变或显现温度数据。 注意事项: 1. 正常温度标准随不同厂牌而异。 2. 室温、运动后或额头是否乾燥会影响测量的准确性。 3. 勿将额温枪的红外线光点接触到受检者的眼睛。 口温 35.5℃~37.4℃ 3-5分钟,7分钟最佳。 测量步骤: 1. 使用前要先将温度计度数甩到35℃以下。 2. 将体温计(片)置於舌下(含住即可、不可用力咬及说话)。 3.体温计至少量3-5分钟,体温片量2分钟。 4.取出体温计,读取温度数据后,以卫生纸擦拭乾净,再以酒精棉片消毒(以旋转方式自尾端擦至水银端)。体温片取出后静待10秒,读取度数后,丢弃。 注意事项: 1.婴幼儿、呼吸困难、意识不清者、有痉挛病史及无法合作者请勿量口温。 2. 进食、喝热饮、抽烟、嚼口香糖、剧烈运动、情绪激动及洗澡需待30分钟后再测量。 3. 若持体温片,手持末端,勿接触体温片感温点。 腋温 35.0℃~37.0℃ 5-10分钟 测量步骤: 1. 使用前要先将温度计度数甩到35℃以下。将体温计置於腋下最顶端,水银端和腋下的皮肤紧密接触并夹紧,以免脱位或掉落。 2.测量5-10分钟。 3. 取出体温计,读取温度数据后,以卫生纸擦拭体温计。 注意事项: 1. 腋下如有汗液,需擦乾再量。 2. 若测量时间未到,松开腋下,则需重新测量,时间需重新计算。 3. 喝热饮、剧烈运动、情绪激动及洗澡需待30分钟后再测量。 肛温 36.2℃~37.9℃ 3-5分钟 测量步骤: 1.婴儿采仰卧抬腿或趴卧姿势,儿童及成人采侧卧姿势。 2. 使用前要先将温度计度数甩到35℃以下。以润滑剂(凡士林或石蜡油)润滑肛表水银球端。 3.手扳开肛门,将肛表旋转并缓慢轻轻插入,拿肛表之手同时靠於臀部固定以防滑落或插太深。 4.插入深度: ★ 婴儿1.25公分。 ★ 儿童2.5公分 ★ 成人3.5公分 5.测量2-5分钟。 6.取出肛表,读取温度数据后,以卫生纸擦拭乾净,再以酒精棉片消毒(以旋转方式自尾端擦至水银端)。 注意事项: 1.婴儿及5岁以下幼儿适用。 2.腹泻者及直肠疾患、手术者禁量肛温。 3.喝热饮、剧烈运动、情绪激动及洗澡需待30分钟后再测量。 备注: 1.肛温适合各年龄层使用,量测结果最接近中心体温,受环境温度影响最小,但不方便量测,不适合作筛检用。因此建议可用於当其他方式之量测结果有异常或有疑议时确认之用。 2.若肛表被污染看不清楚时,请先以卫生纸擦拭乾净,再读取温度数据 光测高温计它是利用热源辐射的亮度和温度的关系来测量高温的仪器。该仪器主要部分包括:如图2-1所示,望远镜M管内装一红色玻璃滤色镜F及一个小灯泡L。当光测高温计对着熔铁炉时。从望远镜里看到灯泡的黑色灯丝及后面炉火的强光。灯丝和电源E及可变电阻R串接,调节可变电阻R的阻值使适当的电流通过灯丝。直到灯丝的亮度与炉火的亮度相同时为止。如果事先在安培表A上将已知温度值刻好,则由安培表的读数就可以直接读出温度的数值。测温时,不需将仪器与被测体接触,因此光测高温计,可用来测很多金属的熔点以上的温度。
物体温度若高到会发出大量的可见光时,便可利用测量其热辐射的多寡以决定其温度,此种温度计即为光测温度计。此温度计主要是由装有红色滤光镜的望远镜及一组带有小灯泡、电流计与可变电阻的电路制成。使用前,先建立灯丝不同亮度所对应温度与电流计上的读数的关系。使用时,将望远镜对正待测物,调整电阻,使灯泡的亮度与待测物相同,这时从电流计便可读出待测物的温度了。 电阻温度计根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。精密的铂电阻温度计[1]是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铑铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。它的测量范围为-260℃至600℃左右。
电阻温度计
利用导体电阻随温度变化而改变的性质而制成的测温装置。通常是把纯铂细丝绕在云母或陶瓷架上,防止铂丝在冷却收缩时产生过度的应变。在某些特殊情况里,可将金属丝绕在待测温度的物质上,或装入被测物质中。在测极低温的范围时,亦可将碳质小电阻或渗有砷的锗晶体,封入充满氦气的管中。将铂丝线圈接入惠斯通电桥的一条臂,另一条臂用一可变电阻与两个假负载电阻,来抵偿测量线圈的导线的温度效应。电阻将按下列公式随温度发生变化:
R=R0(1+aθ)
式中R是θ℃的电阻,R0是0℃时的电阻,a是常数。比较精确的式子是:
R=R0(l+aθ+bθ2)
式中b是第二个常数。电阻温度计在-260℃~+1200℃范围内,可作极精确的测定。它适用范围广,远远超出水银温度计。可作测温的标准。
电阻温度计的技术参数:
测量范围 Pt385 -190℃ ~ 790℃ (-310 ~ 1454℉)
Pt3916 -190℃ ~ 615℃ (-310 ~ 1139℉)
Pt3926 -190℃ ~ 615℃ (-310 ~ 1139℉)
分辨率 0.1℃ / 0.1℉ / 0.1K
误差值 ±(0.05%rdg+0.5℃)
±(0.05%rdg+0.9℃)
温度系数 每1℃的变化少于0.1倍的额定规格值
取样率 1次/秒
操作/储存环境条件 0oC ~ 40oC< 80% RH
-10oC ~ 60oC<(低于70%之相对湿度)
电源供应 6颗 AAA规格电池
电池寿命 约 300 小时 (不包括背灯、蜂鸣器)
尺寸 152(长)×72(宽)×37(高)mm
重量 约 300g
Ⅷ 国内外红外测温的发展研究现状、发展动态 需要有参考文献的 谢谢
风格的方式
Ⅸ 温湿度控制器都有哪些参考文献
1、张会新,龚进,樊姣荣,等. 分布式数字无线测温系统[J]. 化工自动化及仪表,2011,38 ( 12) : 1493 ~ 1495..中国知网[引用日期2017-12-20]
2、 赵科,李常贤,张彤.基于STM32的无线温湿度控制器[J].化工自动化及仪表,2015,42(06):629-633..中国知网[引用日期2017-12-20]
一种可同时对温度、湿度信号进行测量控制的仪器,并实现液晶数字显示,还可通过按键对温、湿度分别进行上、下限设置和显示,从而使仪表可以根据现场情况,自动启动风扇或加热器,对被测环境的实际温、湿度自动调节。
动作指示通过两常开触点输出,真正使仪表实现了智能化更能适应复杂多变的现场情况,从而达到有效的保护设备的目的。
温湿度控制器主要分为:普通型系列和智能型系列两种。
普通型温湿度控制器:采用进口高分子温湿度传感器,结合稳定的模拟电路及开关电源技术制作而成。
智能型温湿度控制器:以数码管方式显示温湿度值,有加热器、传感器故障指示、变送功能,该仪表集测量、显示、控制及通讯于一体,精度高、测量范围宽,是一种适合于各个行业和领域的温湿度测量控制仪表。